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	is paper proposes two multimodal fusion methods between brain and peripheral signals for emotion recognition. 	e input
signals are electroencephalogram and facial expression. 	e stimuli are based on a subset of movie clips that correspond to four
speci
c areas of valance-arousal emotional space (happiness, neutral, sadness, and fear). For facial expression detection, four basic
emotion states (happiness, neutral, sadness, and fear) are detected by a neural network classi
er. For EEG detection, four basic
emotion states and three emotion intensity levels (strong, ordinary, and weak) are detected by two support vector machines (SVM)
classi
ers, respectively. Emotion recognition is based on two decision-level fusion methods of both EEG and facial expression
detections by using a sum rule or a production rule. Twenty healthy subjects attended two experiments. 	e results show that
the accuracies of two multimodal fusion detections are 81.25% and 82.75%, respectively, which are both higher than that of
facial expression (74.38%) or EEG detection (66.88%). 	e combination of facial expressions and EEG information for emotion
recognition compensates for their defects as single information sources.

1. Introduction

Emotion plays a powerful role in social in
uence: not only
does it include psychological responses to external stimuli or
one’s own stimuli but it is also accompanied by physiological
responses to psychological reactions in individuals’ daily
lives. Emotional in
uences are manifested across a variety
of levels and modalities [1]. On the one hand, peripheral
signals are related to the somatic nervous system and show
physiological changes in emotion states. For instance, there
are physical signals that emerge: facial expressions, verbal
speech, or body language. On the other hand, there are
also in
uences on cognitive processes, including coping
behaviors such as wishful thinking, resignation, or blame-
shi�ing. 	e goal of our research is to perform a multimodal
fusion between EEGs and peripheral physiological signals for
emotion recognition.

Previous studies have investigated the use of peripheral
and brain signals separately, but little attention has been
paid thus far to a fusion between brain and peripheral
signals. In one study, Ekman and Friesen made a pioneering

contribution to modern facial expression recognition [2].
	ey de
ned the six basic expressions of human beings, that
is, pleasure, anger, surprise, fear, disgust, and sadness, and
identi
ed the categories of objects to be investigated. Mase
made use of optical 
ow to determine the main direction
of movement of the muscles and then constructed the Face
Recognition System [3]. Picard and Daily at MIT Media
Laboratory developed pattern recognition algorithms that
attained 78.4% classi
cation accuracy for three categories of
emotion states using the peripheral signals of galvanic skin
resistance, blood pressure, respiration, and skin temperature
[4].

Compared to periphery physiological signals, EEG sig-
nals have been proven to provide greater insights into
emotional processes and responses. Furthermore, because
EEG has been widely used in BCIs, the study of EEG-based
emotion detection may provide great value for improving
the user experience and performance of BCI applications.
Chanel et al. reported an average accuracy of 63% by using
EEG time-frequency information as features and support
vector machine (SVM) as a classi
er to characterize EEG
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signals into three emotion states [5]. Nasehi et al. made
use of quadratic discriminant analysis and SVM to classify
emotions into the six categories of pleasure, surprise, anger,
fear, disgust, and sadness, achieving accuracies of 62.3% and
83.33%, respectively [6]. Ishino and Hagiwara categorized
user status into four emotion states using neural networks
with accuracies ranging from 54.5% to 67.7% for each of
the four emotion states [7]. However, the use of EEG-based
emotion recognition is still in its infancy.

In recent years, with the development of multisource
heterogeneous information fusion processing, it has become
possible to fuse features from multicategory reference emo-
tion states.	euse of di�erent types of signals to support each
other through supplementary information fusion processing
can be greatly improved.	erefore, people have begun to use
facial expressions, voice messages, eye movements, gestures,
and physiological signals and other channels of emotional
information between the complementarity to study iden-
ti
cation problems, that is, based on multimodal emotion
recognition [8]. Most previous works have focused on the
fusion of audiovisual information for automatic emotion
recognition, for example, combining speech with facial
expression. Busso et al. proposed a rule-based decision-
level fusion method for combined analysis of speech and
facial expressions [9]. Wanger et al. used boosting techniques
to automatically determine adaptive weights for audio and
visual features [10]. A few studies have focused on the
multimodal fusion of EEG and physiological signals. In a
study [11], the International A�ective Picture System (IAPS)
was utilized as stimuli, and the use of self-assessment labels
for arousal assessment yielded accuracies of 55%, 53%, and
54% for EEG, physiological, and fused features, respectively.
All of the studies have shown that the performances of
emotion recognition systems can be improved by employing
multimodal information fusion.

