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Electroencephalography (EEG)-based emotion classification during music listening has

gained increasing attention nowadays due to its promise of potential applications such

as musical affective brain-computer interface (ABCI), neuromarketing, music therapy, and

implicit multimedia tagging and triggering. However, music is an ecologically valid and

complex stimulus that conveys certain emotions to listeners through compositions of

musical elements. Using solely EEG signals to distinguish emotions remained challenging.

This study aimed to assess the applicability of a multimodal approach by leveraging

the EEG dynamics and acoustic characteristics of musical contents for the classification

of emotional valence and arousal. To this end, this study adopted machine-learning

methods to systematically elucidate the roles of the EEG and music modalities in the

emotion modeling. The empirical results suggested that when whole-head EEG signals

were available, the inclusion of musical contents did not improve the classification

performance. The obtained performance of 74∼76% using solely EEG modality was

statistically comparable to that using the multimodality approach. However, if EEG

dynamics were only available from a small set of electrodes (likely the case in real-life

applications), the music modality would play a complementary role and augment the

EEG results from around 61–67% in valence classification and from around 58–67% in

arousal classification. The musical timber appeared to replace less-discriminative EEG

features and led to improvements in both valence and arousal classification, whereas

musical loudness was contributed specifically to the arousal classification. The present

study not only provided principles for constructing an EEG-based multimodal approach, but

also revealed the fundamental insights into the interplay of the brain activity and musical

contents in emotion modeling.

Keywords: EEG, emotion classification, affective brain-computer interface, music signal processing, music

listening

INTRODUCTION

Through monitoring ongoing electrical brain activity, electroen-

cephalography (EEG)-based brain-computer interfaces (BCIs)

allow users to voluntarily translate their intentions into com-

mands to communicate with or control external devices and

environments, instead of using conventional communication

channels, e.g., speech and muscles (Millan et al., 2010). Several

types of EEG signatures are theoretically defined and empiri-

cally proved to be robust in actively and reactively actuating

BCIs (Zander and Kothe, 2011), such as evoked potentials, event-

related potential (ERP), and sensorimotor rhythms (Wolpaw

et al., 2002). Nowadays, a new categorization called passive BCI

was introduced (Zander and Kothe, 2011). It enables users to

involuntarily interact with machines by means of implicit user

states, e.g., emotion. Researches are attempting to augment BCI’s

ability with emotional awareness and intelligence in response

to users’ emotional states, so called affective brain-computer

interfaces (ABCIs).

Emotion is a psycho-physiological process as well as a natural

communication channel of human beings. Music is considered

as an extraordinary mediator to evoke emotions and concur-

rently modulate underlying neurophysiological processes (Blood

et al., 1999). Upon profound findings in musical emotions, using

machine-learning methods to characterize spatio-spectral EEG

dynamics associated with emotions has gained increasing atten-

tions in the last decade, namely EEG-based emotion classification,

due to its promise of potential applications such as musical

ABCI (Makeig et al., 2011), neuromarketing (Lee et al., 2007),

music therapy (Thaut et al., 2009), implicit multimedia tagging

(Soleymani et al., 2012a; Koelstra and Patras, 2013) and triggering

(Wu et al., 2008). Given diverse EEG patterns, the major efforts in

the previous EEG-based emotion classification works (not limited

to music stimuli) were to seek an optimal emotion-aware model

by leveraging feature extraction, selection and classification meth-

ods (Ishino and Hagiwara, 2003; Takahashi, 2004; Chanel et al.,

2009; Frantzidis et al., 2010; Lin et al., 2010b; Petrantonakis
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and Hadjileontiadis, 2010; Koelstra et al., 2012; Soleymani et al.,

2012b). Despite many approaches and advances in EEG analysis

in the past decade, how to precisely categorize EEG signals into

distinct emotional states remains challenging.

Music is an ecologically valid and complex stimulus that

conveys emotions to listeners through compositions of musical

elements, such as mode, tempo and timber (Peretz et al., 1998;

Schmithorst, 2005; Gomez and Danuser, 2007; Zatorre et al.,

2007). Listeners would be able to more and less perceive and rec-

ognize the same emotions as the music expresses (Schmidt and

Trainor, 2001; Juslin and Laukka, 2003). Analogous to the EEG

domain, researchers in music signal processing field devoted to

map acoustic characteristics of musical contents into emotion

semantics labeled by human annotators, namely music emo-

tion recognition (Yang and Chen, 2011, 2012). Most of previous

works employed publicly available toolboxes, such as MIRToolbox

(Lartillot and Toiviainen, 2007), Marsyas (Tzanetakis and Cook,

2002), and PsySound (Cabrera, 1999), to extract a wide vari-

ety of musical features and then used machine-learning algo-

rithms to automatically learn the associations between extracted

features and emotions expressed in music (Yang et al., 2008a;

Aljanaki et al., 2013). The aforementioned evidence raises a

natural question whether or not the acoustic characteristics of

musical contents can further improve the EEG classification

results.

Using EEG features in conjunction with other information

sources recently shed light on this issue, for example peripheral

biosignals (Chanel et al., 2009; Koelstra et al., 2012; Soleymani

et al., 2012a), eye gaze (Soleymani et al., 2012a,b), musical

structures (Koelstra et al., 2012), and facial expression (Koelstra

and Patras, 2013) have been proposed. Particularly for the

music study, Koelstra et al. (2012) reported that a multimodal

approach, fusing decision outputs from EEG and music classi-

fiers, marginally improved the classification performance over

using solely EEG modality. It remained unclear whether or not the

acoustic characteristics of musical contents effectively contribute

to the emotion modeling.

