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ABSTRACT An automatic modulation classification has a very broad application in wireless communi-

cations. Recently, deep learning has been used to solve this problem and achieved superior performance.

In most cases, the input size is fixed in convolutional neural network (CNN)-based modulation classification.

However, the duration of the actual radio signal burst is variable. When the signal length is greater than the

CNN input length, how to make full use of the complete signal burst to improve the classification accuracy is

a problem needs to be considered. In this paper, three fusionmethods are proposed to solve this problem, such

as voting-based fusion, confidence-based fusion, and feature-based fusion. The simulation experiments are

done to analyze the performance of these methods. The results show that the three fusion methods perform

better than the non-fusion method. The performance of the two fusion methods based on confidence and

feature is very close, which is better than that of the voting-based fusion.

INDEX TERMS Modulation classification, deep learning, fusion, convolutional neural network, residual

network, wireless communications, cognitive radio.

I. INTRODUCTION

Automatic modulation classification has a wide range of

applications in wireless communications [1], [2]. For exam-

ple, in software-defined radio-based communication [1]–[3],

by identifying the modulation type of the received signal,

the receiver can demodulate the signal by using the cor-

responding demodulation algorithm. In this way, the trans-

mission signal does not need to include additional control

information for informing the receiver of the modulation type

it used, which is beneficial to reduce the protocol overhead.

In cognitive radio [4], [5], automatic modulation classifica-

tion can be used to assist in detecting the primary user signal.

When the primary user is discovered, the cognitive user can

vacate the current channel, thereby avoiding harmful inter-

ference to the primary user. In spectrum monitoring [6], [7],

by identifying signals in a wide frequency band, interference

signals or illegal users can be found, so that measures can be

taken to ensure the security of wireless communications.

Traditional automatic modulation classification methods

can be divided into two categories: likelihood-based methods
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and feature-based methods [2]. The likelihood-based meth-

ods [8]–[12] calculate the likelihood function of the received

signal and compare it with a certain threshold to make deci-

sion. Although the likelihood-based method can minimize

the error rate, its computational complexity is high, and it

cannot adapt to unknown channel conditions and mismatch

between transmitter and receiver (such as clock frequency

deviation) [2]. The feature-basedmethods [13]–[17] calculate

certain features of the received signal, such as mean, standard

deviation and kurtosis of the normalized centered amplitude,

absolute normalized instantaneous frequency, higher order

moments, higher order cumulants, cyclic moments, cyclic

cumulants of the received signal. The computational com-

plexity of these methods is relatively low, but the selection of

features relies toomuch onmanual analysis. It is very difficult

to find features that can adapt to non-ideal conditions and

distinguish between multiple modulation types. Therefore,

automatic modulation classification is a very challenging

task, especially in non-cooperative scenarios where we do not

have prior information on the received signals [1].

In recent years, deep learning has benefited from neural

network units such as multiple hidden layers and nonlinear
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activation, and has been able to learn more deep-level

information hidden in the data, showing excellent perfor-

mance in many tasks, such as image classification, machine

translation, and natural language processing [18]–[23].

In recent years, deep learning was used for several areas

in wireless communications [24] and radio signal pro-

cessing [6], such as beamforming [25], channel estima-

tion [26]–[29], RF fingerprinting [30],[31], non-orthogonal

multiple access (NOMA) scheme [32], [33], sparse signal

regulation and recovery [34], [35], resource allocation [36],

and localization [37], [38]. In modulation classification,

deep learning has been adopted and better performance than

feature engineering-based methods has been obtained. For

example, [39] used convolutional neural networks (CNNs)

for modulation recognition, and experimental results show

that it obtains performance close to feature-based expert

systems. To further improve performance, the deep resid-

ual network and long short time memory (LSTM) are

used for modulation classification, respectively [40], [41].

As expected, these methods yield better classification accu-

racy than the simple CNN and the traditional feature-based

methods. Furthermore, the authors in [42] used two CNN

models, AlexNet and GoogLeNet, for modulation classifi-

cation. The authors in [43] compared the performance of

various neural network models in modulation classification

and reduced the training complexity from the perspective of

reducing the input signal dimension. The authors in [44] pro-

posed a two-step training to improve the efficiency of train-

ing CNN for modulation classification. The authors in [45]

proposed a deep learning-based method, combined with

two CNNs trained on different datasets, to achieve higher

accuracy. In addition, generative adversarial nets (GANs)

were also considered for modulation classification [46]–[48].

