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Abstract 
 

This paper describes a system that deploys acoustic 
and linguistic information from speech in order to 
decide whether the utterance contains negative or non-
negative meaning. An earlier version of this system 
was submitted to the Interspeech-2009 Emotion 
Challenge evaluation. The speech data consist of short 
utterances of the children’s speech, and the proposed 
system is designed to detect anger in each given chunk. 
Various frame-based cepstral, prosodic and acoustic 
features are extracted automatically and classified by 
means of a support vector machine. An automatic 
speech recognizer transcribes the utterances and yields 
a separate classification, based on the degree of 
emotional salience of the words. The emotionally 
salient words are computed on word hypotheses, so 
that un-transcribed training data is sufficient. Late 
fusion is applied to make a final decision on anger vs. 
non-anger of the utterance. 
 

1. Introduction 
 

Speech utterances not only contain the literal 
meaning of the words spoken, but convey a wealth of 
additional information to the listener [1]. The language 
spoken, the speaker’s dialect, accent and sociolect as 
well as the specific choice of grammatical construct, 
words chosen over synonyms, emphasis, articulation 
etc. all convey a rich context for the literal message to 
the native listener of the speaker’s language. The 
human listener is particularly finely tuned to the 
detection of a range of emotions in the speaker’s 
utterance. A native listener is able to detect certain 
emotions by recognizing salient words, which are 
associated with those emotions. However, a speaker’s 
emotions are also accessible to some extent to non-
native listeners who are able to utilize acoustic cues to 
distinguish emotions in speakers whom they otherwise 
do not understand. 

This dual association of human emotion with the 
linguistic content of an utterance and with some of its 
acoustic characteristics has motivated us to explore a 
combination of the acoustic and the linguistic features 
of utterances, in order to detect an angry disposition of 
the speaker. The acoustic information comprises a 
wide range of spectral, prosodic and glottal-source 
features extracted from the speech signal 
automatically, while the linguistic information is based 
on the words of the utterance either as detected by 
automatic speech recognition or as transcribed by 
human listeners, and their salience for anger as given 
by a labeled data corpus. 

The data corpus contains approximately 18,000 
utterances of children who converse with an Aibo 
robot dog in German. The “dog” often behaves 
erratically and flouts the children’s commands, causing 
the children to become annoyed and angry with it, 
which is reflected in many of the utterances. Utterances 
were tagged with emotions as they were perceived by 
human labelers.  

This paper builds on an earlier paper [16], which 
was part of the Interspeech 2009 Emotion Recognition 
Challenge [2], which discusses the database and related 
work in more detail. The acoustic subsystem of the 
earlier paper is used as a baseline, which is combined 
with several automatic speech recognizers using 
different fusion methods. The dispositions we are 
trying to distinguish are therefore a combination of 
negative emotions, particularly anger, and all non-
negative dispositions. 

This paper is structured as follows: Section 2 
describes the overall system design, Section 3 gives a 
short introduction to the AIBO database, Section 4 
describes the features used for classification, separated 
into linguistic (text-based) features, and acoustic and 
prosodic features. While the classification based on 
text is covered integrated in Section 4, Section 5 is 
dedicated to the classification of the acoustic and 
prosodic features. The combination of both types of 



features is treated in Section 6, while Section 7 
summarizes or findings. 
 

2. Overall system design 
 

We have developed an end-to-end system using 
mostly publicly available sources and toolkits. The 
overall system design comprises one subsystem, which 
evaluates a large number of acoustic features it extracts 
from a given chunk, and a second subsystem, which 
applies automatic speech recognition and then 
evaluates the spoken words it recognizes in the chunk.  

The acoustic subsystem extracts a large number of 
acoustic features from the chunk automatically. These 
comprise frame-based intensity, fundamental-
frequency and cepstral features, chunk-based statistical 
measures of those features, and features based on the 
shape of the glottal excitation waveform of a central 
vowel. For testing, an “anger” score is calculated for a 
chunk by means of a support vector machine with a 
radial-basis-function kernel. More precisely, the 
“anger” score applies to a range of negative emotions, 
which are labeled with the tag “NEG” in the Aibo 
corpus, while a “non-anger” score applies to diverse 
non-negative emotions, which is labeled with the tag 
“IDL”. Feature selection and reduction is applied 
before performing classification and evaluation.  