In this study, we propose two multimodal fusion meth-
ods combining brain and peripheral signals for emotion
recognition. 	e input signals are electroencephalogram and
facial expression. 	e stimuli are based on a subset of movie
clips that correspond to four speci
c areas of valance-arousal
emotional space (happiness, neutral, sadness, and fear). For
facial expression detection, four basic emotion states are
detected by a neural network classi
er. For EEG detection,
four basic emotion states and three emotion intensity levels
(strong, ordinary, and weak) are detected by two SVM
classi
ers, respectively. Emotion recognition is based on
two decision-level fusion methods of both EEG and facial
expression detections by using a sum rule or a production
rule. Twenty healthy subjects attended two experiments. 	e
results show that the accuracies of two multimodal fusion
detections are 81.25% and 82.75%, respectively, which are
both higher than that of facial expression or EEG detection.
	e combination of facial expressions and EEG information
for emotion recognition compensates for their defects as
single information sources.

2. Methods

2.1. Data Acquisition System. A Mindwave Mobile device
(Neurosky, Inc., Abbotsford, Australia) was used to capture

scalp EEG signals, and a Logitech camera (25 FPS, 800 × 600
image size) was used to capture facial expressions. According
to the standard 10–20 system, the EEG signals are referenced
to the right mastoid. 	e EEG signals used for analysis were
recorded from the “Fz” electrode. 	e impedances of all
electrodes were maintained below 5 kΩ.
2.2. Data Processing and Algorithm. For our proposed sys-
tem, the EEG and facial expression detectors were designed
separately. 	e EEG and image data were fed into the two
detection procedures simultaneously. Figure 1 shows the data
processing procedure. 	e analysis methods and algorithms
used in this study are described below.

2.2.1. Facial Expression Detection. For the face features
extraction, the face position is detected in real-time by
the AdaBoost algorithm based on the Haar eigenvalue. 	e
Haar classi
er uses the AdaBoost algorithm of the Boosting
algorithm, resulting in a cascade of weak classi
ers trained
by the AdaBoost algorithm. We use the Haar-like feature in
image as input of the classi
er. 	e output of the classi
er
is whether this image is human face [12]. When the human
face from the input image is found, we resize it into 48-pixel
width and 48-pixel height. Next, the PCA method is used to
reduce the dimensionality. 	e output of this phrase is 169
dimensions (obtained by the grid search method mentioned
below) a�er dimensionality reduction.

	e feature vectors are then fed to a feedforward neural
network. Figure 2 shows the architecture of the proposed
system for face expression classi
cation. Applying the trained
feedforward neural network classi
er to the face image
feature, we obtain four scores (the values of the objective
function of the feedforward neural network), denoted as�1� (� = 1, . . . , 4). � represents the four emotion states (hap-
piness, neutral, sadness, and fear) detected by face expression
classi
er. We normalize the four scores by mapping them to
the range [0, 1].

�̂1� = �1� −min {�11, . . . , �14}
max {�11, . . . , �14} −min {�11, . . . , �14} (1)

�1 = argmax
�
(�̂1�) . (2)

	e four normalized scores �̂1� (� = 1, 2, 3, 4) represent-
ing the output of feedforward neutral network are used in the
decision-making step described later, and �1 represents the
emotion state detected by face expression.

Note that the hyperparameters of the face expression
classi
er are determined by the grid search method, a brute-
force searching through a manually speci
ed subset of the
hyperparameters space of a learning algorithm. We initialize
the subset of the hyperparameters space in

� ∈ {121, 144, 169, 225}

 ∈ {150, 200, 250, 300}
� ∈ {0.001, 0.01, 0.1, 1} ,

(3)
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Figure 1: Data processing procedure of the multimodal emotion recognition.
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Figure 2: 	e architecture of the proposed system for face expression classi
cation: the network has one hidden layer with 200 neurons.
	e input of this network is 169 image features we get from dimensionality reduction, while the output is the scores of four emotion states
(happiness, neutral, sadness, and fear). 	e learning rate of this network is 0.1. We use sigmoid function as the activation function of this
network.

where � is the number of the dimensions, 
 is the number
of the neurons in hidden layer, and � is the learning rate in
classi
cation. Grid search then trains a classi
er with each
pair (�, 
, �) in the Cartesian product of these three sets
and evaluates their performance on a held-out validation set.
We select the classi
er parameters with the best performance
and apply it into our model.

