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Abstract – We propose a two-stage method for detection 
of abnormal behaviours, such as aggression and fights 
in urban environment, which is applicable to operator 
support in surveillance applications. The proposed 
method is based on fusion of evidence from audio and 
optical sensors. In the first stage, a number of modality-
specific detectors perform recognition of low-level 
events. Their outputs act as input to the second stage, 
which performs fusion and disambiguation of the first-
stage detections. Experimental evaluation on scenes 
from the outdoor part of the PROMETHEUS database 
demonstrated the practical viability of the proposed 
approach. We report a fight detection rate of 81% when 
both audio and optical information are used. Reduced 
performance is observed when evidence from audio data 
is excluded from the fusion process. Finally, in the case 
when only evidence from one camera is used for 
detecting the fights, the recognition performance is 
poor. 
 
Keywords: Abnormal behaviour detection, multiple 
sensor fusion, acoustic data, visual data, thermal imaging 
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1 Introduction 

1.1 Background 
Today, applications such as area access authorization, 
home arrest, medical care, anti-terror surveillance, and 
forensic analysis are widespread. These applications share 
the need of reliable autonomous surveillance technology, 
enabling automated alerts, and thus support control and 
law enforcement mechanisms. Furthermore, a desirable 
functionality for such technology is multi-person 
behaviour analysis and short-term intention prediction, 
early reporting of danger and the support of alert 
indicators that facilitate the prevention of danger, and the 
management of crisis events, etc. Analysis of crowd 
behaviour as well as modelling of crowds is also an area 
of increasing interest within the safety, security and 
computer vision research communities. The analysis of 
crowds for prediction and detection of events is a complex 

issue among other things because people move close to 
each other, occlusion can hide important actions and the 
possibility to successfully track individuals is reduced. In 
addition, it is worth mentioning that for different types of 
crowd there are different criteria for defining normal 
behaviours, and a certain normal behaviour in one type of 
crowd should cause an alarm in another type of crowd. 

In public security applications, privacy and ethical 
considerations are inhibiting the use of biometric 
processes, such as the automated voice recognition or face 
identification, as well as the use of automatic speech 
recognition technology. Respecting these restrictions, we 
consider only such technology for autonomous 
surveillance and automatic scene analysis which does not 
employ person identification or speech content analysis.  

1.2 Scope and objectives  
The present work aims at automatic detection of abnormal 
behaviours, such as aggression and fights, which pose 
danger to the average citizen, and which are of significant 
importance for public security applications. This effort is 
part of the FP7 PROMETHEUS project [1], which aims at 
the creation of a framework for monitoring and 
interpretation of human behaviours in unrestricted indoor 
and outdoor environments. The project targets the 
development of a probabilistic platform for processing 
and fusion of data streams from heterogeneous sets of 
sensors, such as microphone arrays, overview and high-
definition video cameras, 3D cameras, thermal imaging 
sensors etc. The long-term objective is the development of 
technology that is applicable in real world applications, 
able to operate on data captured in uncontrolled 
environments, such as public spaces. 

Specifically, in connection with this objective, in the 
present work we investigate a fusion method that 
combines evidence from audio and optical sensors for 
achieving robust detection of events of aggression and 
fights. We elaborate on real-world data captured in an 
outdoor public space. The proposed method for detection 
of abnormal behaviours is based on a two-stage 
processing of the input data. At the first stage a number of 
individual, modality-specific event detectors, referred to 
as low-level event detectors, perform recognition of a set 



of predefined events-of-interest on the incoming data 
streams. The output of the detectors consists of sequences 
of event labels and the recognition confidence for each 
detected event. These sequences are fed to the second 
stage, which combines and disambiguates the output of 
the individual detectors. As the individual detectors 
operate on a set of sensors with complementary perception 
capabilities, a more accurate and reliable detection is 
achieved when compared to the performance obtained for 
each of the individual detectors alone. 

The proposed technology is expected to facilitate the 
creation of reliable autonomous surveillance systems, 
which incorporate intelligent automatic alert mechanisms. 
These mechanisms can offer the opportunity for reducing 
the workload of the personnel in security control centres, 
and enable appropriate actions to be taken for minimizing 
the risk of injuries or property damage. 

