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Abstract. Keypoint-based and block-based methods are two main categories of techniques for detecting 

copy-move forged images, one of the most common digital image forgery schemes. In general, block-based 

methods suffer from high computational cost due to the large number of image blocks used and fail to han-

dle geometric transformations. On the contrary, keypoint-based approaches can overcome these two draw-

backs yet are found difficult to deal with smooth regions. As a result, fusion of these two approaches is pro-

posed for effective copy-move forgery detection. First, our scheme adaptively determines an appropriate ini-

tial size of regions to segment the image into non-overlapped regions. Feature points are extracted as key-

points using the scale invariant feature transform (SIFT) from the image. The ratio between the number of 

keypoints and the total number of pixels in that region is used to classify the region into smooth or non-

smooth (keypoints) regions. Accordingly, block based approach using Zernike moments and keypoint based 

approach using SIFT along with filtering and post-processing are respectively applied to these two kinds of 

regions for effective forgery detection. Experimental results show that the proposed fusion scheme outper-

forms the keypoint-based method in reliability of detection and the block-based method in efficiency. 
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1 INTRODUCTION 

With the increasing availability and functionalities of image processing software, image editing and 

refinement becomes an enjoyable hobby and popular trend for many people. However, this has also 

caused another issue in term of the reliability and data integrity of digital images. In some application 

areas, such as news reports, court certification and biometrics imaging, the authenticity of the image is 

particularly important (Christlein et al. 2012; Huynh et al. 2015; Sencar and Memon 2008). 

In recent years, more and more researchers have begun to focusing on the problem of digital image 

forensics. According to (Sencar and Memon 2008), digital image forensics can be divided into three 

branches, i.e. image source identification to identify which device was used to capture an image (model or 

exemplar of scanner, of digital camera), discrimination of computer generated images (to detect if an 

image is natural or synthetic), and image forgery detection (to discern if an image has been intentionally 

modified by human intervention). Among many forgery techniques, copy-move is one of the most com-

monly used, by which the content of the image is copied from one region and pasted into another area in 

the same image. This forgery may be accompanied with geometric transforms and post-processing includ-

ing rotation, scale, JPEG compression, noise addition, etc. Due to the local similarity in terms of color 

and texture, it is very difficult for human eyes to distinguish the forgery from the original. 

Existing techniques for copy-move forgery detection can be classified into two categories, i.e. block-

based and keypoint-based methods. The block-based methods usually extract features from overlapping 

blocks of the image, a number of features have been proposed for forgery detection.  

In (Christlein et al. 2012), these features are grouped into four classes: frequency domain-based, di-

mensionality reduction-based, intensity-based, and moment-based features. Feature transformed ap-

proaches include block-based discrete cosine transform (DCT) (Fridrich et al. 2003), principal component 

analysis (PCA) (Popescu and Farid 2004), discrete wavelet transform (DWT) (Bashar et al. 2010), Dyadic 

Wavelet Transform (DyWT) (Muhammad et al. 2011), and Fourier-MellinTransform (FMT) (Bayram et 

al. 2009). In addition, some non-typical block-based features include singular value decomposition (SVD) 

(Kang and Wei 2008), and blur-invariant moments (BLUR) (Mahdian and Saic 2007). 



 

 

For non-transform based approaches, usually features include rotation and flipping invariant uniform 

local binary patterns (LBP) (L. Li et al. 2013), average color and directional information of blocks (Luo et 

al. 2006). A 9-dimensional vector was proposed in Lin et al. (2009) which can detect the rotation with a 

fixed angle but not with arbitrary angles. In Wang et al. (2009) and Ryu et al. (2010), the first four Hu 

moments (HU) and rotation invariant Zernike moments are respectively used. After examining and as-

sessing 15 most prominent feature sets, Christlein et al. (2012) recommended Zernike moments as block 

features due to its relatively small memory footprint and robustness to transformation. 

