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Fusion of He with 2°°Pb around Coulomb barrier energies
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Abstract. The experimental study of the fusion of light neutron-rich nucleus *He with 2%Pb is reported in
this work. A fusion stack of 2°°Pb targets has been used for this study. The most prominent evaporation residue
(>'°Po), which has half-life of 138 days and decays by alpha emission, is populated in the reaction. Radiochemical
analysis technique is used to extract the yield of this evaporation residue.

1 Introduction

From the first experiments where evidences for a halo struc-
ture in ''Li were reported [1], similar effects were also
found in other exotic nuclei far away from the valley of
stability. The availability of these exotic nuclei has trig-
gered new interest in the field of nuclear structure and reac-
tion dynamics [2,3]. There have been also many improve-
ments in the theoretical side which provide a deeper un-
derstanding of experimental findings by using different ap-
proaches. The coupled channels approach is nowadays ex-
tensively being used to understand simultaneously differ-
ent reaction channels by means of codes like FRESCO [4].
The strength and coupling between the different reaction
channels can be properly described by the use of coupled
channels calculations [5], including coupling to the con-
tinuum. Even for four body correlations [6], the theoreti-
cal framework was reasonably well established along last
few decades from the study of nuclear reactions with sta-
ble heavy ions. At coulomb barrier energies, the data can
also be described using semi-classical models [7], com-
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plementary to the sophisticated coupled channels calcula-
tions, providing an elegant insight on the relevant mech-
anisms participating in the dynamics of the collision pro-
cess.

Sub-barrier fusion of neutron rich nuclei depends strongly
on the reaction channels still present at energies below the
barrier. In neutron-rich nuclei the fusion cross section could
be increased due to a reduction in the effective Coulomb
barrier [8]. However the characteristic low binding energy
should favour the break-up channel and reduce the fusion
probability [9]. Several experiments were performed to study
the effect of neutron halo on the fusion process, and ex-
traordinary experimental efforts have been carried out in
the past for measuring sub-barrier fusion of ®He [9-11].
The case of 3He is different, as we are dealing with a skin
nucleus, a system with a thick layer of neutron matter sur-
rounding the inner nuclear core. Whether the halo or the
skin will produce strong effects on fusion cross sections is
still a matter of investigation. Very recently, a first mea-
surement to understand the fusion mechanism was per-
formed at GANIL using '’ Au targets [12].

The motivation of the present work is the understand-
ing of the interplay between the various reaction channels
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Fig. 1. [A] Picture of experimental setup used for the detection of
the charged particles produced in the *He+2%Pb collisions (see
text for details) [B] Picture of the fusion stack which was placed
downstream of the scattering chamber in a separate chamber.

in the fusion process. A new experiment was performed us-
ing the SPIRAL RIB facility at GANIL (Caen, France) in
October 2010, where two targets along the beam line were
used. In this experiment, the 8He beam was first scattered
on a 28Pb target, where direct reaction processes were in-
vestigated by using the Huelva University charged particle
array (GLORIA). A few meters downstream the beam line,
a fusion stack of four 2°°Pb targets (separated by mylar in
front and aluminium in back) was placed to measure sub-
barrier fusion cross sections. Here the evaporation residues
(ER) produced after the fusion of ¥He with 2°°Pb were im-
planted on 2%Pb and successive Al assembly, where the
yield of 2!°Po (an active alpha emmiter having a half life
of 138 days) was accumulated during several hours of irra-
diation. The details of experimental setup, radiochemical
procedure and the results are given in the following sec-
tions.