The present work bears some similarity with previous 
work [2], where a Hidden Markov Model (HMM) is used 
for detection of abnormal crowd behaviour. The HMM is 
based on data from visual and thermal infrared cameras. 
In the present work, we elaborate further on this approach 
and evaluate the proposed two-stage method on the 
PROMETHEUS database. Furthermore, in the present 
work we rely on an extended set of sensors, which 
includes overview video cameras, thermal imaging 
cameras and a microphone array. The introduction of the 
microphone array is expected to improve the situational 
awareness about the scene of interest, compared to having 
only optical sensors. For instance, in outdoor 
environment, occlusions or fog could prevent the proper 
event detection through video and thermal imaging 
cameras, but the microphone array will still provide 
evidence for the acoustic events that are characteristic for 
fights or aggression. 

1.3 Outline 
The remainder of this paper is organized as follows: In 
Section 2 we briefly overview related work and define the 
innovations of the proposed method. In Section 3, we 
offer an outline of the low-level event detectors for each 
of the individual modalities. In Section 4, we present a 
fusion method, which combines and disambiguates the 
detections provided by the low-level event detectors and 
performs the classification to normal/abnormal behaviour. 
Section 5 outlines the PROMETHEUS database and 
experimental setup used in the experimental validation of 
the proposed approach. Section 6 reports the experimental 
results for the low-level event detections and for their 
fusion. Finally, Section 7 concludes with a summary of 
achievements. 

2 Related work 
The possibilities of acoustic surveillance for hazardous 
situations have recently received quite a lot of attention by 
the signal processing community. The basic advantages 
are the low computational needs and its independence of 
illumination conditions and occlusions. A small number of 

related systems that operate under urban environments are 
mentioned in the literature. In particular, a system for 
gunshot and scream detection and localization in a public 
square is presented in [3]. The authors use forty-nine 
features as an input to a hybrid filter/wrapper selection 
method. Two parallel Gaussian Mixture Models (GMMs) 
were built to represent the selected feature set for 
discriminating screams and gunshots (respectively) from 
noise. Data were extracted from movie sound tracks, 
internet repositories, and recorded from people shouting at 
a microphone, while the noise samples were captured in a 
public square of Milan.  

Detection of audio events in public transport vehicles 
was investigated in [4]. Four microphones recorded four 
different scenarios, including fight scenes, a violent 
robbery scene, and scenes of bag or mobile snatching. 
GMMs and Support Vector Machines (SVMs) based 
classifiers, fed by feature set composed of the first 12 
Mel-Frequency Cepstral Coefficients (MFCCs) and their 
energy, derivatives and accelerations were used. 
Related studies [5-8] deal with the modelling of crowds 
for different applications, where also effects of crowd 
psychology are considered, i.e. how people are expected 
to react in cases of emergency, how they move within a 
building or outdoors to escape in occasion of an 
emergency event, etc.  

Certain combination of acoustic and visual sensors has 
been investigated for security and safety issues such as the 
detection of abnormal and aggressive behaviour at train 
and underground stations [9-10]. Detailed body-pose 
estimation and analysis of movements of body parts were 
used in [10], in contrast to the work presented here, where 
we do not consider such level of detail in the optical 
image, but rely on abstractions such as representing 
humans with optical flows and foreground regions.  

3 Low-level event detection 
The level of activity of a crowd provides information that 
can be used to detect abnormal crowd behaviour. Normal 
behaviour often corresponds to calm movements and calm 
speech, i.e. people standing or moving relatively slowly 
through the scene, without making excessive gestures. An 
abnormal event, however, is likely to be accompanied by 
more rapid movements, and shouting. We define seven 
crowd observations: normal activity (calm motion), 
intensive activities by a few, intensive activities by 
several, low sound, high sound, small crowd and large 
crowd. The observations are fed to the crowd behaviour 
analysis, which is based on HMM. 

3.1 Detection of acoustic events  
The processing of acoustic signals considered here is 
motivated by the monitoring system described in [11]. 
The block diagram of the proposed detector of acoustic 
events is depicted in Figure 1. Specifically, after signal 
pre-processing, which removes the signal offset with 
respect to zero mean value and smoothes any possible 
misalignments, the feature extraction stage takes place. 