This study attempted to examine the roles of EEG and music

modalities in the multidiscipline emotion classification problem

in music listening upon two posed hypotheses. The first hypoth-

esis was that the EEG modality reflecting spatio-spectral brain

activities of the whole brain about implicit emotion responses

should dominate the multimodal approach for emotion clas-

sification, as compared to the music modality, in which the

implicit emotions concerned the responses automatically induced

by the stimulus itself (Gyurak et al., 2011). This study adopted

machine-learning methods, i.e., feature extraction, selection,

and classification, to systematically assess a composite feature

space synchronizing EEG dynamics and musical characteristics

in accordance to time scale. The relative contributions from EEG

and music modalities then can be explored. Furthermore, one

can imagine that the use of a high-density EEG montage over

the whole head might be more difficult or impractical for real-life

ABCI applications. The applicability of whole-head EEG dynam-

ics (in the first hypothesis) might no longer hold if only few

electrodes are available over a certain region or regions (Lin

et al., 2010b). Thus, this study posed another hypothesis that

the musical contents might complement less informative EEG

dynamics for emotion classification and consequently improve

over the EEG modality result. This study explored the minimal

set of informative electrodes from multiple subjects for emo-

tion classification. Such few electrodes mostly populated over

the fronto-central regions were used to simulate the absence of

whole-brain EEG dynamics. Exploring the validity of these two

hypotheses might elucidate potential advantages and limitations

in fusing EEG dynamics and musical contents for the emotion

classification problem.

MATERIALS AND METHODS

EEG DATASET AND MUSIC EXCERPTS

This study adopted the Oscar movie soundtrack dataset (Lin et al.,

2010b) to test the feasibility of using a multimodal approach

for emotion classification. The EEG signals were collected from

26 healthy subjects who were undergraduate and graduate stu-

dents (16 males, 10 females; age 24.40 ± 2.53) mostly from

engineering-related colleges. The experiment protocol and EEG

recording were approved by the Human Research Protections

Program of National Taiwan University. The music-listening

experiment targeted four emotion classes (joy, anger, sadness,

and pleasure) in accordance to the two-dimensional circum-

plex emotion model composed of valence (positive-negative) and

arousal (high-low) axes (Russell, 1980). Sixteen music excerpts

from the soundtracks of Oscar winning movies were used to

induce the targeted emotions. Each subject underwent a 4-

block music experiment; each block contained four counterbal-

anced 30-s music trials corresponding to four targeted emotions.

After music listening, the subjects labeled their felt emotions

on a discrete scale, for example, joy (positive valence and high

arousal), anger (negative valence and high arousal), sadness (neg-

ative valence and low arousal), and pleasure (positive valence

and low arousal). In the experiment, a 32-channel Neuroscan

EEG module placed according to the International 10–20 sys-

tem (Figure 1) and referenced to the linked mastoids (algebraic

average of left and right) was adopted to acquire EEG signals

with a sampling rate of 500 Hz and a bandpass filter at 1–100 Hz.

Subjects were asked to keep their eyes closed, remain seated,

and minimize head/body movements. After the music experi-

ment, each subject’s data was consisted of 16 30-s EEG segments

labeled by self-reported emotional states (joy, anger, sadness, or

pleasure).

Referring to the recent works (Koelstra et al., 2012; Soleymani

et al., 2012a,b; Koelstra and Patras, 2013), most of EEG-based

classification tasks addressed and performed on the basis of emo-

tional valence and arousal, e.g., categorizing EEG signals into

positive or negative valence, instead of discrete emotion states.

To make a direct comparison with the latest reports, this study

addressed the binary emotion classification problem. The self-

reported emotion labels of the Oscar movie soundtrack dataset

were separately merged into the binary categories of valence and

arousal. The valence scale comprised positive (joy and pleasure)

and negative (anger and sadness) levels, whereas arousal scale

contained high (joy and anger) and low (pleasure and sadness)

levels. There were 16 pairs of 30-s EEG signals and music excerpts

for each of 26 subjects available for analysis and comparison.
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EEG FEATURE EXTRACTION

Previous neurophysiological studies documented EEG spec-

tral changes either in distinct regions or between hemispheres

(Davidson, 1992; Schmidt and Trainor, 2001; Aftanas et al., 2004;

Sarlo et al., 2005; Sammler et al., 2007). Such evidence might

in part facilitated the use of spectral dynamics within/between

channels for the EEG-based emotion classification, e.g., spectra

in individual channels and spectral asymmetry in left-right chan-

nel pairs (Lin et al., 2010b; Koelstra et al., 2012; Soleymani et al.,

2012a; Koelstra and Patras, 2013). In the literature, the patterns

of spectral differences along anterior and posterior brain regions

have also been explored (Schmidt and Trainor, 2001; Sarlo et al.,

2005). However, no study has attempted to address the feasibil-

ity of using spectral differences in fronto-posterior channel pairs

in this domain. Prior to construct a multimodality approach,

this study aimed to explore an optimal EEG features from dif-

ferent types, including the power spectral density in individual

channels and the power spectral asymmetry in the left-right and

fronto-posterior channels pairs.

For each of 16 30-s EEG trials, the short-time Fourier trans-

form with non-overlapping 1-s Hamming window was applied

FIGURE 1 | Electrode placements of 32 channels according to the

international 10–20 system.

to extract the power spectral density in five frequency bands,

including delta (δ: 1–3 Hz), theta (θ: 4–7 Hz), alpha (α: 8–13 Hz),

beta (β: 14–30 Hz), and gamma (γ: 31–50 Hz) over 30 channels

(two reference channels were excluded). The band-specific power

spectra of the individual channels formed a feature dimension of

150 (5 bands × 30 channels) and was labeled as PSD hereafter.

To characterize the spectral-band asymmetry in respect of later-

ality (in left-right direction) and caudality (in fronto-posterior

direction), this study defined two feature types namely DLAT

and DCAU to separately extract the differential spectral asymme-

try of 12 left-right and 12 fronto-posterior channel pairs from

30 individual channels, both forming a feature dimension of

60 (5 bands × 12 channel pairs). Furthermore, this study also

named a feature type MESH by merging PSD, DLAT and DCAU, a

dimension of 270, for comparison. Table 1 summarizes the afore-

mentioned four EEG feature types. It is noted that the feature

vectors of each type were separately normalized to the range from

0 to 1.