With a large number of image blocks, the time consumption of block-based methods is high, espe-

cially with the increasing size of images. In addition, most of these methods show lack of robustness 

against generic geometric transformations, i.e. affine and projective transforms in particular. Keypoint-

based methods, however, can relatively reliably compensate these shortcomings. In (Amerini et al. 2013; 

Amerini et al. 2011; Huang et al. 2008) Scale-invariant feature transform (SIFT) and (Bo et al. 2010; Jing 

and Shao 2012) Speed-up robust features (SURF) were used to detect copy-move forgery. Due to the 

number of keypoints is much less than the number of blocks, computational complexity is greatly re-

duced. In (Amerini et al. 2011) the authors also proposed to use g2NN to deal with multiple copies, the 

hierarchical clustering and Random Sample Consensus (RANSAC) were employed to filter out outliers 

and significantly improved the detection accuracy. In Kumar et al. (2015) a hybrid approach was pro-

posed, where SURF was used to detect the keypoints in the image and Binary Robust Invariant Scalable 

Keypoints (BRISK) features were used to represent corresponding features at these keypoints. 

Although keypoint-based methods are robust to geometric transformation and cost low, they may 

not work in dealing with smooth regions. At present, some researchers have proposed the combined 

methods to detect forgery. In Pun et al. (2015), SIFT features were extracted from each block and consid-

ered as block features, yet it still failed to detect forgery of copied smooth regions. In Zahra (2012) Zer-

nike moments were combined with SIFT, yet how to identify smooth regions were missing.  

In summary, keypoint-based methods may fail to work for copied smooth regions. On the contrary, 

block-based methods work well in such cases yet it will bring high computation cost. To this end, fusion 

of block-based method and keypoint-based method to respectively deal with smooth regions and key-

points regions becomes a natural choice in this context. After examining 15 most prominent feature sets, 

Christlein et al. (2012) recommended Zernike moments as the best block features due to its relatively 



 

 

small memory footprint and high reliability. Moreover, their experimental results also showed that SIFT 

produced the best results among those keypoint-based methods. As a result, Zernike moment and SIFT 

are chosen in our fusion based approach for effective forgery detection. As shown in Fig. 1, our approach 

can successfully detect forgery image even in smooth regions. 

The rest of this paper is organized as follows. In Section 2 the proposed approach is presented in de-

tail. In Section 3, the experimental results are discussed. Finally, some concluding remarks are drawn in 

Section 4. 

2 The proposed approach 

In the proposed approach, an image is first adaptively divided into non-overlapped regions, using 

simple linear iterative clustering (SLIC) algorithm. Then, SIFT is used to detect keypoints in the whole 

image, and based on whether the ratio of keypoints’ number to the pixels’ number is less than a threshold, 

a region is classified as smooth region or keypoints region. Afterwards, a multiple keypoints matching 

procedure is performed in keypoints regions to decide candidate forgery regions, and RANSAC is used to 

prune outlier. Finally, if there are more than two smooth regions in the image, Zernike moments are used 

as block features to detect forgery in smooth regions. The technical implementation of the proposed ap-

proach is presented in detail as follows. 

2.1 Adaptive Image Segmentation 

As the copy-moved regions always are semantically meaningful, we firstly segment the image into 

semantically independent non-overlapping regions by using the simple linear iterative clustering algo-

rithm (SLIC) (Achanta et al. 2012). We choose SLIC for its low computational complexity, which pro-

vides a simple and efficient k-means clustering method to segment the image into visually homogeneous 

regions. 