The computed audio features are fed to the pre-defined 
statistical models and a degree of resemblance between 
each model and the feature values is computed using the 
Viterbi algorithm [12]. This degree of resemblance is in 
the form of log-likelihood, while the final decision is 
made by determining the maximum log-likelihood. 

Due to the specific nature of the audio events of 
interest – an abnormal vocalic reaction such as these 
accompanying the events of panic, fights etc – we use few 
additional audio descriptors, which contribute to capturing 
better the characteristics of abnormal vocalic reactions. 
Thus, to this end we rely on the following feature set: 
1. Mel-Frequency Cepstral Coefficients (MFCCs): 
comprise a Mel-scaled projection of the log spectrum, 
followed by a parameter decorrelation step. The MFCC 
time-derivatives are appended to the final vector, as well. 
2. MPEG-7 Audio Protocol Low Level Descriptors [13] 
are currently the state-of-the-art audio parameterization in 
generalized sound recognition. In the present work we 
use: a) Audio waveform min and max and b) Audio 
spectrum flatness, and both of them are complementary to 
MFCCs.  
3. Teager Energy Operator (TEO) and Intonational 
Features: Due to the relatively large range of abnormal 
vocalic events that we have to deal with, we utilize 
acoustic parameters that capture the variations that the 
airflow pattern exhibits when it comes to abnormal 
circumstances. Thus we utilized TEO-Autocorrelation-
Envelope Area [14], pitch, pitch derivative, and 
harmonicity to noise ratio. The last three were computed 
using PRAAT [15] software which is optimized for the 
processing of speech signals. 
The feature extraction algorithms elaborate on audio 
signals with 16 kHz sampling rate and 16 bit quantization.  
As regards the pattern recognition methods, we 
experimented with generative classifiers. Three types 
were considered: GMMs, ergodic/fully connected HMMs 
and left-right HMMs. The recognition of acoustic events 
is based on the assumption that every source emits sounds 
which follow consistent patterns, their so called audio 
signatures. We estimate and subsequently identify the 
patterns using statistical techniques. HMMs have the 
ability to capture not only static aspects of the feature 

sequence but also their evolution in time. They break up 
the sequence into a predefined number of states and try to 
learn the relations between them. Ergodic HMMs allow 
for every possible transfer between the states while in the 
case of left right HMMs there are no directed loops in the 
automation. They result in an n by n matrix where each 
element represents the probability of the transition 
between different states. Thus, the element (i, j) is the 
probability of moving to state j at time t+1 given state i at 
time t. It should be noted that each state is modelled by a 
GMM based on components with diagonal covariance 
matrices. 

3.2 Detection of events from optical streams 
We use optical streams to estimate the crowd size and the 
degree of activity from people in the crowd. 

3.2.1 Crowd activity estimation 
The level of crowd activity is measured by computing the 
optical flow in the scene (in this case in the visual image). 
If a person is walking quickly, running, or moving his or 
her arms rapidly, the magnitude of the optical flow will be 
larger compared to when a person is moving slowly or 
standing still. An average value of the magnitude of the 
optical flow is estimated. The optical flow from detected 
persons was used in [2] to detect activities, in contrast to 
the present work where there is no need of first detecting 
persons; the optical flow is instead calculated for the 
whole scene. The optical flow will therefore be a measure 
also of the crowd dynamics as a whole. 

3.2.2 Crowds size estimation 
The crowd size does not alone indicate normal or 
abnormal behaviours. The crowd size is more a 
representation of the crowd state that together with other 
features (from other sensors) can indicate normal or 
abnormal behaviour.  

To estimate the crowd size, we use prior knowledge of 
the approximate number of pixels per person associated to 
the distance between camera and crowd. Background 
subtraction is done to obtain the foreground pixels, which 
are assumed to represent all persons in the scene. The 

 
 

Figure 1. Block diagram of the audio event detection and classification component. 



number of people is obtained by dividing the total amount 
of foreground pixels by the number of pixels per person.  

What is considered to be a large crowd will differ from 
case to case. For example, in a small city area a large 
crowd may be 20-25 persons. At large sport events, large 
crowds are probably hundreds or thousands of persons.  