MUSIC FEATURE EXTRACTION

Emotion expression in music is usually associated with different

acoustic characteristics (Juslin, 2000; Gabrielsson and Lindström,

2010). This study employed commonly used music information

retrieval toolboxes, i.e., MIRtoolbox (Lartillot and Toiviainen,

2007) and PsySound (Cabrera, 1999), to extract the acoustic

features that represent various perceptual dimensions of music

listening, including pitch, dissonance, loudness, and timber. The

data samples of the musical features were aligned to the EEG fea-

tures with one sample per second. The music feature types are

summarized in Table 2 and depicted as followings.

Pitch is the auditory attribute of sounds which can be ordered

on a scale from low to high. The harmonic aspect of music

can be described in terms of the relationship between two

or more simultaneous pitches, whereas the melodic aspect is

related to the temporal succession of pitches (Muller et al.,

2011). This study used the MIRtoolbox to extract three major

elements describing the pitch properties in music, including

the key clarity, mode, and harmonic flux. The key clarity

refers to the similarity (or key strength) that best describes

one of the 24 musical keys, e.g., C major. Next, the musi-

cal mode represents the difference between the best major

Table 1 | A summary of EEG feature types.

Type # Electrodes # Features Extracted features

DLAT 24 60 Five differential spectral band power (δ, θ, α, β, and γ) for 12 left-right electrode pairs:

Fp1-Fp2, F7-F8, F3-F4, FT7-FT8, FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-TP8, CP3-CP4, P3-P4, and O1-O2.

DCAU 24 60 Five differential spectral band power (δ, θ, α, β, and γ) for 12 fronto-posterior electrode pairs:

Fp1-O1, Fp2-O2, F7-P7, F3-P3, Fz-Pz, F4-P4, F8-P8, FT7-TP7, FC3-CP3, FCz-CPz, FC4-CP4, and FT8-TP8.

PSD 30 150 Five spectral band power (δ, θ, α, β, and γ) for 30 electrodes:

Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7,

P3, Pz, P4, P8, O1, Oz, and O2.

MESH 30 270 A combination of DLAT, DCAU, and PSD.
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Table 2 | A summary of music feature types.

Type # Features Extracted features

Pitch 3 Key clarity, Mode, Harmonic flux

Dissonance 4 Tonal dissonance (HK,S), Spectral

dissonance (HK, S)

Loudness 5 Loudness, Sharpness (Z, A), Timbral width,

Volume

MFCC 13 MFCC coefficients (13 features)

MUSIC 25 A combination of Pitch, Dissonance,

Loudness, and MFCC

key and the best minor key in key strength, which is often

related to the sensation of valence in music (Gabrielsson and

Lindström, 2010). The harmonic flux indicates a large difference

in harmonic content between consecutive frames, such as chord

changes, strong melody or bass line movement. This feature

may be relevant as some psychology studies have found that

large melodic intervals are perceived as more powerful (i.e.,

high-arousal) than small ones (Gabrielsson and Lindström,

2010).

Dissonance measures the harshness or roughness of the acous-

tic spectrum (Cabrera, 1999). The dissonance generally implies

a combination of notes that sound harsh or unpleasant to peo-

ple when played at the same time. Empirically, many musical

pieces involve a balanced combination of consonance and disso-

nance sounds, e.g., the release of harmonic tension might create

pleasure (Parncutt and Hair, 2011). Four elements describing the

dissonance were calculated by the PsySound, including tonal dis-

sonance (HK and S) and spectral dissonance (HK, S). The tonal

and spectral dissonance measures the dissonance among tonal

components and models the degree deviating from the noisiness

of the sound, respectively. Note that HK and S are two methods

forming the results in different scales.

Loudness is the perceptual intensity of sounds and depends

primarily on the physical intensity as well as frequency and dura-

tion. This study employed the PsySound to derive five features

depicting the human sensation of sound loudness across fre-

quency, including loudness, sharpness (Z, A), timbral width, and

volume. The loudness is an integral of the spectral distribution

of loudness sensation. In general, loud music tends to be associ-

ated with high arousal and potency, whereas soft music relates to

low arousal. Next, sharpness Z and A are two models distinctly

characterizing the sharpness of the sound sensation in a scale

from dull to sharp (Cabrera, 1999). The former model emphasizes

high frequencies, whereas the later one is sensitive to the posi-

tive influence of loudness toward sharpness. The timbral width

is defined as the flatness, i.e., width of the peak, of the loudness’

spectral distribution, whereas the volume is derived based on the

relative strength between total loudness and sharpness (Cabrera,

1999). The relationship between these two features and emotion

processing is relatively less understood.

Timber that reflects the acoustic spectro-temporal character-

istics is often considered as the quality of sound that makes a

particular musical sound different from another. To model the

timber, this study employed the MIRToolbox and computed the

Mel-frequency cepstral coefficients (MFCC). MFCC characterizes

the spectral shape of the sound by taking the coefficients of

the discrete cosine transform of log-power spectra expressed

on a non-linear perceptual-related Mel-frequency scale (Davis

and Mermelstein, 1980). Typically, only the 10–20 lowest coeffi-

cients were retained for analysis (Muller et al., 2011). Referring

to (Koelstra et al., 2012), this study only adopted the first 13

coefficients. The timber type was named as MFCC hereafter.