The linguistic subsystem performs a word 
recognition task on each chunk. The anger-non-anger 
decision is based on the a-posteriori anger score of the 
words learnt during training by applying the concept of 
emotional salience of the recognized words with 
respect to the anger or non-anger classes, respectively. 
Each subsystem yields its own decision and 
confidences. An overall fusion algorithm combines 
these into the final decision.  

The optimality criteria that our systems are 
developed on are also taken from the EmoChallenge. 
The system is built to optimize first the un-weighted 
average recall of emotion classes, and second the 
weighted average recall (or accuracy) in the 
classification. For more discussion, see [2]. 

 

3. Database 
 

The AIBO database [4] corpus contains short 
utterances, or “chunks”, from a speech database of 
children who converse with an Aibo robot dog in 
German. There are 9957 chunks for training and 8257 
for testing. Each chunk in the database is tagged with a 
perceived emotion by a set of human labelers. For 
development, we subdivided the training database into 
10 partitions (round-robin), such that evaluation data 
are not seen by the system during the training phase.  

It consists of spontaneous German speech that is 
emotionally colored. While interacting with the Aibo 
robot dog, 51 children (age 10-13) were recorded in a 
Wizard-of-Oz scenario. The children were given the 
task to navigate the robot through a certain course of 
actions using voice commands. When the robot reacted 
disobediently it provoked emotional reaction from the 
children. The data was collected at two separate 
schools and amounts to 9.2h of 16bit/ 16kHz speech 
recordings in total. 5 labelers annotated the utterances 
with respect to 10 target classes and neutral, which 
were eventually mapped to a binary division between 
negative (“NEG”) and non-negative (“IDL”) 
utterances. Turns were split into chunks by syntactic-
prosodic criteria. Roughly two thirds of chunks were 
labeled as non-negative, so all results presented here or 
in [2,16] represent only a small, but significant, 
improvement over chance level. Note that the train and 
test set were completely independent since the speakers 
were from two different schools. 
 

4. Feature extraction 
 

We considered two distinct feature sources for our 
experiments on this database. The linguistic source is 
drawn from the actual words the children use to direct 
the robot. Using the concept of emotional salience [3], 
it is possible to assign an emotion to an utterance, 
given a word hypothesis or transcription. Prosodic and 
acoustic information provide another useful source for 
characterizing speech utterances. We extracted 
measurements of intensity and duration, perceptual 
loudness and fundamental frequency (F0), formants, 
cepstra, and voice-source characteristics obtained by 
inverse filtering, and describe our respective classifier 
in Section 5. In Section 6, both information sources are 
fused using their associated confidence scores. 
 

4.1 Linguistic features and classification 
 

The EmoChallenge training database [2,4] provides 
transcriptions of the training chunks, and previous 
work [3, 5] show that transcriptions can be used as 
features for classification of emotional content. In 
order to generate transcriptions also for the test data, 
we developed an ASR (automatic speech recognition) 
system for the EmoChallenge speech. Results will be 
reported for classification using transcripts (on the 
training set), ASR hypotheses (on the training and test 
sets) with varying quality, using ASR confidences, and 
in combination with original acoustic features.  

Our baseline ASR system was trained on about 14h 
of close-talking, clean 16kHz “background” speech, 
recorded from adults reading German newspaper texts, 



using the Janus [6] toolkit and the Ibis [7] decoder. The 
acoustic model uses 2000 context-dependent, speaker-
independent acoustic models. These were trained using 
Maximum Likelihood and employ 32 Gaussians with 
diagonal covariance matrices each in a 42-dimensional 
MFCC-based feature space after LDA, also using 
VTLN and speaker-based CMN/ CVN. The baseline 
language model was also trained using tri-grams on 
German Broadcast News type text data and transcripts, 
using a 60k vocabulary. 

To adapt this system to the EmoChallenge, we 
reduced the vocabulary of the original system to 5k 
words, 4.5k of them unique. This includes 300 new 
domain-specific words appearing at least two times, 
including those marked with a “*” (i.e. non-standard 
speech), as long as they appeared to be emotionally 
salient, for which pronunciations were generated 
manually.  