In our implementation, we employ VLFeat toolbox- vl_slic  (Vedaldi and Fulkerson 2010) to seg-

ment images. The vl_slic approach has two parameters, i.e. regionsize and regularizer. Regionsize is the 

initial size of the superpixels (regions). Regularizer is the trades-off appearance for spatial regularity dur-

ing clustering, where a larger value results in more spatial regularization. Regularizer in our experiments 

is set to 10000. In practice, images have different content and size, the initial size of the superpixels has 



 

 

considerable influence on the segmentation result. In general, when the texture of the image is simple, the 

initial size of the superpixels can be set to be relatively large, which can ensure the superpixels get close 

to the edges. Furthermore, larger initial size implies a smaller number of blocks, which can reduce the 

computational cost when processing smooth region. In contrast, when the texture of the image is compli-

cated, the initial size of the superpixels can be set to be relatively small to ensure good forgery detection 

results. 

We adopt the approach proposed in Pun et al. (2015) to obtain the initial size of superpixels, adap-

tively. Four level Discrete Wavelet Transform (DWT) (Shensa 1992) is employed to analyze the frequen-

cy distribution of the image.  
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Where S_init  means the initial size of the superpixels; row  and col  denote respectively the number of 

rows and columns of the image. Segmentation result is an array containing the superpixel identifier for 

each image pixel and each superpixel corresponds to a value, this array is named Seg  which will be used 

in the formula (6).  The visualization of the segmentation results is shown in Fig. 2. 

2.2 Keypoints extraction and regions classification 

In David G Lowe (1999), SIFT was used to detect keypoints in the whole image. In our work we 

employ siftDemoV4Toolbox (David G. Lowe 2004) to extract keypoints from the image. Fig. 3 (a) illus-

trates the results of the keypoints extraction, where we can find few such points in smooth regions. 



 

 

We classify these non-overlapping regions using the following principals. If the ratio between the 

number of keypoints and the number of pixels in the region is less than a threshold T , it is classified as a 

smooth region. Otherwise, it is classified as a keypoints region. 
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Where fN , pN  indicate the number of keypoints and pixels in the inspected region, respectively. 1R   

denotes that the region is smooth, and 0R   signifies that it is keypoints region. 

2.3 Detection in keypoints region 

The flowchart of detection in keypoints region is given in Fig. 3, which contains multiple keypoints 

matching and outlier filtering as detailed below. 

1) Multiple keypoints matching in keypoints region 

In a real world situation, the same image region is cloned over and over (for example, Fig. 7 (H1)).  

In order to detect a region pasted in multiple regions, we use the g2NN strategy (Amerini et al. 2011) to 

find matching keypoints in keypoints regions. For a given keypoint, the similarity values (inverse cosine 

distance in the SIFT space) between it and other keypoints are calculated and form a similarity vector. 

The vector is sorted (lexicographic sort) and named as 
1 2 1{ , ,..... }ns s s S , where n  is the number of 

keypoints. The detailed steps of g2NN strategy are shown in Table 1.  

Here rT  is an empirical value, and according to Amerini et al. (2011) it is set to 0.5.  If k  ( i k ) is 

the value where the procedure stops, the corresponding keypoints of 1 2, .... ks s s  are considered as candi-

date matching of the given keypoint. This scheme considers not only the single best-matching keypoint 

but also the k  best-matching keypoints, thus it can detect multiple copies in keypoints regions. 

2) Filtering outliers 

As the similarity of adjacent keypoints is high, in the matching process adjacent keypoints should be 

excluded. To determine the shortest distance between two keypoints, existing approach is to set a thresh-

old dt , where only if the Euclidean distance between the two keypoints is greater than dt  the keypoints 



 

 

will be used in comparison (Cheng et al. 2015; Cheng et al. 2014). However, the choice of threshold 
dt  is 

subjective, which neglects its relationship with the image size and content. 

Based on the assumption that copy-move forgery does not occur in the same superpixel, a new solu-

tion is put forward in this paper. As long as x y   and ( , )match matchx y are not in the same superpixel, it de-

termines they are comparable, i.e., 

  ( , )match matchxx y y Seg Seg     (6) 

Seg is an array which is the segmentation result of SLIC algorithm. Obviously, this solution avoids the 

selection of the threshold 
dt . 