FUSION OF EEG AND MUSICAL FEATURES

Through using multidisciplinary signals, a multimodal approach

can usually boost single modality results. Decision-level and

feature-level fusions are two commonly used schemes to obtain

the integration of multiple signal sources (Kittler et al., 1998;

Sargin et al., 2007). The feature-level fusion works by con-

catenating features of different modalities and then feeding the

composite feature vector to a classifier, whereas the decision-

level fusion allows single modalities to process independently and

then derive a final decision from multiple outputs. It is worth

noting that since this study attempted to evaluate the relative

contributions of EEG and music modalities, the feature-level

fusion that synchronizes the features of different modalities along

time more likely conforms to the objective. After applying a fea-

ture selection processing (described at the next section), this

study defined a term, namely percent composition, to reveal the

percentages of contributions of EEG and musical features to a

multimodal feature composition. Prior to classification, each of

the addressed EEG and musical features was independently nor-

malized between 0 and 1, making features equally weighted to a

classifier.

FEATURE SELECTION

Feature selection plays a chief role in solving classification prob-

lem. Given a plenty of raw features, the selection procedure is

capable of extracting only a subset of task-relevant features while

removing redundant/irrelevant ones. Feature reduction not only

leads to computational efficiency, but also reduces the num-

ber of electrodes required in real-life applications (Lin et al.,

2010b). This study employed an F-score index, a ratio of between-

and within-class variations (Chen and Lin, 2006), to pinpoint

the most emotion-relevant features/electrodes, which has been

proven effective for the EEG-based emotion classification prob-

lem (Lin et al., 2010b). The F-score index of the ith feature is

defined as following:

F (i) =

∑g
l = 1 (xl,i − xi)

2

1
nl

∑g
l = 1

∑nl

k = 1(xk,l,i − xl,i)
2

where xi and xl,i are the mean values of the ith feature for entire

dataset and for class l (l = 1 ∼ g, g = 2 for positive and negative

classes in valence or high and low classes in arousal), respectively;

xk,l,i is the kth sample value of the ith feature for class l, and nl

is the number of samples in class l. The larger F-score value indi-

cates higher discrimination power. It assumed that the features

with highest F-score values account for the most emotion-tagged

information and contribute more to emotion classification.
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To test the first hypothesis, the F-score based feature selection

was applied to each subject’s EEG dataset separately to generate

a subject-dependent EEG feature set. To test the second hypoth-

esis, this study simulated the consequences of unavailability of

whole-head EEG data. This study applied the F-score feature

selection to explore the commonality of the informative EEG

features from 26 subjects, i.e., subject-independent set. More

specifically, an objective index, namely the level of feature inde-

pendency (LFI), was defined as the number of subjects having

the same informative features. After sorting and accumulating the

F-score-sorted subject-dependent EEG features, the LFI-guided

subject-independent EEG feature sets were then explored. The

LFI value was empirically set and tested from 0.1 up to 0.6. Note

that no informative features were commonly observed over 18

subjects (LFI = 0.7). The subject-independent EEG feature set

with LFI = 0.6 was supposed to return a minimal set of electrodes

to test the second hypothesis. It is also important to explore the

common EEG patterns across subjects in emotion processing.

FEATURE CLASSIFICATION AND VALIDATION

Support vector machine (SVM) is a popular machine-learning

algorithm that projects input data onto a higher dimensional fea-

ture space via a transfer kernel function, in which classification

can be made more easily than in the original feature space. The

iterative learning processing of an SVM eventually converges into

optimal hyperplanes giving maximal margins between classes.

This study used LIBSVM software (Chang and Lin, 2011) to

build the SVM classifier and employed a radial basis function

(RBF) kernel to non-linearly map the original data onto a higher

dimensional space.

Regarding the classification validation, this study adopted

a leave-trial-out (LTO) validation method to each individual’s

dataset to obtain the emotion classification results. The LTO

validation provides a generalized performance by averaging clas-

sification results N times with each of N trials to be tested

(N = 16 in this study). In each repetition, the SVM model was

trained with 15 trials and then tested against the remaining

trial. It is noted that prior to the LTO validation a grid-search

procedure (Chang and Lin, 2011) was applied to the entire

dataset to decide an optimal parameter pair (γ, C) for the

size of the RBF kernel and the penalty of decision boundary

from various pairs (γ: 2−1
∼ 23, C: 2−4

∼ 21), which corre-

sponded to the best SVM training accuracy. The classification

accuracy was defined by the ratio of correctly classified num-

ber of samples and the total number of samples. The averaged

classification performance was obtained by averaging the classi-

fication results across 26 subjects. This study employed a paired

t-test to access the statistical significance in classification per-

formance between different feature types or modalities. As a

baseline, the majority-voting accuracy defined by the majority

class of the training data was also provided, i.e., random guessing.

For example, given a training set consisted of positive (63%) and

negative (37%) samples in the valence classification, the major-

ity accuracy was 63% for assigning a new sample as positive

valence. The significant difference of the obtained classification

accuracy versus majority voting was tested using a one-sample

t-test.

RESULTS

TESTING THE FIRST HYPOTHESIS: EEG DYNAMICS DOMINATED A

MULTIMODAL APPROACH IN EMOTION CLASSIFICATION COMPARED

TO MUSICAL CONTENTS

Figure 2 summarizes the valence and arousal classification results

of the subject-dependent EEG feature types (DLAT, DCAU, PSD,

and MESH). It is noted that the condition “without feature

selection” shows the results using all the features, while the con-

dition “with feature selection” shows the maximum accuracy

through the add-one-feature-in procedure and the number of

the features eventually used. In general, using different EEG

feature types without the feature selection tended to have com-

parable results that were notably worse than majority voting.

Using only informative features (with high F-score values), the

classification accuracies for all the feature types were markedly

improved (p < 0.01) upon the results without using feature selec-

tion, and were significantly better than the majority voting (p <

0.01). The MESH generated maximum accuracies of 76.08 ±

6.39% and 74.27 ± 4.82% for valence and arousal classifica-

tion, respectively, which significantly outperformed other feature

types (p < 0.01). The feature selection also considerably reduced

the feature dimensionality from 270 to below 30. This was very

likely attributed to the fact that the F-score feature selection

effectively pruned the less informative features from the whole

feature space, largely alleviating the interference caused by redun-

dant/irrelevant features. Thus, the MESH was used to merge with

musical contents to form a multimodal approach in the following

sections.