Overall, the biggest difference between the modulation clas-

sification method based on deep learning and the tradi-

tional modulation classification methods is that features are

automatically learned by the adopted neural network, which

avoids the feature design process and can adapt to the require-

ments under non-cooperative scenario.

As can be seen from the above, CNN is a neural network

model widely used in modulation classification. In most

cases, in CNN-based modulation classification methods,

the signal input size supported by the CNN is often fixed.

However, the duration of the actual radio signal burst is

uncertain. When the signal length is greater than the CNN

input length, how to make full use of the complete signal

burst to improve the classification accuracy is a problem to be

considered. In this context, this paper proposes several fusion

methods to solve this problem. The signal is first segmented

and then fused based on the classification results, confidence,

or intermediate features of these segmented signals. Specifi-

cally, the contributions of the paper are as follows:
• Three fusion methods for CNN-based modulation clas-

sification are presented.

(1) Voting-based fusion, that is, voting on the classi-

fication results, and the category with the largest

number of votes is used as the final classification

result.

(2) Confidence-based fusion, that is, linear fusion of

the confidence vector, and the category with the

highest average confidence is used as the classifi-

cation result.

(3) Feature-based fusion, that is, the input features

of the softmax layer is linearly fused, and the

category with the highest average value is taken

as the classification result.
• The performance of the fusion methods are analyzed

through simulation experiments. In the experiments,

the performance of different signal segmentation over-

lapping ratios, different fusion methods, and different

signal lengths are compared and analyzed.

The rest of this paper is organized as follows. In Section II,

we introduce the CNN-based automatic modulation classi-

fication by presenting two CNN structures. In Section III,

we present three fusion methods in detail. In Section IV we

discuss the simulation results, and finally in Section V we

summarize the paper.

II. CNN-BASED MODULATION CLASSIFICATION

A. PROBLEM MODEL

Modulation classification can be expressed as a classification

problem with M modulations. The received signal can be

expressed as

r(t) = α(t)ej(2π fot+θo(t))s(t) + n(t),

where s(t) is the complex baseband envelope of the trans-

mitted signal, α(t) is the impulse response of the transmitted

wireless channel, θo(t) and fo are the carrier phase and fre-

quency offsets due to disparate local oscillator and Doppler

effect caused by motion, n(t) is the additive white Gaussian

noise (AWGN). The aim of any modulation classifier is to

give out Pr (s(t) ∈ M (i)|r(t)) given the received signal r(t),

where M (i) represents the i-th modulation. For simplicity,

the received signal is usually represented by its in-phase

and the quadrature (IQ) components. The real and imagi-

nary parts of r(t) represent the IQ components, respectively.

The subsequent modulation classification is based on this IQ

representation.

B. CNN-BASED METHODS

CNNs [49] are a special type of artificial neural network

designed primarily for computer vision applications. Com-

pared with traditional neural networks, CNN has two distinct

features. First, based on the assumption that adjacent pixels of

the image are highly correlated, the CNNusesweight sharing,

and the same filter is used for the input to obtain the output of

the corresponding channel. Second, the CNN uses a pooling

operation to give it a degree of translation invariance and

reduces the computational complexity of deeper layers by

downsampling.

Most CNN structures are inspired by LeNet [50]. Clas-

sical CNNs often contain four basic layers: convolutional
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FIGURE 1. CNN layout (CNN1). ‘‘conv’’ stands for convolutional layer; the
number before ‘‘conv’’ indicates the size of the convolution kernel, and
the following number indicates the number of convolution kernels;
‘‘ReLU’’ indicates rectification linear activation; ‘‘Dropout’’ indicates the
Dropout layer, the number in parentheses after that indicates the
probability of Dropout; ‘‘fc’’ indicates the full connection Layer,
the number after that represents the number of neurons; ‘‘SoftMax’’
represents the SoftMax layer; the final output is the category, and the
category label is One-Hot encoded. A batch normalization layer is also
included between the convolutional layer and the non-linear activation
layer, which is not shown in the figure for the sake of simplicity.

layer, normalized layer, nonlinear activation layer and pool-

ing layer. This paper considers two CNN structures. The

first CNN structure is similar to the CNN in [39], [40]. The

network structure is shown in Fig. 1 (hereinafter referred to as

CNN1), which combines the IQ components of the received

signal into two columns of a matrix as the input of the CNN.