2.2.2. EEG Detection. 	e EEG-based detection includes
two progressive stages: feature extraction based on PSD
and classi
cation using SVM. 	e analysis methods and
algorithms used in this study are described below.

	e EEG data are bandpass 
ltered over eight frequency
bands: delta (1–3Hz); theta (4–7Hz); alpha1 (8–10Hz);
alpha2 (11–13Hz); beta1 (14–20Hz); beta2 (21–30Hz);
gamma1 (31–40Hz); and gamma2 (41–50Hz). We compute
the traditional PSD features using the Short Time Fourier
Transform (STFT) with a 1-s window and no overlapping
Hanning window. For classi
cation, we use two linear SVM
classi
ers here, one for the emotion states classi
cation,
and one for the emotion intensities classi
cation. We train
samples (��, ��) and (��, ��� ),
�� = [ DELTA,THETA,ALPHA1,ALPHA2,

BETA1,BETA2,GAMMA1,GAMMA2] (4)

�� =
{{{{{{{{{{{{{{{

1 happiness

2 neutral

3 sadness

4 fear

(5)

��� =
{{{{{{{{{

−1 weak

0 moderate

1 strong,
(6)

where DELTA, THETA, ALPHA1, ALPHA2, BETA1, BETA2,
GAMMA1, and GAMMA2 represent the power density spec-
trum corresponding to the eight frequency bands mentioned
above, �� represents the label of the four emotion states,��� is the label of the three emotion intensity levels, and�� represents the feature vectors corresponding to the four
emotion states or the three emotion intensity levels.

Applying the 
rst trained SVM classi
er to the feature
vectors, we obtain four scores (the values of the objective
function of the SVM), denoted as �2� (� = 1, . . . , 4).� represents the four emotion states (happiness, neutral,
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sadness, and fear) detected by EEG classi
er. We normalize
the four scores by mapping them to the range [0, 1].
�̂2� = �2� −min {�21, . . . , �24}

max {�21, . . . , �24} −min {�21, . . . , �24}
�2 = argmax

�
(�̂2�) .

(7)

	e four normalized scores �̂2� (� = 1, 2, 3, 4) and the
index of themaximum score �2 representing the output of the
emotion state in the EEG detection are used in the 
rst fusion
method described later.

Applying the second trained SVM classi
er to the feature
vectors, we obtain three scores �2�� (� = 1, 2, 3) correspond-
ing to the three emotion intensity levels (weak,moderate, and
strong), and 
nd the index of the maximum score.

��2 = argmax
�
(�2��) . (8)

	e index of the maximum score ��2 representing the
output of the emotion intensity level in the EEG detection is
used in the second fusion method described later.

2.2.3. Classi
cation Fusion. In the decision-level fusion, the
outputs generated by two classi
ers of the facial expression
and EEG detections are combined. We employ two fusion
methods of both EEG and facial expression detections as
follows.

For the 
rst fusion method, we have applied the sum
strategy (e.g., [12]) to the decision-level fusion. Speci
cally,
we calculate the sum of the normalized face expression
classi
er scores �̂1 and EEG classi
er scores �̂2 for each of the
four emotion states. Finally, we 
nd themaximum of the four
summed values as shown as follows:

sum� = �̂1� + �̂2� (� = 1, 2, 3, 4)
�sum = argmax

�
(sum�) , (9)

where �̂1� (� = 1, 2, 3, 4) and �̂2� (� = 1, 2, 3, 4) are calculated
in (1) and (6), and �sum is the index corresponding to the
maximum of the summed values.

For the second fusion method, we adopt the decision-
making strategy based on production rules, which are com-
monly used as a simple expert system in the cognitive
modeling and arti
cial intelligence (e.g., [13, 14]). 	rough
the production rule, the four emotion states (happiness,
neutral, sadness, or fear) and the three emotion intensity
levels (strong, moderate, or weak) are combined to emotion
recognition. A production rule consists of an IF part (a
condition or premise) and a THEN part (an action or
conclusion). 	e form of production rules is

�� : IF � THEN �, (10)

where�� represents the rule �,� is the antecedent of rule �, and� is the latter of rule �. In this study, � is formed by (�1, ��2).�1 represents the emotion state detected by facial expression,

Table 1: 	e production rules of combining the emotion state and
intensity level.