After detecting of matching keypoints in keypoints region, we employ hierarchical clustering 

(Amerini et al. 2011) and Random Sample Consensus algorithm (RANSAC) (Fischler and Bolles 1981) 

to filter outliers and remove false alarms. Fig. 3 (b) and Fig. 3 (c) illustrate the comparison of the match-

ing keypoints before and after filtering, respectively. 

2.4 Detection in smooth region 

Considering that keypoints are scarce in smooth regions, special process is needed to deal with these 

regions to allow accurate detection. Actually, block-based approach is utilized for forgery detection in 

these regions as detailed in several steps below.  

Step 1. To count the number of smooth regions. If there are more than two smooth regions we will 

perform the following steps, otherwise we will go directly to the post-processing stage. 

Step 2. These regions are divided into overlapping blocks of b b , ( b was set to 16 in our experi-

ment). As shown in Fig. 4, the region in the red box is classified as smooth, and we calculate the bound-

ing box of this region using minx , miny , maxx , maxy . This external rectangle is divided into overlapping 

blocks, where minx , maxx indicate the minimum and maximum value of the region in horizontal coordi-

nate, respectively. miny , maxy  indicate the minimum and maximum value of the region in vertical coor-

dinate, respectively. 

Step 3. As recommended in Christlein et al. (2012), Zernike moments are chosen as block features 

due to its relatively small memory footprint and high reliability. Zernike moments (Khotanzad and Hong 



 

 

1990; Ryu et al. 2013; Ryu et al. 2010; Teh and Chin 1988) are rotation invariant and robust to noise, 

JPEG compression and even blurred. 

The Zernike moments of order n  with repetition m for a continuous image function (x, y)f  that 

vanishes outside the unit disk is: 

*1
(x, y)V ( )nm nm

unitdisk

n
f dxdy 




  Z     (7) 

Where n is a non-negative integer and m is an integer subject to n m is non-negative and even. The 

complex-valued functions ( , )nmV    is defined as: 

( , ) R ( )exp(jm )nm nmV          (8) 

Where ( , )nmV    is a complex conjugate of *V ( , )nm   .  and indicate polar coordinates over the unit 

disk and Rnm
is Zernike polynomials of  given by: 
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 nmZ denotes the magnitude of the Zernike moments, and it can be used as feature of image (or block). A 

mN  dimensional vector is obtained from block. 
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Where n  is the degree of Zernike moments, and n  is set to 5 according to the suggest in Ryu et al. 

(2010). Therefore a 12mN   dimension vector is obtained from each block. 

Step 4. Block matching. 

The feature vectors of blocks compose matrix M , then we sort M  by lexicographic sorting, the 

sorted matrix is denoted as S . In S  the similar blocks are in the adjacent rows, when the Euclidean dis-

tance between two adjacent feature vectors is smaller than the predefined threshold D  they are consid-

ered to be a pair of candidates for the forgery, i.e., 

1

2

p p D S S     (11) 

Where p
S , p

S  indicate the p  and p   row of S , respectively. 



 

 

Because matching is done in smooth regions where the similarity of adjacent blocks is high, thresh-

old D  should be set smaller to reduce false alarms (Khotanzad and Hong 1990; Y. Li 2013). 

Step 5. Filtering 

Due to the fact that the similarity of adjacent blocks is high, we need to remove candidate matching 

blocks when 

2 2( ) ( )i k j l D         (12) 

Where  ,i j and  ,k l  indicate the coordinates of candidate matching blocks. 

The shortest distance 1D  between two comparable blocks is related to image size, we set the empiric 

value in our experiment as follows. 

60 3000 2000
1

30 otherwise

U
D
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Where U indicates the image size. 

2.5 Postprocessing 

Due to the fact that keypoints are by nature very sparse, it needs further post-processing to locate 

forgery regions. We apply the SLIC algorithm once again to segment test image into smaller regions. 