We merged the ML update statistics on the 
“background” database with matching statistics 
collected on the EmoChallenge data, using fixed 
weights, to derive MAP adapted acoustic models. For 
development on the training data, we followed the 
“leave-one-out” (LOO) principle. We used 10-fold 
cross-validation and computed “pseudo-speaker-
specific” models, leaving this particular pseudo-
speaker out in the model update used for testing this 
speaker, to match conditions on unseen test data as 
much as possible. The language model (LM) was also 
adapted to the target domain using a context 
independent, LOO-aware interpolation [8] of 3-gram 
background and in-domain LMs for development. 
Averaged perplexity on the training data is 55. 

 
Table 1. Configurations of the acoustic model and 
performance measures in %. WA=word accuracy, 
DEL=deletions, INS=insertions, UAR=unweighted 

average recall, WAR=weighted average recall.  
 

System WA DEL INS UAR WAR 

V0  0.0 71.2 70.5 

V4 82.9  5.0  3.1 70.2 69.9 

V5 66.3  1.9 16.9 69.1 70.1 

V6 67.9  7.1  7.2 67.6 67.0 

V7 73.5  2.0 11.5 70.0 70.1 

 

During tests, the baseline acoustic model was 
adapted to the test speaker incrementally using 
unsupervised constrained MLLR in the feature space, 
and VTLN. We call this system “V4”. For tests on the 
unseen evaluation test data, we loaded an acoustic and 

language model trained on the full training set, using 
parameters optimized under the LOO paradigm. 
Speaker adaptation was performed using automatically 
determined speaker clusters, which in tests on the 
training data was found to give virtually the same word 
accuracy (WA), as when using the known speakers. 

As references on the test data are not available at 
the moment, we scored four different configurations of 
the system on the development data (using LOO). The 
results are shown in the left three columns of Table 1. 
Different configurations of the baseline acoustic model 
were tested: V5 and V6 do not use unsupervised 
incremental adaptation to speaker, as the baseline V4 
does. The language model weights were varied for 
each of V5, V6, and V7 to change deletions and 
insertions. “V0” denotes use of the references. Word 
accuracy numbers should be regarded as being 
indicative only, as data normalization was not 
performed with extraordinary care. 

To classify a chunk, we used the emotional salience 
as proposed by [3], computed either on references or 
hypotheses. The right two columns in Table 1 show the 
baseline performance of the different systems. We 
observe that high word accuracy alone is no guarantee 
for good performance, as V7 performs nearly as well 
as V4, virtue of a low deletion rate. V5 also performs 
significantly better than V6, despite the nearly 
equivalent word accuracy.  

For developing on the training texts for the salience 
model (transcripts and hypotheses), we employed a 10-
fold cross validation strategy, and applied our final 
model with parameters computed on all the training 
data to the test data. Each configuration was tested on a 
model trained using that same configuration, ie. V4 
was tested on a model trained using hypotheses 
generated by V4. We observe a loss of approximately 
0.5% UAR/ WAR absolute when testing speech 
recognition output (V4-V7) using a model trained on 
manual transcriptions (V0), instead of its own 
transcripts. We assume this is because V4-V7 share the 
same vocabulary, while V0 uses a larger vocabulary, 
but did not investigate this effect further at this time. 
Pauses and noises were also removed from recognizer 
output before building models for emotional salience. 

In our next experiment, we extended the emotional 
salience model to include bi- and tri-grams as 
additional “words”, in order to investigate longer-term 
dependencies in the structure of speech. We also 
included word posteriors from the recognizer output in 
the computation, in an effort to mitigate the influence 
of recognition errors. To achieve this, we modified 
Equation (6) in [3] to read 

 

wmk := γn  i(vn,ek) 
 



during training, using the “gamma” word confidence 
measure from [9]. The resulting system is called 
“V19”. Table 2 shows the recalls achieved by the 
model trained and tested on transcriptions (V0), speech 
recognition output (V4), and speech recognition output 
with word confidences attached (V38). Note also that 
we did not need to set frequency cut-offs or balance the 
training data during training. In the following 
experiments, V38 will therefore rely on tri-grams, 
while V0 and V4 will be based on bi-grams. 
 
Table 2. UAR (left, in %) and WAR (right) for various 

system configurations and 1-gram, 2-gram, 3-gram 
emotional salience features. 