�� � �
�1 (Happiness, strong) Happiness

�2 (Happiness, moderate) Happiness

�3 (Happiness, weak) Neutral

�4 (Neutral, strong) Happiness

�5 (Neutral, moderate) Neutral

�6 (Neutral, weak) Neutral

�7 (Sadness, strong) Fear

�8 (Sadness, moderate) Sadness

�9 (Sadness, weak) Sadness

�10 (Fear, strong) Fear

�11 (Fear, moderate) Fear

�12 (Fear, weak) Sadness

while ��2 represents the emotion intensity level detected by
EEG. 	e production rules are de
ned as shown in Table 1.

All the rules will be triggered as soon as their conditions
are met. For example, in the production rule �3, if the
emotion state detected by facial expression is happiness and
the emotion intensity level detected by EEG is weak, the 
nal
result of the emotion recognition is neutral.

3. Experiment

Two experiments, o�ine and online, were conducted in this
study. In this study, the data of the 
rst experiment was used
for training. Twenty healthy 19- to 33-year-old subjects from
the local research unit attended the experiments. During the
experiments, the subjects were seated in a comfortable chair
and instructed to avoid blinking or moving their bodies.

3.1. Experiment 1 (O�ine). 	e data collected in this experi-
ment consisted of 40 trials for each subject. At the beginning
of each trial, a 
xation cross was 
rst presented at the center
of the GUI to capture the subjects’ attention. A�er 2 s, movie
clips inducing di�erent emotional conditions were presented
at the center of the GUI in a random order. Each movie clip
was presented for 2-3 minutes, preceded by 5 s of a blank
screen as the start hint. At the ends of trials, subjects were
asked to view each movie clip, assign valence and arousal
ratings, and rate the speci
c emotions they had experienced.
	e rating procedure lasted approximately 60 s. 	ere was
a 10-s break between two consecutive trials for emotional
recovery. During each trial, we collected 100 human face
images using a camera and 200 groups of EEG signals using a
Mindwave Mobile device. Valence and arousal ratings were
obtained using the Self-Assessment Manikin (SAM) [15].
Four basic emotion states (happiness, neutrality, sadness, and
fear) and three emotion intensities (strong, ordinary, and
weak) were evaluated in this study. 	e given self-reported
emotion states and intensity level were used to verify the
facial and EEG emotion classi
cations. We used images and
corresponding emotion states to train a feedforward neural
network classi
er. We used EEG signals and corresponding
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(a) A happiness emotion e�ect (b) A neutral emotion e�ect

(c) A sadness emotion e�ect

Figure 3: Example screenshots of face videos from Experiment 2.

emotion states to train a SVM classi
er. A di�erent neural
network classi
er and a di�erent SVM classi
er were 
tted to
each subject. 	ey were both used in Experiment 2 to detect
emotion states.

3.2. Experiment 2 (Online). 	is experiment was composed
of 40 trials for each subject, corresponding to the 40 movie
clips evaluated in Experiment 1. 	e procedure of each trial
was similar to that in Experiment 1. However, at the end
of each movie clip, 3 di�erent detectors (a face expression
detector, EEG detectors, and the 
rst fusion detector) were
used to determine the emotion state. If the detection result
was correct, positive feedback consisting of auditory applause
occurred for 4 s. Otherwise, no feedback was given. For
performance evaluation, the online accuracy was calculated
as the ratio of the number of correct predictions to the
total number of presented trials. Figure 3 shows several
screenshots of face videos from Experiment 2. Figure 3(a)
shows a subject who was watching a lively movie clip.
Figure 3(b) shows a subject who was watching a normal
movie clip. Figure 3(c) shows a subject who was watching a
sad movie clip.

3.3. Data Analysis (O�ine). To validate the second fusion
method combining type of emotion and intensity level, an
o�ine data analysis was conducted. For the data set of
Experiment 1, we used images and corresponding emotion
states to train a feedforward neural network classi
er and
used EEG signals and corresponding emotion intensities to

train a SVM classi
er. For the data set of Experiment 2, we
used the second fusion detector based on the production
rules to determine the emotion state and calculated the
corresponding o�ine accuracy rates.