Here the initial size of the small superpixels is set to 6S_init  by experiments, where S_init  is the initial 

size we used in previous segmentation. The new regions that exist matching points are marked as forged.  

Then we combine the regions which are detected in the keypoints regions and smooth regions. Final-

ly, morphological operations are used to fill the small cracks and remove the connected region whose area 

is too small. 

3 Experimental results and discussion 

3.1 Databases 

In this section, we evaluate the reliability and efficiency of the proposed approach using two image 

databases. 

Benchmark database for CMFD evaluation: This database was constructed by Achanta et al. 

(2012), which consists of 48 high-resolution base images without compression and 87 copied snippets 



 

 

that were pasted in the same image. These snippets are carefully selected such that forgery trace is incon-

spicuous, and the average size of an image is about 3000 2300  pixels. 

Our small database: we select 4 images from MICC-F220 (Ng et al. 2004) and 4 images from 

CoMoFoD_small_v2 database (Tralic et al. 2013). All of these images are tampered, and their sizes vary 

from 512 512  to 800 600 . Most images in this database have been tampered by copying the smooth 

regions. Each tamper image corresponds to a mask image (ground truth), and they are shown in the first 

and second columns of Fig. 7. 

3.2 Assessment criteria 

In practical applications, there are two main requirements in image forensics: one is to distinguish 

forgery and original image (image level), and the other is to correctly locate tampered region (pixel level). 

Therefore we evaluate the proposed scheme at two levels: image level and pixel level. It's worth noting 

that when evaluating at image level, if forgery has been found in keypoints regions, the smooth regions 

will not be detected, otherwise we further detect forgery in smooth regions. 

Metrics: In this paper, we adopt precision, recall and F1 measurements as metrics which are often 

used in the field of forgery detection and information retrieval. They are defined as: 

P
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PT : The number of correctly detected forged images (pixels). 

PF : The number of original images (pixels) that have been erroneously detected as the forged. 

NF : The number of forged images (pixels) that have been falsely missed. 

As seen, the precision is a measure for the probability that a detected forgery is truly a forgery, and 

the recall denotes the probability that a forgery is detected. 1F  is a trade-off between precision  and 

recall . These measures are used at image level and pixel level, in general a higher 1F  indicates superior 

performance. 



 

 

3.3 Threshold determination 

The ratio of keypoints’ number to pixels’ number in the same superpixel T : The selection of thresh-

old T  has a great influence on the reliability and efficiency of the algorithm. If T  is set too large, alt-

hough the detection reliability is guaranteed, the calculation costs much more time. If T  is small, the 

algorithm will degenerate to only use keypoint-based method in test image, and it is likely to miss the 

forgery in smooth regions. Therefore, it is crucial to choose an appropriateT . To determine the appropri-

ate value of T , we test on Fig. 7 (b) and analyze the precision, recall, F1 and running time (at pixel level) 

by changing values of T. Note that the experiments are tested with the machine of 3.20GHz processor, 

32GB RAM, and simulated by Matlab. Fig. 5 illustrates that different values of T  corresponds to differ-

ent smooth regions (blue marked). As shown in Table 2, with the increase of T , the precision, recall and 

F1 tend to be stable, but time for feature extraction is increased. Therefore we set T =0.0025 in the fol-

lowing experiments. 

Similarity threshold between matching pairs D : Larger D may introduce more false alarms, yet small-

er D  may result in missed detection. As matching is done in smooth regions where the similarity between 

blocks is high, threshold D  should be set smaller. To decide the value of D , we test on the second data-

base (our small database) and draw the curves of precision, recall and F1 (on average) with different val-

ue of D . As seen in Fig. 6, the precision has the downward trend when D  increases to 40. Because some 

original blocks are classified as forged when D  is larger. We also notice that a small D  cannot detect 

forgery in smooth regions. Therefore, we set D to 30 in the following experiments.  