 

 1-gram 2-gram 3-gram 

V0 71.2 70.5 71.7 70.5 71.6 70.4 
V4 70.2 69.9 70.7 70.3 70.6 70.1 
V38 70.3 69.3 70.8 69.7 71.2 70.3 

 
We observe that the model including confidences 

(“V38”) can make use of 3-grams, while the other two 
systems perform best for bi-grams, and there is a 0.2% 
to 0.5% performance gap to the model trained on 
references only. In practice, this loss could most likely 
be compensated for by using more data. For the 
subsequent fusion experiments, we took the highest 
salience of any word in the hypothesis as an un-
normalized confidence score, as this feature gave best 
results across a number of tests. 
 
Table 3. Most salient words for the uni- (left) and tri-

gram (right) cases, with a minimum count of 10. 
“Neid” (meaning “grudge”) seems to be a frequent 

mis-recognition of “nein” (“no”), when said in anger. 
 

sal word emo sal word emo 

.41 super IDL .41 gut Aibo IDL 

 …   …  
.52 stopp NEG .85 Aibo nicht NEG 
.55 halt NEG .86 links gehen 

Aibo 
NEG 

.56 Aibolein NEG .90 stoppen NEG 

.58 pfui NEG .90 Aibo links NEG 

.60 Neid NEG .92 Aibo rechts NEG 

.71 hoch NEG .93 links Aibo links NEG 

.87 stoppen NEG .99 Aibo lauf 
geradeaus 

NEG 

 
Table 3 shows the most emotionally salient words 

in our experiments for the V38 system. It is clear that 
the linguistic features can contribute a lot to the 
detection of anger, as negative n-grams appear with a 

high salience (“super” and “gut Aibo” are the most 
salient non-negative expressions). 

On the EmoChallenge test set, our linguistic system 
improved from 62.5%/ 58.6% UAR/ WAR to 64.8%/ 
60.6%, i.e. by about 2% absolute. While we could not 
obtain further individual scorings, we believe the 
largest part of this gain is due to the use of tri-grams in 
the salience model, in combination with confidence 
scores, less to the use of a speaker adaptive speech 
recognition system using unsupervised speaker 
clusters. 
 

4.2 Acoustic and prosodic features 
 

Regarding the group of perceptually motivated 
acoustic measurements we extracted pitch and 
perceptive loudness as defined by [10]. For pitch 
detection we applied Boersma’s PDA algorithm [11], 
using a low voicing threshold to avoid the loss of too 
many perceptually voiced segments. We also used a 
high jumping cost for octave confusions and converted 
the pitch into the semitone domain using the chunks’ 
mean pitch as reference value. Remaining octave 
confusions between sub-segments of a chunk had to be 
corrected by a rule-based path finding algorithm. We 
smoothed the resulting contour using weighted linear 
regression and interpolated it using piecewise cubic 
interpolation.  

We drew features from the contour by applying 
statistics like mean, maximum, standard deviation, 
skewness and kurtosis. We also applied a discrete 
cosine transformation (DCT) to the pitch directly, in 
order to obtain a spectrum of pitch movement.  

To obtain a perceptive measurement of signal 
power we calculated the perceptive loudness [10]. This 
measurement operates on a Bark filtered version of the 
speech signal and finally gives an estimate of the 
perceived loudness in sone units. The resulting 
loudness values are then given to the same statistics as 
above. Signal intensity values are also subjected to the 
same statistics as explained above. In addition, we 
included a measurement of correlation between pitch 
and intensity as an independent feature. 

Another often used acoustic characteristic of 
emotional speech is the Mel frequency cepstral 
coefficients (MFCC). Although they were optimized to 
perform in speech recognition tasks they often give 
excellent performance in emotion detection tasks as 
well. We therefore calculated the average, standard 
deviation and minima and maxima for 15 MFCCs. 

Also derived from spectral analysis are the features 
of position and bandwidth of the formants. Due to the 
fact that the database contains children’s speech and 
given the recording frequency of 16kHz we looked for 

Florian E Metze
Florian E Metze - 13.09.2009 17:09
"V38" would be correct.

Florian E Metze
Florian E Metze - 13.09.2009 17:10
What is the corresponding baseline number on CV training?



6 formants to be determined. For each formant contour 
we defined the same features as for MFCCs.  

We included three further contours: the spectral 
flux, the spectral centroid and the spectral roll off 
point, the latter of which we set to 95% spectral slice 
energy. In order to align to human perception we 
weighted the power spectrum with an dB(A) 
perception curve before calculating statistics.  