Figure 3 summarizes the classification results using the

subject-dependent EEG features (i.e., MESH), musical features

(i.e., MUSIC), and subject-dependent multimodal approach.

Note that the multimodal features were obtained by applying

the F-score feature selection to the composite features of the

MESH and MUSIC features. The multimodal approach obtained

the maximum accuracies of 76.97 ± 6.18% and 76.25 ± 4.88%

for valence and arousal classification, respectively. The results

using musical features alone were around 65% and only signifi-

cantly outperformed the majority voting for arousal classification

but not for valence classification, which were all significantly

worse than EEG and multimodality approaches (p < 0.01). The

subject-dependent EEG features did not notably benefit from

the inclusion of musical features. The classification performance

using the multimodal features compared favorably (p > 0.1) to

those using the EEG features.

Figure 4 further shows the percent composition of contri-

butions of EEG and musical features to the subject-dependent

multimodal approach. The composition was derived based on

how many informative features led to the maximum classifica-

tion accuracy. This result indicated that the EEG feature types,

especially DLAT and DCAU, dominated the composition of mul-

timodal features for valence and arousal classifications, while

the musical features barely contributed. This might explain the

marginal improvement using the multimodal approach versus the

EEG-only modality.

In sum, the feature type MESH, consisted of the two-

directional power asymmetry and individual power spectra across

the whole scalp and frequency bands, better characterizing the
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FIGURE 2 | The valence and arousal classification results using the

subject-dependent EEG feature sets with/without the F-score based

feature selection. The numbers above the bars represent the mean

values of the results, whereas the numbers in bold indicate the

accuracies significantly better (p < 0.01) than the majority voting accuracy

(valence: ∼63%, arousal: ∼61%). †Indicates that the accuracy with

feature selection significantly outperformed that without feature selection

(p < 0.01).

FIGURE 3 | The valence and arousal classification results using the

subject-dependent multimodal approach with/without feature

selection. The results of the subject-dependent EEG modality (feature

type: MESH) and the music modality (feature type: MUSIC) are also

provided for comparison. The numbers above the bars represent the

mean values of the results, whereas the numbers in bold indicate the

accuracies significantly better (p < 0.01) than the majority voting accuracy

(valence: ∼63%, arousal: ∼61%). †Indicates that the accuracy with

feature selection significantly outperformed that without feature selection

(p < 0.01).
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FIGURE 4 | The percent composition of contributions of EEG (DLAT, DCAU, and PSD) and musical (Pitch, Dissonance, Loudness, and MFCC) features

to the subject-dependent multimodality. The composition of the subject-dependent EEG modality is also provided for comparison.

EEG dynamics about emotional responses than the musical fea-

tures. The above empirical results proved the first hypothesis

that the EEG modality that accessed spatio-spectral brain activ-

ity of the whole brain dominated the classification of emotional

responses in the multimodal approach.

TESTING THE SECOND HYPOTHESIS: MUSICAL CONTENTS CAN

COMPLEMENT EEG DYNAMICS UNAVAILABLE IN WHOLE-HEAD EEG

RECORDINGS

To test the second hypothesis that musical contents can comple-

ment EEG dynamics unavailable in whole-head EEG recordings,

this study simulated the circumstance of classifying emotion

states based on fewer informative EEG features/electrodes. The

LFI index (0.1∼0.6) was defined to systematically reduce the

whole-brain electrode montage (30) to different subsets of elec-

trodes located at certain regions. Under such constrain, the rela-

tionship between the EEG dynamics and musical contents can be

evaluated.

Figure 5 presents the valence and arousal classification results

using the LFI-sorted subject-independent EEG features (i.e.,

MESH) with/without feature selection. Overall, the number of

features can be seen to progressively reduce as the LFI value

increased from 0.1 to 0.6. The number of electrodes required for

the feature sets in turn was reduced. These feature sets, however,

gave very limited estimations in emotional responses against the

majority voting. The reason was attributed to the fact that the

discriminative power of the subject-independent features with

a compromise of a subject population might not be guaran-

teed to each of subjects. At LFI = 0.6, the required electrodes

were dramatically reduced from the whole-scalp montage (30)

to ten and seven electrodes for valence and arousal classifica-

tion, respectively. As shown in Figure 6, most of the informative

EEG features (listed in Table 3) were extracted from the fronto-

central electrodes versus others. It is worth noting that the DLAT,

extracted from left-right electrode pairs, dominated the composi-

tion of the EEG features, compared to others (DCAU and PSD).

According to these results, the subject-independent EEG feature

set (LFI = 0.6), which involved a low-density fronto-central mon-

tage, was adopted for emotion classification in the rest of the

study.

Figure 7 shows the classification results using the subject-

independent EEG features (i.e., MESH given LFI = 0.6), musi-

cal features (i.e., MUSIC), and subject-independent multimodal

approach. Note that the sorted multimodal features were derived

by applying the F-score feature selection to the composite fea-

ture vector of the MESH and MUSIC features. The multimodal

approach resulted in the maximum accuracies of 66.93 ± 7.10%

and 67.04 ± 5.78% for valence and arousal classification, respec-

tively, following by the musical features and the EEG features.

Most importantly, the multimodal approach outperformed the

EEG-only features by around 6% for valence (p < 0.05) and 9%

for arousal (p < 0.01) classification. There was no significant

difference between the multimodal approach and the musical

features (p > 0.3).
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FIGURE 5 | The valence and arousal classification results of the

subject-independent EEG features (type: MESH) in term of the average

number of features, electrodes, and accuracies using with/without

feature selection under the LFI criteria (0.1 ∼ 0.6). The numbers near to

the nodes represent the mean values of the results. †Indicates that the

accuracy with feature selection significantly outperformed that without

feature selection (p < 0.01), yet were comparable (p > 0.1) to majority voting

accuracies (valence: ∼63%, arousal: ∼61%).