Block size b : reduced block size will result in increased computation expense, however, it is essential to 

avoid missed detection of small copy-move forged areas. The majority of block-based methods propose a 

block size of 16 16 , and that is why we also used 16b   in our experiments. 

3.4 Evaluation at image level 

In this test we examine the ability of the proposed scheme on the first database (Benchmark database 

for CMFD evaluation). We test on 96 images, 48 images of which are original and others of which are the 

plain copy-move forgery. Since the original sizes of these images are rather large, we have to resize all 

the images to reduce the computation cost, even though resizing may make the detection more difficult. 

We compare our scheme with two kinds of keypoint-based methods: SIFT and SURF. Due to high com-



 

 

putational complexity of Zernike moments, it is impractical to use Zernike moments method in this data-

base. So another block-based method, HU moments method is added into the comparison. Additionally, a 

state-of-the-art method (J. Li et al. 2015) is added for benchmarking, in which the test images were seg-

mented with a fixed initial size. Keypoints were matched between patches and Expectation Maximization 

Algorithm (EM) (Bilmes 1998) was designed to filter false alarm patches.  

As seen Table 3, our proposed approach produces the highest F1 among all methods, which indi-

cates its robustness in dealing with large scale changes. In terms of recall rate, ours is 0.9375 at the image 

level, which performs similarly to the block-based method (HU moments) owing to applying block-based 

method in smooth regions. The proposed method outperforms J. Li et al. (2015) in terms of both precision 

and recall rates. The average computation times (in seconds) per image are also compared and shown in 

Table 3. In comparison with block based methods, our approach has significantly reduced the computa-

tional cost, as block-based processing is only applied to selected smooth regions for improved efficiency 

and efficacy, though it is still much higher than keypoints based methods. For the precision rate, ours is 

slightly lower than those from SIFT and SURF. The reason behind is that the similarity between some 

blocks is less than the threshold D in the original images. As a result, they are falsely classified as for-

gery. 

3.5 Evaluation at pixel level 

As the process of large scale resizing makes the detection difficult, in the following test we evaluate 

the scheme at pixel level using the second database without resizing. The second database is smaller, so 

we can compare our scheme with Zernike moments method in this database. The third, fourth and fifth 

columns of Fig. 7 show the detection results of SIFT scheme, our proposed scheme and Zernike moments 

method, respectively. 

From the results shown in Fig. 7 we can see that (B1), (C1), (E1) cannot be detected using SIFT, 

though it can detect a portion of the forgery regions in (A1), (F1) and (G1). The reason for poor perfor-

mance of SIFT method in these images is that smooth regions are copied and few keypoints can be ex-

tracted from them. Our approach, however, can detect forgery even when smooth regions are copied. At 

the same time, it performs similarly to Zernike moments method and improves the detection speed great-

ly, owing to selectively applying block-based method to the smooth regions rather than all regions of the 

image. Note that our approach and the Zernike moments method bring false alarms when detecting (E1) 



 

 

and (G1), due to the self-similarity of image regions. A region pasted in multiple regions (H1) can also be 

detected by our method due to the g2NN strategy is applied in the keypoints matching stage.  

The average precision, recall, F1 and running time on the second database are shown in Table 4, it is 

obvious that our scheme performs much better than SIFT method. As most of the images in the second 

database have been tampered by copying the smooth regions, resulting in a poor performance of the SIFT 

method. In terms of reliability, the F1 measurement of our fusion method is 0.8717, which is as good as 

the Zernike moments method, yet the average running time has been reduced from 5018 to 179 seconds. 

When smooth regions are copied block-based method has excellent performance, but the extremely high 

running time makes it impractical. Thanks to the fusion based approach, our proposed methodology has 

successfully produced satisfactory results from different test images. 