In order to capture voice quality we included 
spectral characteristics of the glottal source, which 
were obtained by inverse filtering of a prominent pitch 
period and taking a pitch-synchronous discrete Fourier 
transform [12]. To get this period we chose the 
maximum-energy voiced frame in a chunk, where 
voicing is defined by a harmonics-to-noise ratio (HNR) 
value of greater than 0.45 within the expected F0 range 
of 150-600Hz. A single fundamental period is then 
extracted by first finding the start sample of the target 
fundamental period and then the precise duration of 
that period by determining the maximum 
autocorrelation of a sequence of samples surrounding 
the expected start of the next period for lags between 
0.950 and 1.050. While the beginning of this period 
does not correspond to the time of glottal opening, we 
found that the maximum signal value in the frame 
provides the most reliable point for the determination 
of the precise duration of the glottal period.  

In order to obtain the glottal excitation waveform, 
the extracted signal values are subjected to linear 
prediction analysis and inverse filtering [13]. 
Throughout the analysis, the extracted signal period is 
treated as a single period of a periodical signal, such 
that difference values and autocorrelation functions are 
evaluated on indices modulo the length of the period. 
The signal is preemphasized with =15/16 and a 
predictor of order 17 is determined by means of the 
autocorrelation method in order to model the expected 
number poles for the children’s speech. The signal is 
then inverse-filtered with the resulting LP filter, 
yielding the required approximation of the glottal 
excitation waveform. The final step of the 
determination of the glottal excitation function is a 
normalization of the phase of the function. The shape 
of the glottal excitation function is then described by 
the magnitudes |X(k)| of its discrete Fourier transform 
(DFT) for 0  k  15.  

After calculating the HNR contour from the 
autocorrelation lag domain we defined its mean, 
maximum and standard deviation to be individual 
features. Drawn directly from the time signal we 
analyzed the zero-crossing-rate (ZCR) and the offset of 
the overall elongation.  

As some features tend to only give meaningful 
values when they are applied to special voice 
characteristics we decided to group each chunk into 

voiced, unvoiced and silenced regions. We applied a 
modified version of Rabiner & Sambur’s algorithm for 
isolated-speech detection [14]. Combining this 
algorithm with our pitch detection we produced a 
voiced/ unvoiced/ silence grid for each chunk. 
Considering the problem of relative distance to the 
microphone that was used during recordings we set up 
a number of relative features that account for the ratio 
of features from voiced and unvoiced speech segments. 
We thus calculated a mean relative perceptive loudness 
and a mean relative perceptive intensity measurement 
for all chunks.  

In order to exploit the temporal behavior at a certain 
time point we appended first and second order 
derivatives to the contours and calculated statistics on 
them alike.  

All in all, we obtained some 1500 features, which 
partly consist of frequently used features but also 
introduce new experimentally designed features into 
the analysis. All features were calculated on a 10ms 
frame shift rate. Table 4 shows the different feature 
information sources and the number of features 
calculated from them. 

 
Table 4. Information sources, number of features 

calculated, and (unweighted) average recall. 
 

Feature Source 
Number of 
Features 

Average 
Recall 

ZCR, elongation, 
duration, correlation 

10 61.5% 

Intensity 171 68.9% 

MFCC 576 71.1% 
Loudness 171 67.6% 
Formants 216 65.4% 

Spectrum 135 63.6% 
Pitch 236 62.6% 
Linguistic features 11 49.9% 

Inverse filtering 33 64.3% 

 
5. Classification of acoustic features 
 

5.1 Data preparation 
 

All our baseline classification performance was 
estimated by averaging the results of 10-fold cross 
validation (LOO). Defining a training set we first split 
the given set randomly into 10 mutually exclusive 
parts. In the present case, since the number of IDL 
utterances were approximately twice the number of 
NEG utterances, we first equalized the number of 
samples in each class. To equalize, the IDL samples in 
each fold were randomly split into two equal sub-
parts.  The NEG samples in that fold were then 



combined with each of the two sub-parts. The average 
result from the two sub-parts was taken to be the 
performance estimate for the fold. This procedure aims 
to more clearly determine the effectiveness of the 
features and classifiers used in this work.  Since no 
artificial samples were synthesized, we believe this 
procedure leads to a very conservative and unbiased 
performance estimate. 
 