FIGURE 6 | The topographic mapping of informative EEG features

consistently appeared in multiple subjects. The rightmost topography

color-codes the importance of electrodes according to how frequent the

electrodes were used to derive the corresponding features.

Figure 8 shows the percent composition of contributions of

EEG and musical features to the subject-independent multimodal

features. As a baseline, the composition of the subject-

independent EEG features is also provided. The comparative

result showed the EEG and musical features performed com-

plementarily in the multimodal approach. The musical features

Table 3 | The informative EEG features that consistently appeared

across multiple subjects.

Rank Valence Arousal

1 DLAT: FT7-FT8 (Theta) DCAU: FC3-CP3 (Delta)

2 DLAT: FC3-FC4 (Alpha) DLAT: C3-C4 (Alpha)

3 DLAT: F3-F4 (Delta) DLAT: F7-F8 (Theta)

4 DLAT: FT7-FT8 (Delta) DLAT: FC3-FC4 (Theta)

5 DLAT: TP7-TP8 (Delta)

6 DCAU: F3-P3 (Beta)

7 PSD: T7 (Gamma)

competed to the EEG features and replaced the ones with rela-

tively low discriminative power, especially for arousal scale. This

evidently explains the reason that the subject-independent mul-

timodal approach leading to significant improvements upon the

subject-independent EEG results. Table 4 lists these informative

musical features, which consistently appeared in above half of the

subjects.

In sum, the EEG features extracted from a subset of brain

regions was unable to effectively encompass the complex brain
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FIGURE 7 | The valence and arousal classification results using the

subject-independent multimodal approach (LFI = 0.6) with/without

feature selection. The results of the subject-independent EEG modality

(feature type: MESH) and the music modality (feature type: MUSIC) are

also provided for comparison. The numbers above the bars represent the

mean values of the results, whereas the numbers in bold indicate the

accuracies significantly better (p < 0.02) than the majority voting accuracy

(valence: ∼63%, arousal: ∼61%). † indicates that the accuracy with

feature selection significantly outperformed that without feature selection

(p < 0.01).

FIGURE 8 | The percent composition of contributions of EEG (DLAT, DCAU, and PSD) and musical (Pitch, Dissonance, Loudness, and MFCC) features

to the subject-independent multimodality. The composition of the subject-independent EEG modality is also provided for comparison.
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Table 4 | The informative musical features in the subject-independent

multimodal approach.

Rank Valence Arousal

1 Dissonance: Spectral dissonance (S) Loudness: Sharpness (Z)

2 Pitch: Mode MFCC: 8th

3 Loudness: Sharpness (A)

4 Pitch: Harmonic flux

dynamics about emotions. The corresponding EEG features sim-

ply retuned the classification accuracy equivalent to random

guessing. Under this circumstance, the EEG modality could ben-

efit from the inclusion of the acoustic characteristics of musical

contents. The aforementioned simulation result proved the sec-

ond hypothesis that the musical contents can compensate for EEG

dynamics unavailable in whole-head EEG recordings to improve

the classification performance to some extent.

DISCUSSION

Music is an ecologically valid and complex stimulus that con-

veys emotions to listeners through musical composition. Using

only EEG signals to classify music-induced emotional responses

remained challenging. By exploiting the complementary nature

of multidisciplinary modalities, the fusion of EEG and musi-

cal dynamics has been recently reported (Koelstra et al., 2012).

However, it remains unclear when acoustic characteristics of

musical contents effectively contribute to the modeling of emo-

tional responses. To this end, this study adopted machine-

learning methods, including feature extraction, selection and

classification, to systematically assess a composite feature space by

aligning EEG and musical features in time. The empirical results

suggested that when EEG signals from the whole head were avail-

able, the inclusion of musical contents contributed little to the

emotion classification model. On the contrary, if EEG dynam-

ics only available from a small set of electrodes (likely the case

in real-life BCI applications), the music modality tended to play a

complementary role to enhance the EEG-based classification per-

formance. To the best of our knowledge, no study has attempted

to elucidate the roles of the EEG and music modalities in the emo-

tion classification problem. The present study not only provided

principles for building an EEG-based multimodal approach, but

also revealed the fundamental insights into the interplay of the

brain activity and musical contents in emotion modeling.

INDIVIDUAL VARIABILITY AND COMMONALITY OF THE EEG

DYNAMICS FOR EMOTION CLASSIFICATION

Individual variability has been reported in emotion regulations

(Gross and John, 2003). Such variability may introduce the dis-

parity of informative EEG patterns across individuals or sub-

groups (Lin et al., 2010a, 2011). To estimate the emotional states,

it is plausible to expect a subject-specific classification model that

well learned from an individual would have an optimal classifica-

tion accuracy (Lin et al., 2010b). In the present study, the compar-

ison in valence and arousal classification using subject-dependent

and -independent features addressed this issue. The classification

performance using the LFI-guided subject-independent EEG

features (c.f. Figure 5) was notably worse than that using the

subject-dependent EEG set (c.f. Figure 2). The commonality of

the valence- and arousal-specific EEG features/electrodes from

multiple subjects was rather small. There were only seven and

four informative EEG features consistently appeared in over 15

of 26 subjects for valence and arousal classification, respectively

(c.f. Table 3). These results suggested that the individual vari-

ability substantially affected emotion classification, especially for

arousal scale, and thereby posed a great challenge to learning a

subject-independent emotion model using only the EEG signals.