4. Results

	e average accuracies of the two fusion methods for twenty
subjects are shown in Table 2. 	e classi
cation accuracies
of the face expression detection and the EEG detection are
also shown in Table 2. It shows that the accuracy of the

rst fusion detection using a sum rule is 81.25% and the
accuracy of the second fusion detection using a production
rule is 82.75%, which are both higher than that of facial
expression (74.38%) or EEG detection (66.88%). Speci
cally,
seventeen of 20 subjects achieved the highest accuracies using
the fusion methods. Moreover, accuracies in each of the
three detections were tested using paired �-test. Results were
considered signi
cant when � values were below 0.05. 	e
statistical analysis based on �-test indicated the following: (i)
higher accuracies were achieved for the two fusion methods
than for the face expression detection or the EEG detection
(the 
rst fusion method versus face expression detection,� = 0.03; the 
rst fusion method versus EEG detection,� < 0.01; the second fusion method versus face expression
detection, � = 0.03; the second fusion method versus EEG
detection, � < 0.01); (ii) the accuracies were not signi
cantly
di�erent between the face expression detection and the EEG
detection (EEG detection versus face expression detection,
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Table 2: 	e accuracies for the detections of face expression, EEG, and two fusion methods.

Subject Face expression EEG 	e 
rst fusion method (online) 	e second fusion method (o�ine)

1 92.5 67.5 92.5 87.5

2 57.5 70.0 82.5 87.5

3 50.0 72.5 87.5 87.5

4 62.5 75.0 92.5 87.5

5 60.0 60.0 75.0 75.0

6 87.5 75.0 95.0 92.5

7 72.5 72.5 72.5 80.0

8 70.0 70.0 80.0 87.5

9 92.5 60.0 75.0 80.0

10 85.0 62.5 72.5 80.0

11 67.5 72.5 80.0 80.0

12 80.0 75.0 85.0 85.0

13 92.5 57.5 92.5 87.5

14 72.5 55.0 77.5 80.0

15 70.0 52.5 75.0 77.5

16 92.5 62.5 77.5 77.5

17 77.5 57.5 90.0 87.5

18 92.5 80.0 92.5 85.0

19 50.0 62.5 60.0 75.0

20 62.5 77.5 70.0 75.0

Average 74.38 ± 14.55 66.88 ± 8.19 81.25 ± 9.47 82.75 ± 5.19

� = 0.08); (iii) the accuracies were also not signi
cantly
di�erent between the 
rst and the second fusion methods
(the 
rst fusion method versus the second fusion method,� = 0.56). Furthermore, we can see that low accuracies were
obtained for subjects 5, 19, and 20.	at could be attributed to
them having less expressive facial expressions or perhaps our
approach is less sensitive to them.

5. Discussions

	is paper employs information fusion technology com-
bined with facial expression recognition technology and EEG
emotion recognition technology. 	e stimuli are based on
a subset of movie clips that correspond to four speci
c
areas of valance-arousal emotional space (happiness, neutral,
sadness, and fear). 	e four emotion states are detected
by both facial expression and EEG. Emotion recognition
is based on a decision-level fusion of both EEG and facial
expression detection. Twenty healthy subjects attended two
experiments. 	e results show that the accuracies of two
information fusion detections are 81.25% and 82.75%, which
are both higher than that of facial expression (74.38%) or EEG
detection (66.88%).

	e notion that combining brain and peripheral phys-
iological signals will result in a more accurate emotion
recognition compared to using these variables on their own
seems very sensible and has frequently been suggested in the
literature as a potential way to improve emotion recognition
[16]. However, a few studies explicitly mention that combi-
nation of physiological information did not result in reliable
improvement (e.g., [17–19]) or only to a modest degree in

one of multiple conditions without statistical evidence (e.g.,
[5]). In this study, the experimental results and the statistical
analysis have provided clear evidence for the bene
t of
multimodal combination for emotion recognition. It could be
explained that the emotion state involves multiple processes
that are presumably re
ected by di�erent types of variables
(e.g., cognitive processes by EEG and physical change by
peripheral facial expression measures).