We use a thermal infrared camera to measure the 
crowd size. This camera is advantageous since it is not 
affected by cast shadows. On the other hand, high 
environmental temperatures may cause poor contrast in 
the thermal camera leading to an underestimation of the 
crowd size.  

4 High-level fusion for fight detection  
The high-level fusion is performed by using a HMM [12]. 
In brief, the HMM consists of two stochastic processes. 
The underlying (hidden) process can be observed through 
another stochastic process that produces sequences of 
observations OS. The states S represent some unobservable 
conditions of the system. In each state there is a certain 
probability of producing any observable system outputs O 
together with a probability indicating the likely next states. 
The HMM for a normal crowd is described by the 
following parameters: 

 ),,,,( SN OSBA πλ = , (1) 

where A is the probability distribution of state transitions, 
B is the probability distribution of observations in each 
state and π is the probability distribution of the initial 
state. A, B and π can be obtained by training λN on 
relevant training data.  

For behaviour recognition the likelihood LN for an 
observation sequence OS = (O1, O2,…,OT) is calculated 
according to Eq. (2). 
 
 )|(( NSN OPL λ=  (2) 

The result of LN is compared to a threshold TN that 
represents expected normal crowd behaviour. If LN < TN 
the crowd behaviour is likely to be abnormal. If LN > TN 
the crowd behaviour is likely to be normal. 

4.1 HMM for fight detection 
λN is aimed at detecting fights, which are represented by 
quick movements and atypical sound events. We selected 
a HMM with two states (S1 and S2), which refer to calm 
motions (standing and walking) for S1, and slightly 
increased activities (predominantly walking) for S2, still 
belonging to normal behaviour. Both states include certain 
segments of unusual observations that can come from 
incorrect sensor detections and the fact that unusual 
observations may occasionally occur also in normal 
behaviour. We selected seven observation symbols (O1 – 
O7), which are:  

• O1: Normal activities, i.e. walking, standing, 
• O2: Increased activities, i.e. walking and more 

intensive movements by a few, 

• O3: Strongly intensive activities by several, 
• O4: Low sounds, 
• O5: High sounds, 
• O6: Small crowd,  
• O7: Large crowd. 

Since we do not have enough recorded training data on 
normal behaviour in crowds we have derived training data 
based on the knowledge of what is associated with normal 
behaviour. The Expectation-Maximization (EM) 
algorithm was used for the training process. 

5 Experimental setup 

5.1 PROMETHEUS database 
The multimodal multisensory PROMETHEUS database 
[16] was created in support of RTD activities aiming at 
the creation of a framework for monitoring and 
interpretation of human behaviours in unrestricted indoor 
and outdoor environments. The database consists of 
approximately four hours of recordings, representative for 
two application scenarios: smart-home and public security 
(airport and ATM – bankomat, surveillance). Three indoor 
sessions, in the smart-home and the airport scenarios, 
were recorded in the Greek language with average 
duration of a session of approximately 20 minutes. The 
outdoor sessions were almost entirely in the English 
language as spoken by non-native speakers. Two sessions 
with duration of approximately 30 and 50 minutes 
represent the ATM scenario, and an additional 76 minutes 
represent the public area security scenario. Except for 
these pre-designed scenes, where the actors improvised 
guided by task cards, the database contains recordings 
from the intersession breaks, and thus, portion of the 
recordings was not pre-designed.  

Each recording session is comprised of multiple action 
scenes concatenated to a single sequence, where each 
action scene is implemented a number of times by 
different actors. In the present work, we report results on 
three fight scenes (in the following denoted as scene 1, 
scene 2 and scene 3). These scenes have a cumulative 
length of approximately four minutes and represent 
abnormal multiple-person interaction episodes, which 
include abnormal behaviours, as well as abnormal 
behaviours such as aggression, fight, a person brought 
down, and people helping the sufferer. The sound, video, 
and thermal sequences corresponding to these episodes 
were annotated with respect to sound event type as well as 
human location and action. 