The number of signal sampling points is fixed at 512.

The second CNN structure considered in this paper is the

residual network structure similar as the resnet used in [40]

but with much more layers. As the traditional convolutional

neural network going deeper, the training accuracy will grad-

ually become saturated and then deteriorate. As the number

of layers is further increased, the training error will become

larger and larger, that is, the degradation problem will occur.

Residual network is proposed in [51] to solve the training

problem of deep network. Let H (x) denote an intrinsic map

of a series of cascaded layers that need to be fitted, whereX is

the input to the first of these layers. If it is assumed that mul-

tiple nonlinear layers can approximate complex functions,

then it is equivalent to assuming that these nonlinear layers

can approximate the residual function H (x) − x (assuming

the input and output have the same dimensions). Therefore,

unlike the way in which conventional methods expect these

layers to approximate function H (x), the residual network

expects these layers to approximate the residual function

F(x) = H (x) − x. The original function becomes H (x) =

F(x)+x. Although the two forms are equivalent, the learning

difficulty will be very different. Consider the building blocks

defined below:

y = F(x, {wi}) + x,

where x and y represent the input and output. An implementa-

tion structure is shown in Fig. 2, which is completed by direct

connection and addition.

FIGURE 2. The residual module [51].

FIGURE 3. Deep residual network layout (CNN2). In the figure, ‘‘conv’’
represents the convolutional layer; the number before ‘‘conv’’ represents
the size of the convolution kernel, and the following number indicates
the number of convolution kernels; ‘‘S’’ indicates that the convolution
contains padding so that the input and output are of the same size, and
‘‘/2’’ indicates that the downsampling factor is 2, which means the output
size is reduced to half of the input size; ‘‘maxpool’’ represents the
maximum pooling; ‘‘avgpool’’ represents the average pooling;
‘‘/7’’ indicates that the downsampling factor is 7; ‘‘fc’’ represents the fully
connected layer, and the number after that represents the number of
neurons; ‘‘SoftMax’’ represents the SoftMax layer; the final output is the
category. All activations are using ReLU. A batch normalization layer is
also included between the convolutional layer and the ReLU layer, which
is not shown in the figure for the sake of simplicity.

Based on the residual module, the second CNN structure

used in this paper is shown in Fig. 3 (hereinafter referred to

as CNN2).
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The networks are trained using a cross entropy loss

function, i.e.,

ℓ = −
1

S

S
∑

i=1

log
(

oM (i)

)

,

where S represents the number of training samples and

oM (i) represents the predicted probability that the ith sample

belongs to class M (i).

III. FUSION METHODS

A. SIGNAL SEGMENTATION

As indicated earlier, the input length of the convolutional

neural network is often fixed, and the length of the signal to

be classified may be much larger than this length. In order

to make full use of the signal information and improve the

classification accuracy, the signal can be divided intomultiple

segments of length L. Each segment is sent to the CNN,

and the final decision result is obtained by the corresponding

fusion method. Let the signal sequence be x(n) of length N.

One of the segmentation methods is to slide at interval P, and

select each signal segment of length L, thereby obtaining

yi(m) = x((i− 1)P+ m),

wherem=0, 1, 2, . . . ,L−1, i=1, 2, . . . , ⌊(N − L + 1) /P⌋,

and ⌊a⌋ denotes the largest integer not greater than a. For

convenience, let I = ⌊(N − L + 1) /P⌋. The CNN takes

yi(m) as input for modulation classification, and the final

classification decision result is obtained according to the

fusion method. This paper presents three methods of fusion:

voting-based fusion, confidence-based fusion, and feature-

based fusion.