In this study, we did 
nd signi
cant improvement for the
multimodal fusion detection, compared to the single pattern
detection.	e reason could be based on the fact that the facial
expression detection has a fast and strong but 
uctuating
response, and the EEG detection had a smooth but stable
response over the trial time [20]. Speci
cally, there is high
volatility in real emotion recognition based only on facial
expressions because subjects are able to trick the machine as
long as they know how to pretend via their facial expressions.
In this respect, the drawbacks of facial expression detection
can be compensated for by the EEG detection to a very
large extent. 	us, the facial expression detection and EEG
detection were irreplaceable and complementary to each
other, and the multimodal fusion should achieve higher
accuracies using both detections than using one of the two
detections.	is was demonstrated by the data analysis results
in Table 2.

While most studies combine information by fusion at
the feature level, we thought that fusion of information at
the decision level could have contributed to 
nding a strong
reliable advantage of combining information. One the one
hand, fusion at this level is di�cult to achieve in practice
because the feature sets of the various modalities may not be
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compatible (e.g., brain and peripheral physiological signals
in this study) [21]. Most commercial biometric systems do
not provide access to the feature sets nor the raw data which
they use in their products [22]. On the other hand, the
advantage of decision-level fusion is that all knowledge about
the di�erent signals can be applied separately [23]. In this
study, the facial expression and EEG signals have their own
capabilities and limitations as mentioned above, and we can
use this information to optimize the detection performance.
In the decision-level fusion, it is relatively easy to access and
combine the scores generated by neural network and SVM
classi
ers pertaining to facial expression and EEGmodalities.
	us, fusion at the decision level is preferred in this study.

For the decision-level fusion, the classi
er selection for
facial expression and EEG detections is also important.
Several properties have to be taken into consideration, such
as the long term variability of facial expression signals and
the availability of small data sets of EEG signals. First, the
neural network-based methods are found to be particularly
promising for facial expression recognition, since the neural
networks can easily implement the mapping from the feature
space of face images to the facial expression space [24].
Second, a neural network model generally requires a large
amount of high-quality data for training. In this study, the
EEG signals recorded by a one-electrode mobile device could
lack su�cient training data for the neural network-based
method. 	ird, SVM is known to have good generalization
properties and to be insensitive to overtraining and to the
curse-of-dimensionality, especially in the small data set [25].
It should be noted that SVM classi
er was widely used in
the EEG-based brain computer interface in practice [26–29].
Furthermore, some modi
ed support vector classi
cation
(SVC) methods had the advantage of using a regulariza-
tion parameter to control the number of support vectors
and margin errors. For example, Gu and Sheng developed
a modi
ed SVC formulation based on a sum-of-margins
strategy to achieve better online accuracy than the existing
incremental SVC algorithm [30]. 	ey further proposed a
robust SVC method based on lower upper decomposition
with partial pivoting, which results in fewer steps and less
running time than original one does [31]. Taken together, the
neural network classi
er was used for the facial expression
detection, and the SVM classi
er was used for EEG detection
in this study.

Two multimodal fusion methods are proposed in this
study. For the 
rst fusion method, SVM classi
ed the EEG
signal into the four types of emotion, and fusion is performed
using a sum rule. For the second fusion method, SVM
classi
ed the EEG signal into three intensity levels (weak,
moderate, and strong), and fusion is performed using a
production rule. It is interesting to note that the second fusion
method combining type of emotion and intensity level yields
comparable average accuracies with the 
rst fusion method.
Indeed, it might very well be what humans do for emotion
recognition: for example, an expression of weak happiness is
typically answered with neutral, whereas a strong expression
of sadness usually evokes fear.

For the results of Experiment 2, average accuracies of
81.25% (online) and 82.75% (o�ine) were achieved by two

fusion methods for four-class emotion recognition. Superior
performance was obtained compared to the results in the
state-of-the-art results [3, 11, 32]. In fact, the authors of [3]
reported an average accuracy of 78.4% by using optical 
ow
to determine themain direction of movement of the muscles.
In [11], the IAPS was used as stimuli, and the use of self-
assessment labels for arousal assessment yielded accuracies
of 55%, 53%, and 54% for EEG and physiological and fused
features, respectively. Zheng and his colleges presented an
emotion recognition method combining EEG signals and
pupillary response collected from eye tracker and achieved
average accuracies of 73.59% and 72.98% for three emotion
states using feature level fusion strategy and decision-level
fusion strategy, respectively.

	is study still has open issues that need to be considered
in the future. At this present stage, the image data set
we obtained is very limited, and the EEG signals used for
analysis were recorded from only one electrode. In the future,
however, we will collect more image data frommore subjects
and use a more complicated model to train our data to
yield a classi
er with better performance. Furthermore, we
could consider an EEG device with more electrodes to obtain
higher-quality data.