5.2 System setup 
In the present work, we are dealing with keysound 
spotting. More specifically, acoustic signals which are 
characterized by a long duration need to be processed for 
the purpose of abnormal sound event detection. Thus, the 
instantaneous value of each feature is computed over a 
larger frame size than the one commonly used in content-



based recognition (namely 30ms). After several 
experiments and based on the highest recognition rate 
criterion, it was decided that all sound samples should be 
cut into frames of 200ms with 75% overlap. Mean value 
removal and variance scaling are applied on the time 
domain signal. The FFT size is 512. 

We used Torch implementation [17] of GMM and 
HMM, during the experimental phase. The maximum 
number of k-means iterations for initialization was 50 
while both the EM and Baum-Welch algorithms had an 
upper limit of 25 iterations with a threshold of 0.001 
between subsequent iterations [12]. Based on the 
performance that each technique demonstrated, we 
utilized left-right HMMs with 4 states and 64 Gaussian 
functions for each state. We randomly chose 50% of the 
data from the general security scenario for training the 
models. The testing set is consisted of three selected 
scenes.   

Data from the visual and thermal infrared cameras are 
put into an analysis framework. In the framework the 
camera images are calibrated and synchronized. The 
calibration is done by using the Matlab calibration tool. 
When HMM calculations are performed that also includes 
acoustic input data, the acoustic data are introduced in the 
framework in the form of sound decisions. 

5.3 Performance measure 

The accuracy of the proposed event detection method is 
reported in terms of correct detection rate, DT, in 
percentages:  

100 P N
T

N N P P

T + F
D =

T + F +T + F
× [%]                   (3) 

 
where TP and TN stand for true positives and true 
negatives, and FN and FP are false negatives and false 
positives, computed on per frame basis. In the present 
work, we weight equally the misclassification of the 
normal and the abnormal events. 

6 Experimental results 
We used four sensors for observing the three fights. Figure 
2 shows the views from the three optical cameras. The 
upper visual camera to the left is referred to as camera 1 in 
the following discussion and the upper visual camera to 
the right is referred to as camera 2. The thermal infrared 
camera below has the same view as camera 1. In Figure 2, 
the same fight can be seen from the different views, 
representing the same time. The microphone array is 
placed close to the desk in the scene. 

6.1 Results from the low-level detection 

6.1.1 Acoustic information 
The method that was chosen for the audio processing is 
essentially detection by classification. We experimented 
with several window sizes which varied from 0.03 seconds 

to 1 second with 0.01 seconds skip step. The best 
performance was achieved while using a window of 0.5 
seconds. Subsequent decisions which have the same label 
are merged into one with the same start time and 
cumulative increase of duration. Such a smoothing scheme 
removes single-frame detections. An example of the sound 
recognizer outputs is illustrated in Figure 3.  

 
Figure 3. The sound waveform (top) and the decisions made by 
the sound recognizer (bottom) on the sequence denoted as scene 
1, which includes an episode with a fight (see Figure 2). In the 

bottom plot decision value “2” corresponds to an abnormal 
situation, and decision value “1” corresponds to normal 

situations. 
 

When the output curve increases, an abnormal situation is 
detected by the system. The waveform belongs to a fight 
scene, where the fight starts approximately at t=1.8 sec. 
The percentages are calculated using per window analysis 
and the resulted correct detection rate is 87% for the three 
fight scenes. 

6.1.2 Optical information 
Figure 4 presents optical flows from camera 1 and camera 
2 for scene 2. Three levels of optical flow are defined for 
each camera to distinguish between different degrees of 
movements, according to the observation symbols O1, O2 

 

 
Figure 2. Views from the optical cameras. The upper visual image 
to the left represents the view from camera 1 and the upper visual 
image to the right represents the view from camera 2. The lower 

image represents the thermal infrared camera. 



and O3 (see section 4.1). The levels are different in the 
two cameras. This is because they have different 
possibilities to detect the movements. The distance 
between camera 2 and the crowd is shorter than the 
distance between camera 1 and the crowd. Camera 2 is 
therefore able to detect more movements and 
consequently obtain higher optical flow values. The first 
levels (optical flow=30 in camera 1 and optical flow=400 
in camera 2) represent the threshold for increased 
activities, compared to normal activities. The second 
levels represent the threshold for strongly intensive 
activities, compared to increased activities.  