However, it is worth noting that exploring a consensus set

of emotion-relevant EEG activity from multiple subjects is of

great important to normative emotion research. In this study, the

electrodes placed over the fronto-central region were relatively

discriminative for most of subjects (c.f. Figure 6), which was in

line with the previous studies (Altenmuller et al., 2002; Lin et al.,

2010a). Over the brain region, the lateralized power asymmetry

(in the left-right direction) well characterized the changes of emo-

tional states, which may be supported by the role of the frontal

cortical lateralization in emotion processing (Altenmuller et al.,

2002; Allen et al., 2004). Specifically, the frontal theta asymmetry

(FT7-FT8) and the fronto-central alpha asymmetry (FC3-FC4)

associated with the valence scale was in line with other stud-

ies (Davidson, 1992; Aftanas et al., 2001; Schmidt and Trainor,

2001), whereas the fronto-central theta asymmetry (F7-F8 and

FC3-FC4) related to the arousal scale was supported by Aftanas

et al. (2004). Furthermore, several informative spectral asymme-

tries in the delta band for both emotional valence and arousal

partially conformed to the previous works (Lin et al., 2010a,b).

Accordingly, the index of rhythmic lateralization presumably bet-

ter differentiated the brain activity into emotional states and

acted consistently for multiple subjects, compared to the cau-

dality (power asymmetry in the fronto-posterior direction) and

individual spectra.

THE ROLE OF EEG AND MUSIC MODALITIES IN EMOTION

CLASSIFICATION

The empirical results of this study evidently suggested that the

inclusion of the acoustic characteristics of musical contents did

not guarantee to complement EEG dynamics in the emotion clas-

sification problem. One key factor is that whether or not the

EEG signals can be extracted from the whole brain and across

entire frequency bands to encompass the full emotion-modulated

spatio-spectral dynamics.

The optimized subject-dependent results showed that the EEG

modality with and without the inclusion of the music modality

were comparable in the performance (c.f. Figure 3) and tended

to dominate the feature composition in the multimodality model

(c.f. Figure 4). This indicated that the musical content brought

very limited or redundant discriminative power to the classifi-

cation of emotional responses. The aforementioned individual

variability might explain such results. The music modality that

lacks of correlates of internal psychophysiological reactions might

more and less introduce conflicts with the brain signals, i.e.,

EEG modality, in reflecting the felt emotional responses. It is

true that the listeners might not actually perceive and experience

the same emotion as music tried to express (Gabrielsson, 2002).
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Accordingly, it is reasonable to conclude that if the informative

EEG features can be obtained from the whole brain and entire

frequency bands, the inclusion of musical contents barely con-

tributed to the classification model. The multimodal approach

might not be necessary.

However, in practical ABCI applications, an EEG cap with the

whole-brain coverage might be impractical and unavailable in

consumer-level headsets, e.g., the MindWave headset (NeuroSky,

Inc.) and the Emotiv EPOC headset (Emotiv systems, Inc.). In

this case, the EEG features measured by the electrodes sparsely

placed at a certain brain region(s). The suboptimal EEG features

returned very poor emotion classification performance (even

lower than the random guessing, c.f. Figure 7). The music modal-

ity under this circumstance provided complementary informa-

tion and replaced a set of EEG features with less discrimination

power with the musical characteristics of timber and loudness

(c.f. Figure 8). The musical dynamics tended to dominate the

multimodal feature composition in the arousal scale as compared

to valence. This phenomenon might be attributed to the fact that

the music modality met a great challenge in modeling emotional

valence (Macdorman et al., 2007; Yang et al., 2008b). This might

also explain why the improvement in the classification perfor-

mance was much noticeable in the arousal classification. Thus,

the music modality was assumed to boost the EEG-based emotion

classification performance if the EEG dynamics were substantially

limited in certain brain regions.

INFORMATIVE MUSICAL CHARACTERISTIC FOR EMOTION

CLASSIFICATION

By manipulating musical structures, conveying emotions in

music is intuitively plausible (Peretz et al., 1998; Schmithorst,

2005; Gomez and Danuser, 2007; Zatorre et al., 2007). Several

neurophysiological studies that devoted to the brain correlates

in musical perception and emotion perception reported that

some music-modulated brain activity were known to intervene

in emotion processing (Blood et al., 1999; Tsang et al., 2001;

Khalfa et al., 2005). It is reasonable to expect that there is

a considerable amount of EEG rhythmicity that is not only

engaged in emotion processing but also modulated by music per-

ception. Thus, the acoustic characteristics of musical contents

and EEG dynamics could somehow perform complementarily.

As shown in Table 4, previous neurophysiological and music

signal processing studies supported our findings. Several neu-

rophysiological studies found that mode and consonance were

relevant to the distinction of emotion valence (Tsang et al.,

2001; Sammler et al., 2007), whereas the harmonics processing

was very closely associated with emotional affect and inten-

sity (Schmithorst, 2005). From musical signal processing aspect,

Yang et al. (2008b) reported that the valence scale was bet-

ter characterized by the dissonance and pitch-related features,

whereas the arousal scale was better modeled by timber fea-

tures. This was in line to the findings of spectral dissonance

and mode for valence scale and a timber element (8th MFCC)

for arousal scale. Aljanaki et al. (2013) recently also docu-

mented that the most important feature in the distinction of

the arousal scale was the loudness, which supported our find-

ings in arousal scale. It is encouraging that the consistent findings

of the musical structures were conducted with different musical

datasets.