Conflicts of Interest

	e authors declare that there are no con
icts of interest
regarding the publication of this paper.

Acknowledgments

	is study was supported by the National Natural Science
Foundation of China under Grant 61503143 and Guangdong
Natural Science Foundation under Grant 2014A030310244
and the Pearl River S&T Nova Program of Guangzhou under
Grant 201710010038.

References

[1] J. Gratch and S. Marsella, “Evaluating a computational model of
emotion,” Autonomous Agents and Multi-Agent Systems, vol. 11,
no. 1, pp. 23–43, 2005.

[2] P. Ekman and W. V. Friesen, “Facial action coding system: a
technique for the measurement of facial movement,” Rivista di
Psichiatria, vol. 47, no. 2, pp. 126–138, 1978.

[3] K. Mase, “Recognition of facial expression from optical 
ow,”
IEICE Transactions, vol. 74, no. 10, pp. 3474–3483, 1991.

[4] R. W. Picard and S. B. Daily, “Evaluating a�ective interactions:
alternatives to asking what users feel,” in Proceedings of the
CHI Workshop on Evaluating A�ective Interfaces Innovative
Approaches (CHI ’05), April 2005.

[5] G. Chanel, J. J. M. Kierkels, M. Soleymani, and T. Pun, “Short-
term emotion assessment in a recall paradigm,” International
Journal of Human Computer Studies, vol. 67, no. 8, pp. 607–627,
2009.

[6] S. Nasehi, H. Pourghassem, and I. Isfahan, “An optimal EEG-
based emotion recognition algorithm using gabor,” WSEAS
Transactions on Signal Processing, vol. 3, no. 8, pp. 87–99, 2012.



8 Computational Intelligence and Neuroscience

[7] K. Ishino and M. Hagiwara, “A feeling estimation system using
a simple electroencephalograph,” in Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, vol.
5, pp. 4204–4209, October 2003.

[8] Z. Khalili and M. H. Moradi, “Emotion recognition system
using brain and peripheral signals: using correlation dimension
to improve the results of EEG,” in Proceedings of the Interna-
tional Joint Conference on Neural Networks (IJCNN ’09), pp.
1571–1575, IEEE, June 2009.

[9] C. Busso, Z. Deng, S. Yildirim et al., “Analysis of emotion
recognition using facial expressions, speech and multimodal
information,” in Proceedings of the 6th international conference
on Multimodal interfaces, pp. 205–211, ACM, October 2004.

[10] J. Wagner, E. Andre, F. Lingenfelser, and J. Kim, “Exploring
fusion methods for multimodal emotion recognition with
missing data,” IEEE Transactions on A�ective Computing, vol.
2, no. 4, pp. 206–218, 2011.

[11] P. J. Lang, M. M. Bradley, and B. N. Cuthbert, “International
a�ective picture system (IAPS): a�ective ratings of pictures and
instruction manual,” Tech. Rep. A-8, 2008.

[12] Y. Li, J. Pan, F. Wang, and Z. Yu, “A hybrid BCI system
combining P300 and SSVEP and its application to wheelchair
control,” IEEE Transactions on Biomedical Engineering, vol. 60,
no. 11, pp. 3156–3166, 2013.

[13] A. Zambrano, C. Toro, M. Nieto, R. Sotaquira, C. Sanı́n, and
E. Szczerbicki, “Video semantic analysis framework based on
run-time production rules-towards cognitive vision,” Journal of
Universal Computer Science, vol. 21, no. 6, pp. 856–870, 2015.

[14] A. T. Tzallas, I. Tsoulos, M. G. Tsipouras, N. Giannakeas, I.
Androulidakis, and E. Zaitseva, “Classi
cation of EEG signals
using feature creation produced by grammatical evolution,” in
Proceedings of the 24th Telecommunications Forum (TELFOR
’16), pp. 1–4, IEEE, November 2016.