The thresholds have been derived by observing the 
optical flows under known conditions, i.e. when the types 
of events in the scene are known. 5 optical flow values are 
calculated per second. Each fight scene has a duration of 
80 seconds which in Figure 4 corresponds to Time = 400. 
The fight starts at Time = 200. 

 
Figure 4. Optical flows for scene 2 in camera 1 (left) and camera 
2 (right). See also Figure 3 for the different views of the cameras. 

 
Figure 5 presents the crowd size estimation for scene 2, 
based on thermal infrared data. As above, 5 crowd size 
calculations are done each second. The changes in crowd 
size depend mostly on that people enter and/or leave the 
scene, or move behind each other. The changes also 
depend on data uncertainties, because of high 
environmental temperatures. In high temperatures, the 
contrast in thermal infrared data is occasionally poor, 
leading to incorrect variations in crowd size.  

 
Figure 5. The variation of crowd size for scene 2. The variation is 
due to people entering or leaving the area, but also if they move 

within the area which can result in occlusion. 
 

The fight starts at Time = 200. The correct number of 
people varies between 6 and 9. There is a reduction in 
crowd size at Time = 270. At this time the fight is ongoing 
and occlusion effects are present, which cause a reduction 
in the estimated crowd size. However, the measure can 
give an approximate crowd size, which is enough to see 
that the crowd is small. 

6.2 Results for the high-level fusion 
The high-level fusion, based on HMM, combines the 
evidence from the low-level audio and optical detectors in 
order to provide a more robust detection of atypical 
situations. Firstly, the observations from different low-
level detectors are synchronized so that they correspond to 
the same time frame. In the following we shall consider 
that the system makes decision every 0.5 seconds, which 
is the frame size that we will consider as unit for time in 
the figures that follow. Each of the fight scenes has a 
duration of 80 seconds, which in the diagrams, presented 
in Figures 6 and 7, corresponds to Time = 160.  

Figure 6 shows the log-likelihood of normal behaviour 
P(OS|λN) for four different scenes. The upper-left panel 
shows P(OS|λN) for the normal crowd behaviour. This 
panel is contrasted to the three fights shown in the other 
panels in Figure 6.   

 

 
Figure 6. Fusion of audio and optical evidence. In all diagrams 
the plots with thin solid line show P(OS|λN) for: (i) upper-left 

diagram - normal crowd, (ii) upper-right diagram - fight in scene 
1, (iii) lower-left diagram - fight in scene 2, (iv) lower-right 

diagram - fight in scene 3. The dashed line at level P(OS|λN) = -5 
in all diagrams represents the threshold TN, above which normal 

behaviour is reported . 
 

The thick dashed line at level P(OS|λN) = -5 represents the 
threshold TN above which normal behaviour is reported, 
i.e. when P(OS|λN) ≥ TN. Instead, when P(OS|λN) < TN the 
crowd behaviour is assumed to be abnormal. TN has been 
derived by calculating P(OS|λN) based on a known normal 
observation sequence. 

The upper-right panel shows P(OS|λN) for scene 1, that 
includes a fight between two people. As can be seen 
P(OS|λN) < TN for the major part of the period, and well 
corresponds to the actual development of actions in the 
scene. The actual fight starts at Time = 75 and ends at 
Time = 100. But the fight is preceded by a quarrel that 
starts at Time = 25, when the two persons shout in a loud 
voice. 

The fight is observed by camera 1, but the evidence 
from the optical flow is not so strong in the beginning of 



the fight. The fight can not be observed by camera 2, since 
the fight takes place outside the perceptive area. The 
microphone array detects high volume sounds and thus 
contributes to early detection of the fight action, 
corresponding to a reduction of P(OS|λN) to a level that 
should give an alarm to the security operator. The fight, 
including the quarrel, is well detected by the HMM 
method. 

At Time = 40 there is a motorcycle crossing the area, 
causing an increase in optical flow, sound and crowd size 
and leading to a strong reduction in P(OS|λN). This event 
also corresponds to atypical event – a motorcycle passing 
through the scene. 