To measure the robustness of our fusion method we also test it against two kinds of attacks, i.e., 

noise addition and JPEG compression, as shown in Table 5. In total 72 (8×9) images are used for robust-

ness test with the results shown in Fig. 8. The performance of Zernike moments drop down obviously 

with increased intensity of attacks. The proposed method and SIFT method are more robust to these at-

tacks. Owing to fusion of the two best supplementary features, our proposed approach outperforms the 

other two methods in terms of F1 measurement even when the added noise or JPEG attack is large. Alt-

hough our experiments only involve noise and JPEG attacks, it can also work well against geometric at-

tacks, theoretically. Because the keypoints are extracted by SIFT which is robust to scale and rotation, 

block features are extracted by Zernike which is invariant against rotation. 

4 Conclusion 

This paper presents a novel fusion based approach for image forgery detection by adaptive combina-

tion of keypoint-based method and block-based method. For each image, our scheme can adaptively de-

termine an appropriate initial size of regions, and divide the image into smooth region and keypoints re-

gion. By applying different methods to these two types of regions, our approach can effectively detect 

forgery from both smooth regions and non-smooth ones whilst reducing the computation cost. When 

detecting forgery in smooth regions, the selection of threshold D has a great influence on the results. In 

our future work, we will investigate how to optimally determine the value of D based on the image con-

tent and further improve the detection speed and accuracy. In addition to image-splicing detection-by 



 

 

trace, integration of additional most state-of-the-art feature extraction approaches such as sub-pixel image 

matching (Jiang et al. 2011; Ren et al. 2010), sparse representation (Zhao et al. 2013), saliency detection 

and deep learning (Han et al. 2015a; Han et al. 2015b) as well as singular spectrum analysis et al (Ren et 

al. 2014; Zabalza et al. 2014) will also be focused for future study. 
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Fig.3. Forgery detection in keypoints regions 



 

 

 

   

Fig.4. Illustrate how to use block-based method in smooth region 

 

 

 

    

T =0.001 T=0.0025 T =0.004 T =0.01 

Fig.5. The blue marked regions are smooth region 

 

 

 

   

Fig.6. Average precision, recall and F1 curves with different values of D . 
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Fig. 7. Forgery detection results comparison. From left to right, the five columns show the test images, the ground 

truth of the forged regions, and detected results using SIFT, our proposed scheme and Zernike moments, respectively. 



 

 

 

 
Fig. 8. Detection results at pixel level of different methods against 2 kinds of attacks. 

 

 

Table 1. The detailed steps of g2NN strategy 

Input：
1 2 1{ , ,..... }ns s s S  

Output: i  

Initial:  1i   

While 
1

i

r

i

s
T

s 

  

            1i i  ; 

end 

 

Table 2. Precision, recall, F1 and running time with different values of T  

 precision recall F1 Running time (s) 

T =0.001 0.9518 0.3512 0.5131 77 

T =0.0025 0.9545 0.8545 0.9017 144 

T =0.004 0.9545 0.8545 0.9017 227 

T =0.01 0.9545 0.8545 0.9017 1040 

 

Table 3. Detection results at image level on the first database 

 Precision Recall F1 Running time (s) 

SIFT 0.7872 0.7708 0.7789 13.7 

SURF 0.8387 0.5417 0.6582 7.62 

HU moments 0.6571 0.9583 0.7796 1300 

J. Li et al. 

(2015) 

0.7017 0.8333 0.7618 289.26 

Ours 0.7759 0.9375 0.8491 862.5 

 



 

 

Table 4. Average precision, recall and F1 at the pixel level on the second database  

 Precision Recall F1 Running 

time 

SIFT 0.5706 0.3585 0.4221 8.4 

Zernike moments 0.9039 0.8657 0.8805 

 

5018 

Ours 0.8851 0.8648 0.8717 179 

 

 

Table 5. Setting of attacks 

Attacks Parameters 

Adding Noise  Standard deviation (0.02:0.02:0.1) 

JPEG Compression Quality factor (100: -20:20) 

 

 

 