2 Experimental Details

In the experimental setup, a new simple but highly efficient
charged particle detector array developed at the University
of Huelva (Spain) named GLORIA (GLObal Reactlon Ar-
ray) was used to measure the elastic scattering and direct
reaction channels. In addition, a stack of 2°°Pb foils was
used to extract the fusion residues using the activation tech-
nique. The schematics of the experimental setup, the scat-
tering chamber and the GLORIA array, is shown in Fig.
1[A]. The fusion stack was placed downstream of the scat-
tering chamber for irradiation, as it is shown in Fig. 1[B].
The GLORIA silicon ball is a compact and high granular-
ity detection system, covering a wide angular range from
01ap = 10° to 170°. The system is made of 12 DSSSD (16 x
16 strips each) particle telescopes. For each telescope: AE-
40 pum, E-500 um. The detector system is fully equipped
by its own analog chain, logic and DAQ system on a VME
platform. The typical two dimensional spectrum of AE vs.
Etot for ®He+?"Pb reaction measured at Ejap = 22 MeV
and 6y, = 26.7° is shown in Fig. 2. In the case of the fu-
sion stack used for irradiation, it consists of stack of four
206ph targets separated by mylar (~ 2.5 um) in the front (to
stop the backscattered ERs) and aluminium (~ 14.7 um)
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Fig. 2. A typical two dimensional spectrum of 4E vs. Etot for
¥He+2Pb reaction measured at B, = 22 MeV and 6y, =
26.7°. Different isotopes of ‘He’ can be easily identified in this
telescope.

in the back (to degrade the beam energy). The whole stack
is irradiated for 22 MeV. The incident beam energy on the
successive target foils was determined based on the energy
loss for the mylar, Pb and Al foils using SRIM [13]. After
irradiation, the activated 2°°Pb foils went through a radio-
chemical treatment in which the 2!°Po was isolated and de-
posited on a silver coin. The coins were introduced in the
alpha station system at University of Huelva, where the
yield of 2!°Po was obtained.

2.1 Preparation of samples and radioactivity
measurement

The fusion stack irradiated during the experiment has been
subjected to chemical processing at the Radiochemical lab-
oratory at the University of Huelva. The picture of the mea-
surement cell is shown in Fig. 3. Each target was dissolved
and a known amount of 2 Po was added as a tracer in order
to fix an efficiency of the chemical process. The element of
interest was extracted and put into dedicated alpha activ-
ity measurement cells. As the half-life of alpha decay from
210pg is 138 days, the activity is measured for 30 days to
accumulate sufficient statistics. We also took a background
run to confirm that no other peaks were present in the re-
gion around 5300 keV (emitted alphas from 2!°Po). A typ-
ical spectrum for one of the samples after one month of
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Fig. 3. Picture of measurement system at the Radiochemistry lab-
oratory at the University of Huelva. In the inset, the detector and
the sample holder can be seen.

statistics is shown in Fig. 4[A]. The distinct peak of alpha
particles from 2!°Po at 5300 keV can be seen along with the
room background (>*®Th peak) and the radiotracer >*Po
peaks. The peak of interest (*>'°Po) has been fitted (shown
in Fig. 4[B]) and the area under that peak was extracted.

3 Results and Discussion

In order to determine the cross-section of interest (produc-
tion of 21°Po), the total flux of the projectiles during the
irradiation is necessary. It will be obtained by normaliz-
ing the elastic scattered particles detected in the forward
angle (@ < 30°), where Rutherford scattering is expected.
The analysis of the elastic scattering channel is in progress
to get the final (production of 21°Po) cross-sections.

4 Summary

The production of >'°Po populated in the fusion of 3He

with 2%°Pb has been measured for energies around the Coulomb

barrier. The method of activation in a stack of foils has
been utilized for this study. The elastically scattering pro-
jectiles from 2%8Pb target at forward angles will be utilised
for absolute normalization to determine the production cross-
sections. The full elastic scattering distribution data ac-
quired in the same experiment will also be reported shortly.
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Fig. 4. [A] Typical energy spectrum from the sample after ra-
diochemical and self deposition process on the silver disk. The
peak corresponding to the alpha decay of 2!°Po at 5300 keV is
clearly seen to be separated from other radioactive contaminants.
The bigger peak corresponding to the alpha decay energy of the
radiotracer 2*Po at 4880 keV can also be seen. [B] Fitting proce-
dure used to extract the yield of 2'°Po.
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