COMPARING THE EMOTION CLASSIFICATION RESULTS WITH

PREVIOUS WORKS

Recent works that adopted the EEG-based multimodal approach

are described here. Koelstra et al. (2012) proposed to use a

decision-level fusion scheme to construct a multimodal pipeline

(EEG, peripheral biosignals, music) for emotional valence,

arousal and liking classification while watching music videos. The

classification performance using the EEG signals were marginally

worse than that using musical features for valence (EEG: 58%,

biosignals: 63%, music: 62%, majority: 59%) and arousal (EEG:

62%, biosignals: 57%, music: 65%, majority: 64%) classifica-

tion. The fusion of EEG and musical features resulted in an

optimal classification accuracy around 63% marginally outper-

formed EEG modality only for arousal classification. In the same

year, Soleymani et al. (2012a) also adopted the decision-level

approach and explored an optimal fusion pair among EEG sig-

nals, peripheral biosignals and eye gaze for affective recognition

during video appreciation. The classification performance using

the EEG-Gaze fusion was better than single modality results for

valence (biosignals: 46%, EEG: 57%, gaze: 69%, fusion: 76%,

random: 34%) and arousal (biosignals: 46%, EEG: 52%, gaze:

64%, fusion: 68%, random: 36%) classification. The authors later

performed a following-up study (Soleymani et al., 2012b) to com-

pare the schemes for fusing EEG and gaze modalities at feature

and decision levels. The authors reported that the decision-

level fusion returned better classification results compared to

single modalities for valence (EEG: 50%, eye: 67%, decision:

69%, random: 33%) and arousal (EEG: 62%, eye: 71%, decision:

76%, random: 33%) classification, where the feature-level fusion

(valence: 58%, arousal: 66%) just outperformed the EEG modal-

ity. A year later, Koelstra and Patras (2013) similarly assessed

the feasibility of using the feature- and decision-based multi-

modality (EEG dynamics and facial expression characteristics).

The authors documented that the feature-level fusion in general

marginally improved the performance against single modalities

for valence (EEG: 72%, face: 65%, fusion: 73%, majority: 62%)

and arousal (EEG: 68%, face: 68%, fusion: 69%, majority: 62%)

classification, whereas the fusion-level approach using an optimal

weighting scheme led to more convincing improvement (valence:

74%, arousal: 72%). In the present study, the feature-level mul-

timodal approach (EEG and musical features) was adopted to

validate its feasibility of emotion classification in music listening.

The empirical result showed that the subject-dependent multi-

modal approach marginally outperformed the single modalities

for valence (EEG: 76%, music: 65%, fusion: 77%, majority: 63%)

and arousal (EEG: 74%, music: 66%, fusion: 76%, majority:

61%) classification, whereas the subject-independent multimodal

approach provided more convincing improvement for valence

(EEG: 61%, fusion: 67%) and arousal (EEG: 58%, fusion: 67%)

classifications.

It is worth mentioning that the comparison only based on

classification accuracy might not be fair as a variety of factors

might affect the classification results, such as but not limited

to experimental conditions, stimulus types, multimodal sources,
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and signal processing steps. Thus, for a fair comparison in

multimodality, this study summarized the differences between

this and another related work (Koelstra et al., 2012) that also

focused on the multimodality of EEG and musical dynamics.

The obtained subject-dependent results of this study were evi-

dently higher than theirs by at least 10%, whereas the subject-

independent results of this study were marginally higher by

around 3%, yet with fewer EEG features and electrodes. Despite

the disparity in the selected musical features, the music modal-

ity results for emotional valence and arousal were comparable.

Furthermore, compared to the studies using solely EEG modal-

ity (Koelstra et al., 2012; Soleymani et al., 2012a,b; Koelstra

and Patras, 2013), the proposed subject-dependent EEG fea-

tures (MESH) should be comparable to or even better than

previous reports. Instead, the classification performance using

the proposed subject-independent EEG set might only compare

favorably to the study (Koelstra et al., 2012).

OUTPERFORMED EEG PATTERNS FOR EMOTION CLASSIFICATION

The MESH features in conjunction with the F-score feature

selection produced a compact set of informative features and

consequently optimized the classification performance, compared

to others (DLAT, DCAU, and PSD) (c.f. Figure 2). The perfor-

mance improvement might be attributed to the fact that emotion

processing might accompany the EEG dynamics that varied dis-

tinctly within and between brain regions (Schmidt and Trainor,

2001; Aftanas et al., 2004; Sarlo et al., 2005; Sammler et al.,

2007; Lin et al., 2010b). The MESH features that composed of

two-directional power asymmetry (laterality and caudality) and

individual spectra over the scalp allow seeking an optimal set

for constructing a classification model for each individual. As

referring to its feature composition (c.f. Figure 4), both DLAT

and DCAU apparently dominated the EEG composition against

the PSD. Specifically, the DLAT consistently appeared in mul-

tiple subjects (c.f. Table 3). These results suggested that the

features depicting the directional spectral differences between

brain regions might be of importance in the EEG-based emotion

modeling.

THE CHOICE OF EEG ELECTRODE REFERENCE

The EEG signals analyzed in this study were recorded with the

reference to the linked mastoids. The recorded potentials over

the mastoids were conventionally believed to be neutral to the

measured neural activities of interest, which were also adopted

in previous music studies (Koelsch et al., 2007; Sammler et al.,

2007). However, few reports demonstrated that the linked mas-

toids reference might introduce non-neutrality to the recorded

EEG signals and distort the EEG spectra (Yao, 2001; Marzetti

et al., 2007; Qin et al., 2010). Comparing the effects of differ-

ent reference strategies on emotion classification is an important

issue, but it is beyond the scope of this study. Interested readers

can refer to the studies on reference techniques by Yao (2001),

Marzetti et al. (2007), Qin et al. (2010).

FUTURE DIRECTION

Future efforts can be devoted to augment the multimodal classi-

fication performance as follows. First, data-driven approach, e.g.,

principal component analysis (Lin et al., 2009) and independent

component analysis (Lin et al., 2010a), might be feasible to fur-

ther elaborate the EEG spatio-spectral dynamics associated with

implicit emotional responses. Second, advanced music signal pro-

cessing techniques can be incorporated to extract other musical

characteristics, e.g., rhythm. Lastly, the decision-level multimodal

fusion has been reported to obtain convincing classification per-

formance improvements over the feature-level fusion (Soleymani

et al., 2012b; Koelstra and Patras, 2013). Following the explored

EEG and musical features of this study, the fusion at the decision

level can be further explored and compared.
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