 5.2 Pretest and classifier determination  
 

The acoustic features described in Section 4 are 
classified using a Support Vector Machine (SVM). 
SVMs view data as two sets of vectors in a multi-
dimensional space, and construct a separating 
hyperplane in that space. We initially used an SVM 
with a linear kernel function for the experiments. 
However, before applying the features to the SVM, the 
dimensionality of feature vectors were reduced by 
applying different dimensionality reduction techniques 
which are described in the following section.  
 

5.3 Feature selection 
 

To get a first insight into the performance of our 
features we evaluated them separately in accordance to 
the groups presented in Table 4. MFCCs performed 
best in our experiments. Measurements of power such 
as intensity and perceptive loudness were also 
performing reasonably. Note that this list gives only a 
very broad picture of performance since it divides into 
conceptual feature groups rather than providing single-
feature performance assessment. Also the number of 
features can bias the performance comparison between 
the groups. Table 4 also presents the number of 
extracted features along with their average recall, i.e. 
the number of chunks of a class retrieved divided by 
the number of chunks of that class in the database. The 
target measurement presented is the average recall, i.e. 
averaged over the Anger and non-Anger class.  

In order to determine the most promising features 
for our task individually, we applied an Information 
Gain (IG) filter. This entropy-based filter estimates the 
goodness of a single attribute by evaluating its 
information contribution (gain) of information with 
respect to the required mean information that leads to a 
successful classification. To compensate between 
attributes that show a large difference in variation, i.e. 
also show large differences in information gain, we 
calculated the IG-Ratio (IGR) and ranked our features 
accordingly. Table 5 shows the top 20 ranked features. 
Results are similar to the results from conceptual 
feature grouping, i.e. spectral and power-related 
features are given highest ranks.   

 
Table 5. Top 20 rankings of the acoustic features. 
 

Rank Feature 

1 mfcc_max_0coeff_wholeUtterance 

2 mfcc_max_0coeff_voicedSegments 
3 intensity_mean_voicedSegments 
4 mfcc_mean_0coeff_voicedSegments 

5 intensity_max 
6 intensity_median_voicedSegments 
7 spectralMagnitude_13_from_inverseFiltering 

8 mfcc_mean_1coeff_voicedSegments 
9 loudness_Delta_max 
10 loudness_Delta_median_voicedSegments 

11 spect._Delta_range_centroid_unvSegments 
12 spectrum_mean_flux_wholeUtterance 
13 spectrum_std_flux_unvoicedSegments 

14 spectrum_mean_flux_unvoicedSegments 
15 spectralMagnitude_6_from_inverseFiltering 
16 mfcc_mean_0coeff_wholeUtterance 

17 spectrum_max_flux_unvoicedSegments 
18 loudness_Delta_DCT_1coeff 
19 loudness_DCT_2coeff 

20 spectrum_std_flux_unvoicedSegments 
 

After ranking the features we searched for an 
optimal number of features for inclusion. We 
determined an optimum at 320 features using cross-
validation as explained above. Figure 1 shows the 
resulting graph of unweighted average recall against 
numbers of features passed to the classifier. 
 

5.4 Optimal classification 
 

In the final classification process we extended the 
linear SVM to non-linear classification. We evaluated 
the use of polynomial kernels of different orders 
experimentally and applied a RBF kernel. The 
combination of SVM with an RBF kernel function in 
turn is very similar to an RBF type of Neural Network. 
We started a grid search to determine the optimal 
settings of the SVM and the kernel for the training 
data. Best scores were obtained with an RBF kernel 
when applying a widened margin constant for the 
determination of the hyperplane.  

Using acoustic/ prosodic information only this setup 
resulted in an UAR of 75.3% with corresponding 
accuracy (WAR) of 74.4% on the training data. Our 
final predictions on the test data as submitted to the 
EmoChallenge [2] resulted in an UAR of 65.4% and a 
WAR of 72.4%.  



For all predictions using acoustic features, we took 
the score for the more likely class as output by the 
SVM as an (un-normalized) measure of confidence. 
 

 
 
Figure 1. Effect of the number of features included on 

average unweighted recall. 
 