B. FUSION METHODS

The fusion methods presented in this paper consider the out-

put of different layers in CNN. As shown in Fig. 4, different

signal segments are input to the CNN, and different outputs

are obtained at these layers. By fusing the classification

results, confidence vectors or features, we can obtain the

corresponding fusion methods. These three methods will be

described in detail next.

FIGURE 4. Schematic diagram of fusion methods.

1) VOTING-BASED FUSION

Voting is a common fusion mechanism that uses the principle

of ‘‘majority wins’’. We use yi(m) as the input of the convolu-

tional neural network and we denote the classification results

as oi ∈ [1, 2, . . . ,M ]. According to oi, we get

vij =

{

1, if oi = j

0, else

Then the number of times the classification result is the

j-th modulation is obtained as

cj =

I
∑

i=1

vij.

The final decision is made as

r Voting = argmax
1≤j≤M

cj.

2) CONFIDENCE-BASED FUSION

Confidence-based fusion uses the confidence vector for lin-

ear fusion. First, input yi(m) into the convolutional neural

network to obtain a confidence vector (the output of the

softmax layer of the CNN) as pi = [pi,1, pi,2, . . . , pi,M ],

where pi,j represents the confidence that yi(m) is classified

as the j-th modulation type. Then calculate the average value

of the confidence of the j-th modulation type,

t̄j =

I
∑

i=1

pi,j.

Finally, the subscript corresponding to the maximum value

of t̄j is obtained as the final modulation classification fusion

result:

r Confidence = argmax
1≤j≤M

t j.

3) FEATURE-BASED FUSION

Feature-based fusion uses the activations of a specific layer

for linear fusion. The feature layer considered in this paper

is the previous layer of softmax. First, the feature vector (the

input of the softmax layer of the CNN) is obtained as gi =

[gi,1, gi,2, . . . , gi,M ] when yi(m) is served as the input, and

then the average value of the j-th dimension is calculated:

ḡj =

I
∑

i=1

gi,j.

Finally, the subscript corresponding to the maximum value

of ḡj is obtained as the final modulation classification fusion

result:

r Feature = argmax
1≤j≤M

gj.

Fig. 5 shows a schematic diagram of feature-based fusion, in

which fcx12 is used as the feature layer.
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FIGURE 5. Feature fusion diagram (CNN1). Since the dropout is invalid
during the reasoning process, the dropout layers are not shown in the
figure.

IV. SIMULATION RESULTS

A. DATA GENERATION

In this paper, signals of various modulations are generated by

simulation. The simulation considers several nonideal effects

of a real communication system, including pulse shaping,

carrier phase and frequency offsets and noise. 12 modulations

are considered, namely BPSK,QPSK, 8PSK,OQPSK, 2FSK,

4FSK, 8FSK, 16QAM, 32QAM, 64QAM, 4PAM, and 8PAM.

The original bit stream to be modulated is generated in a

random manner to ensure that the transmitted symbols have

equal probability. Raised cosine pulse-shaping filter is used

and the roll-off factor is randomly chosen within the range

0.2 to 0.7. The phase offset is randomly selected, and the car-

rier frequency offset (normalized to the sampling frequency)

is randomly chosen within the range -0.1 to 0.1. The signal-

to-noise ratio (SNR) ranges from -20 dB to 30 dB with an

interval of 2 dB. A thousand samples were generated as

training data and the same number of samples were used

as validation data for each modulation at each SNR. Each

signal sample contains 64 symbols, and the oversampling rate

is 8, so the number of sampling points of each signal sample

is 512. In the fusion experiment, the number of sampling

points of each signal burst ranges from 512 to 4096.

B. SIMULATION RESULTS

1) TRAINING OF THE NETWORKS

As previously mentioned, 1000 samples are generated for

each SNR and eachmodulation type. The samples of all SNRs

and all modulation types constitutes the training set. The val-

idation set is generated in the same way. During the training,

themini-batch size is set to 128. The training uses the stochas-

tic gradient descent (SGD) method with momentum, and the

momentum factor is 0.9. The number of training epoch of

CNN1 and CNN2 is 60 and 20, respectively. Validation is

FIGURE 6. Training progress. (a) Training and validation accuracy of
CNN1, (b) training and validation loss of CNN1, (c) training and validation
accuracy of CNN2, and (d) training and validation loss of CNN2.

performed every 1500 iterations. Fig. 6 shows the training

progress of CNN1 and CNN2. Note that CNN2 takes less

iterations for convergence of training.