[15] M. M. Bradley and P. J. Lang, “Measuring emotion: the self-
assessment manikin and the semantic di�erential,” Journal of
Behavior�erapy and Experimental Psychiatry, vol. 25, no. 1, pp.
49–59, 1994.

[16] M. A. Hogervorst, A.-M. Brouwer, and J. B. F. van Erp,
“Combining and comparing EEG, peripheral physiology and
eye-related measures for the assessment of mental workload,”
Frontiers in Neuroscience, vol. 8, article 322, 2014.

[17] J. C. Christensen, J. R. Estepp, G. F. Wilson, and C. A. Russell,
“	e e�ects of day-to-day variability of physiological data on
operator functional state classi
cation,”NeuroImage, vol. 59, no.
1, pp. 57–63, 2012.

[18] E. B. J. Co�ey, A.-M. Brouwer, and J. B. F. Van Erp, “Measuring
workload using a combination of electroencephalography and
near infrared spectroscopy,” inProceedings of theHumanFactors
and Ergonomics Society Annual Meeting, pp. 1822–1826, SAGE
Publications, Boston, Mass, USA, October 2012.

[19] M. Severens, J. Farquhar, J. Duysens, and P. Desain, “A multi-
signature brain-computer interface:Use of transient and steady-
state responses,” Journal of Neural Engineering, vol. 10, no. 2,
Article ID 026005, 2013.

[20] R. Leeb, H. Sagha, R. Chavarriaga, and J. D. R. Millán, “A
hybrid brain-computer interface based on the fusion of elec-
troencephalographic and electromyographic activities,” Journal
of Neural Engineering, vol. 8, no. 2, Article ID 025011, 2011.

[21] K. Chang, K. Bowyer, and P. Flynn, “Face recognition using 2D
and 3D facial data,” in Proceedings of the ACM Workshop on
Multimodal User Authentication, pp. 25–32, 2003.

[22] A. Ross and A. K. Jain, “Multimodal biometrics: an overview,”
in Proceedings of the 12th European Signal Processing Conference,
pp. 1221–1224, IEEE, 2004.

[23] A. Ross and A. Jain, “Information fusion in biometrics,” Pattern
Recognition Letters, vol. 24, no. 13, pp. 2115–2125, 2003.

[24] L. Ma and K. Khorasani, “Facial expression recognition using
constructive feedforward neural networks,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34,
no. 3, pp. 1588–1595, 2004.

[25] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi,
“A review of classi
cation algorithms for EEG-based brain-
computer interfaces,” Journal of Neural Engineering, vol. 4, no.
2, pp. R1–R13, 2007.

[26] A. Temko, E. 	omas, W. Marnane, G. Lightbody, and G.
Boylan, “EEG-based neonatal seizure detection with Support
Vector Machines,” Clinical Neurophysiology, vol. 122, no. 3, pp.
464–473, 2011.

[27] Y. Li, J. Pan, J. Long et al., “Multimodal BCIs: target detection,
multidimensional control, and awareness evaluation in patients
with disorder of consciousness,” Proceedings of the IEEE, vol.
104, no. 2, pp. 332–352, 2016.

[28] J. Pan, Y. Li, Z. Gu, and Z. Yu, “A comparison study of two
P300 speller paradigms for brain-computer interface,”Cognitive
Neurodynamics, vol. 7, no. 6, pp. 523–529, 2013.

[29] M. Mohammadpour, S. M. R. Hashemi, and N. Houshmand,
“Classi
cation of EEG-based emotion for BCI applications,”
in Proceedings of the Arti
cial Intelligence and Robotics (IRA-
NOPEN ’17), pp. 127–131, IEEE, April 2017.

[30] B. Gu, V. S. Sheng, K. Y. Tay,W. Romano, and S. Li, “Incremental
support vector learning for ordinal regression,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 26, no. 7,
pp. 1403–1416, 2015.

[31] B. Gu and V. S. Sheng, “A robust regularization path algorithm
for ]-support vector classi
cation,” IEEETransactions onNeural
Networks and Learning Systems, vol. 28, no. 5, pp. 1241–1248,
2016.

[32] W.-L. Zheng and B.-L. Lu, “A multimodal approach to estimat-
ing vigilance using EEG and forehead EOG,” Journal of Neural
Engineering, vol. 14, no. 2, Article ID 026017, 2017.



Submit your manuscripts at

https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