Next, the lower-left panel shows P(OS|λN) for scene 2, 
where the fight starts at approximately Time = 80 and ends 
at Time = 120. Also in this case the fight is preceded by a 
quarrel, starting at Time = 50, with high volume sound. In 
this case both cameras observe the fight, which will give 
effect for P(OS|λN) when high volume sound and high 
optical flow values coincide in time (i.e. when P(OS|λN) ≅ 
−12). Figures 4 and 5 show the optical flows and crowd 
size for scene 2. The fight including the quarrel is well 
detected. 

Finally, the lower-right panel presents results for scene 
3, where the fight start at approximately Time = 120 and 
ends at Time = 130, with a quarrel starting at Time = 50. 
This fight has shorter duration, when compared to the 
previous action sequences. The fight is observed by 
camera 1 where intense actions are registered for a short 
time period. Likewise scene 1, the fight cannot be 
observed by camera 2 and therefore, the sound gives 
important indications on the fight. Due to the information 
obtained from the sound event detector, this abnormal 
event is detected with a good accuracy. 

A video demonstration of the proposed system, in the 
PROMETHEUS dataset, is available at [18]. 

6.1.3 Summary of results 
The experimental results offered practical validation of 
the proposed two-stage fusion method (and the 
assumption that the use of high-detail action analysis is 
not necessary for proper detection of fights). The 
information from different types of complimentary 
sensors that do not necessarily produce detailed or 
accurate information by themselves, at all time steps, 
turned out to be sufficient for accurate fight detection. The 
good result is achieved by fusing the different low-level 
events detected by the different modalities, and therefore 
the network of sensors as a whole, enables the accurate 
analysis of the scenes.  

The correct fight detection rate DT for the proposed 
fusion approach is closely related to the type of sensor 
network and the chosen HMM parameters. The crowd 
should not produce high volume sounds and intensive 
actions for longer time periods. Observations indicating 
abnormal events are O3, O5 and O7. If OS includes these 
observations, P(OS|λN) will be lower than TN. P(OS|λN) is 
reduced even more if these observations will coincide in 

time. Based on Eq. (3) we obtain DT = 81%, which 
represents an average value for the three fights. In this 
value we include also the preceding quarrels. 

For this type of sensor network we have so far 
investigated three fights. However, the HMM based 
method has also been investigated for other fights in other 
scenarios and test data [2]. In those cases we used only 
visual and thermal infrared cameras and we had also a 
somewhat different set of observations. The method 
shows promising results also for those cases. 

As a comparison with other types of sensor networks 
on the PROMETHEUS data set we have made some 
further analyses with a reduced sensor network. If no 
indication on high volume sound can be obtained for the 
fight in scene 3, the indication of a fight is vague, as this 
is presented in Figure 7. In scene 3 the audio information 
is important since the information from the optical flow 
includes large uncertainties (and the fight can not be 
observed by camera 2).    

The evidence from audio is advantageous since the 
microphone array does not have the same limitations such 
as the limited perceptive view, restricted to a portion of 
the monitoring area, as it is the case for the optical 
cameras. Moreover, the thermal infrared camera offers 
important evidence about the crowd size in poor light 
conditions, when the performance of the visual cameras is 
strongly reduced.  

 
Figure 7. P(OS|λN) for the fight in scene 3 without audio 

information. Information is obtained only from the thermal 
infrared camera and the two visual cameras. 

 
If there is only one camera observing the fights the 
information on the fights is poor and uncertainty is 
significant (see e.g. one of the diagrams in Figure 4). If 
the fights take place far away from the camera it will be 
difficult to distinguish sufficient changes in the optical 
flows to get reliable indications on the fight actions. 

7 Conclusions  
Investigating the problem of automatic fight detection in 
urban environments, we evaluated a two-stage method, 
which relies on a set of complementary sensors and a 
number of independent event detectors in the first stage, 
and on fusion and disambiguation of their decisions in the 
second stage. The experimental results obtained on normal 
and abnormal scenes from the PROMETHEUS database, 
whose content is purposely designed to represent scenes 
characteristic for outdoor surveillance applications, 
demonstrated the practical usefulness of the proposed 
method. It was shown that reliable detection of aggression 



and fights can be achieved without detailed tracking of the 
body parts, which reduces the requirements to the 
positioning and calibration of the sensors. The last 
facilitates the utilization of the proposed method in real-
world applications.  
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