2) BASIC CLASSIFICATION RESULTS

The classification accuracy performance of 12 modulation

types using CNN1 and CNN2 is given as a benchmark for

performance comparison of fusion methods. Fig. 7 shows

the classification performance of the trained model at dif-

ferent SNRs. It can be seen that CNN2 performs better

than CNN1 in modulation classification accuracy. Especially

when the SNR is greater than 10 dB, the classification accu-

racy difference between the two methods is about 6.5%. The

reason why the two CNNmodels with different performances

are used is because we want to observe the performance

improvement of the fusion methods for different CNNs.

3) COMPARISON OF DIFFERENT FUSION METHODS

Wenow compare the performance of the three fusionmethods

presented in Section III. Different from the signal length

66500 VOLUME 7, 2019
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FIGURE 7. Modulation classification accuracy of CNN1 and CNN2.

FIGURE 8. Performance comparison of different fusion methods.
(a) CNN1, and (b) CNN2.

used in the previous experiment, the signal length here is

2048 sampling points. When the signal is segmented, there is

no overlap between adjacent signal segments, i.e. P = 512.

Fig. 8 shows the performance curves for the three fusion

methods. Whether it is CNN1 or CNN2, the performance

of the three fusion methods is significantly better than the

non-fusion method. The performance of confidence-based

fusion is very close to that of feature-based fusion, which is

better than voting-based fusion. The performance gains under

CNN1 is much more obvious. It can also be said that fusion

can bring greater performance gains to poor performance

networks.

4) EFFECT OF DIFFERENT OVERLAPPING RATIOS

Since the signal is segmented, there may be overlaps between

adjacent two signal segments. Fig. 9 and Table 1 show the

performance at different overlap ratios. For the sake of sim-

plicity, the performance of the feature-based fusion method is

given here, and the results of other fusionmethods are similar.

There is almost no difference in performance at different

overlapping ratios. Therefore, considering the computational

complexity, a non-overlapping signal segmentation approach

is a better choice.

FIGURE 9. Fusion performance under different overlapping ratios.

TABLE 1. Fusion performance under different overlapping ratios.

5) PERFORMANCE AT DIFFERENT SIGNAL LENGTHS

Fig. 10 shows the performance at different signal lengths,

using a feature-based fusion approach. The oversampling rate

is 8. It can be seen from the figure that, as expected, as the

signal length increases, the classification accuracy obtained

by the fusion method of this paper is improved. At high SNR,

the fusion performance gains of CNN1 is more obvious.
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FIGURE 10. Fusion performance under different signal lengths.

6) PERFORMANCE WITH VARYING SNR

The characteristics of the communication channel may cause

the parameters such as the SNR to be continuously changed

over time. Fig. 11 shows the classification accuracy of the

feature fusion method in the case of SNR variation, in which

the CNN1 is used. The signal SNR varies over the interval

[γ − δ, γ + δ], where γ is the average SNR and δ is the

maximum SNR variation. As can be seen from the figure,

the SNR variation has little effect on the fusion performance.

When the average SNR is low, the increase in the amount of

SNR variation is even beneficial to the improvement of the

classification accuracy. This is mainly because the increase

in the amount of SNR variation means that the probability

of occurrence of a higher SNR signal segment increases, and

this high SNR signal segment contributes to the classification

accuracy of the fusion result.

FIGURE 11. Fusion performance with varying SNR.

V. CONCLUSION

We have studied the fusion method when the signal length is

larger than the designed CNN input length. The methods we

have proposed include voting-based fusion, confidence-based

fusion, and feature-based fusion. The simulation results show

that the accuracy of the modulation classification of the three

fusion methods is better than that of the non-fusion method,

and the performance of the latter two fusion methods is very

close, which is better than the first one. It should be noted

that although the fusion methods of this paper consider the

case of a single classification node, they can also be extended

to multi-node classification fusion. We will further study the

modulation classification fusion strategy in the multi-node

cooperation scenario [52] to further improve the accuracy of

modulation classification.
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