6. System combination 
 

Early experiments, which included linguistic 
features computed from references as proposed by [3] 
in the (acoustic) feature selection process and 
classification, did not improve recognition rates. We 
therefore developed and optimized separate classifiers 
on acoustic/ prosodic and linguistic/ textual features 
and employed a late-fusion strategy. To arrive at a joint 
decision, we normalized the confidence scores for both 
classifiers by computing the rank for a confidence 
score in its population and re-normalizing this to the 
[0,1] range. We then selected the output with higher 
normalized confidence to be the output of the 
combined system, after an additional, empirically 
determined constant weighting factor was applied to 
the confidence scores, to compensate for the different 
baseline performance of the two classifiers. Overall, 
our confidence scores however are not very reliable, as 
their distributions generally have only weak positive 
normalized cross entropy (NCE) [15], even after 
further processing. 

Table 6 compares the performance of various 
system combinations on the development data. Our 
system using ASR hypotheses and word confidence 
measures (V38) beats a system relying on manually 
transcribed data (V0). The differences between systems 
are even more pronounced, and advantageous to the 
systems not relying on transcriptions, than in the pure 
linguistics case (cf. Table 2). 

The confusion matrix of our current best system on 
the test data is shown in Table 7. It shows balanced 
errors, and results in an unweighted average recall of 
68.1%, and an accuracy of 73.3%, while our baseline 
system without speaker adaptation, tri-gram features, 

and confidence measures, but using the same acoustic 
features, reaches 67.6% and 72.7%. We also 
experimented with a fusion scheme based on Multi-
Layer Perceptrons, but this does not consistently beat 
the simple confidence-based late-fusion strategy in our 
experience so far. 
 
Table 6. Performance (in %) of combined acoustic and 

different linguistic systems on development data. 
 

 V0 V4 V38 

UAR 76.2 75.8 76.5 

WAR 75.9 76.0 76.2 

 
Table 7. Confusion matrix on the test set for anger 

class (NEG) and idle class (IDL), from the best system 
combining acoustic and linguistic information without 
resorting to word transcripts during training or test. 

 

 NEG IDL Sum 

NEG             1366 1099 2465 
IDL               1110 4682 5792 
 

7. Discussion and conclusion 
 

This paper presents a system to detect angry vs. 
non-angry utterances of children who are engaged in 
dialog with an Aibo robot dog. The overall system 
design comprises two subsystems, one which evaluates 
a large number of acoustic features it extracts from a 
given chunk, and a second subsystem, which evaluates 
the spoken words it recognizes in the chunk. Both sub-
systems need labeled training data, but no word 
transcriptions. 

Starting from an evaluation system, this work 
contributes a comparison of emotional salience 
features computed on references and entirely on 
hypotheses. We extend this concept using n-grams and 
confidence measures and, in combination with 
acoustic/ prosodic meta-data, reach better performance 
than a system relying on manually transcribed text. Our 
system can fully automatically improve automatic 
categorization of user attitude towards a user interface, 
based on audio information. This semantic annotation 
enriches analysis of users’ utterances, and it is our 
hope that an integrated approach for “rich 
transcription” will improve man-machine interaction in 
the future. 

Our acoustic subsystem extracts a large number of 
acoustic features from the chunk automatically. These 
basically comprise frame-based intensity, fundamental-
frequency and cepstral features, chunk-based statistical 
measures of those features, and features based on the 
shape of the glottal excitation waveform of a central 
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vowel. We applied feature selection due to the 
Information Gain Ratio criterion. As a result spectral 
features and power-related features are given highest 
ranks. After determination of an optimal number of 
features to be passed to classification we obtained best 
classification results using a Support-Vector-Machine 
extended by a Radial-Basis-Function kernel 
implementation.  

The linguistic subsystem performs a word 
recognition task on each chunk. The anger-non-anger 
decision is based on the a-posteriori anger score of the 
words learnt during training by applying the concept of 
emotional salience. We improved our scores by 
applying a speaker-adaptive system that estimated 
CMN/ CVN, VTLN and constrained MLLR 
incrementally over a whole speaker. 

A decision fusion algorithm combines the scores of 
the two subsystems by evaluating decisions and 
normalized confidence scores of both systems. The 
system performs with a weighted average recall of 
76.2% and an unweighted average recall of 76.5% on 
the development data. Applied to the test data we 
obtain a weighted average recall of 73.3% with a 
respective unweighted average recall of 68.1%. 

Future work will compare the linguistic classifier 
presented in this work with other concepts discussed in 
the literature, and further analyze the influence of 
factors such as word error rate, confidence measures, 
and mis-match between training and test conditions 
with respect to possibility of adaptation, vocabulary 
issues, etc. 
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