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Abstract. Accurate and realistic building models of urban environments are in-

creasingly important for applications, like virtual tourism or city planning. Initia-

tives like Virtual Earth or Google Earth are aiming at offering virtual models of

all major cities world wide. The prohibitively high costs of manual generation of

such models explain the need for an automatic workflow.

This paper proposes an algorithm for fully automatic building reconstruction

from aerial images. Sparse line features delineating height discontinuities and

dense depth data providing the roof surface are combined in an innovative man-

ner with a global optimization algorithm based on Graph Cuts. The fusion pro-

cess exploits the advantages of both information sources and thus yields superior

reconstruction results compared to the indiviual sources. The nature of the al-

gorithm also allows to elegantly generate image driven levels of detail of the

geometry.

The algorithm is applied to a number of real world data sets encompassing

thousands of buildings. The results are analyzed in detail and extensively evalu-

ated using ground truth data.

1 Introduction

Algorithms for the semi- or fully automatic generation of realistic 3D models of urban

environments from aerial images are subject of research for many years. Such models

were needed for urban planning purposes or for virtual tourist guides. Since the advent

of web-based interactive applications like Virtual Earth and Google Earth and with the

adoption of 3D content for mashups the demand for realistic models has significantly

increased. The goal is to obtain realistic and detailed 3D models for entire cities.

This poses several requirements for the algorithm: First, it should not require any

manual interaction because this would induce high costs. This restriction also dissuades

the use of cadastral maps as they vary in accuracy, are not readily available everywhere

and require careful registration towards the aerial data. Additionally such a dependency

increases the cost at large scale deployment. Second, the algorithm should be flexible

enough to generate accurate models for common urban roof structures without limiting

itself to one specific type, like gabled roofs or rectangular outlines for example. This
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also includes the requirement to be able to deal with complex compositions of roof

shapes if those happen to be adjacent. Third, the algorithm should have a certain degree

of efficiency as it is targeted at thousands of cities with millions of buildings in total.

Last, the algorithm should be robust: the visual appearance should degrade gracefully

under the presence of noise or bad input data quality.

In the following a survey and assessment of existing algorithms is given, which fail

to meet one or more of the above mentioned requirements.

Among the early approaches are feature based modelling methods ([1,2,3,4,5])

which show very good results for suburban areas. The drawback of those methods is

their reliance on sparse line features to describe the complete geometry of the build-

ing. The fusion of those sparse features is very fragile as there is no way to obtain the

globally most consistent model.

The possibility of using additional data (cadastral maps and other GIS data in most

cases) to help in the reconstruction task is apparent and already addressed in many

publications ([6,7,8]). Such external data, however, is considered manual intervention

in our work and thus not used.

A different group of algorithms concentrates on the analysis of dense altimetry data

obtained from laser scans or dense stereo matching ([9,10]). Such segmentation ap-

proaches based solely on height information, however, are prone to failure if buildings

are surrounded by trees and require a constrained model to overcome the smoothness

of the data at height discontinuities. Guhno and Downman ([11]) combined the eleva-

tion data from a LIDAR scan with satellite imagery using rectilinear line cues. Their

approach was, however, limited to determining the outline of a building. In our work

we develop this approach further and embed it into a framework which overcomes the

problems described above.

In [12] we have proposed a workflow to automatically derive the input data used

in this paper. The typical aerial images used in the workflow have 80% along-strip

overlap and 60% across-strip overlap. This highly redundant data is utilized in this

paper. Similar approaches have been proposed by others ([13,14]), which demonstrate

that it is possible to automatically derive a digital terrain model, digital elevation model,

land use classification and orthographic image from aerial images. Figure 1 illustrates

(a) (b) (c) (d)

Fig. 1. These figures depict the data which is used for the reconstruction process: (a) height

field, (b) building mask and (c) 3D line segments. Image (d) shows the obtained model by our

algorithm.
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the available data which is used for the reconstruction algorithm and also shows the

result of the proposed algorithm.

Our proposed method does not need any manual intervention and uses only data

derived from the original aerial imagery. It combines dense height data together with

feature matching to overcome the problem of precise localization of height discontinu-

ities. The nature of this fusion process separates discovery of geometric primitives from

the generation of the building model in the spirit of the recover-and-select paradigm

([15]), thus lending robustness to the method as the global optimal configuration is cho-

sen. The integration of the theory of instantaneous kinematics ([16]) allows to elegantly

detect and estimate surfaces of revolution which describe a much broader family of roof

shapes. A major feature of the proposed method is the possibility to generate various

levels of geometric detail.

The rest of the paper is structured as follows: Chapter 2 gives a general overview of

the method. In Chapter 3 we will describe the discovery of geometric primitives which

are used to approximate the roof shape, whereas Chapter 4 discusses the building seg-

mentation. Chapter 5 gives details about the fusion process which combines line fea-

tures and dense image data. Results and experiments are outlined in Chapter 6. Finally,

conclusions and further work are described in Chapter 7.

2 Overview of the Method

The workflow of the proposed method is outlined in Figure 2. Three types of informa-

tion are necessary as input for the algorithm: Dense height data is generated by a dense

image matching algorithm ([17]) (Figure 1a, represented as a height field) and gives a

good estimate of the elevation, but suffers from oversmoothing at height discontinuities

([18]). Additionally a rough segmentation of the building is required (Figure1b) which

could be directly deduced from the height data for example. The third component are

sparse 3D line segments (Figure1c) which are obtained from line matching over multi-

ple views ([1]).

Fig. 2. Illustration of the single steps of the proposed method: height data and building mask

are used to obtain a set of geometric primitives; In parallel the 3D lines are used to generate a

segmentation of the building. Finally, a labeled segmentation is produced.
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The building mask is combined with the dense height data, thus filtering out all 3D

points which do not belong to the building. Afterwards the remaining points are grouped

into geometric primitives. The geometric primitives are the basic building blocks for

assembling the roof shape.

The 3D line segments are projected into the height field and used to obtain a line-

based segmentation of the building. The 2D lines of the segmentation form polygons

which are then assigned to one of the geometric primitives. Therefore, it is important

that the 3D lines capture the location of the height discontinuities as each polygon is

treated as one consistent entity which can be described by one geometric primitive. By

extruding each of the 2D polygons to the assigned geometric primitive a 3D model of

the building is generated.

Note that the algorithm presented in this paper makes no assumptions about the roof

shape. Façades are modeled as vertical planes, because the oblique angle of the aerial

images does not allow a precise reconstruction of any details.

3 Geometric Primitives

Geometric primitives form the basic building blocks which are used to describe the roof

shape of a building. Currently two types of primitives, namely planes and surfaces of

revolution, are used, but the method can be trivially extended to support other primitives.

It is important to note, that the detection of geometric primitives is independent from

the composition of the model. This means that an arbitrary amount of hypotheses can

be collected and fed into later stages of the algorithm. As the order of discovery of the

primitives is not important, weak and improbable hypotheses are also collected as they

will be rejected later in the fusion step. If a primitive is missed, the algorithm selects

another detected primitive instead which minimizes the incurred reconstruction error.

3.1 Planes

Efficiently detecting planes in point clouds for urban reconstruction is well studied and

robust algorithms are readily available ([9]). Thanks to the independence of hypothesis

discovery and model selection, a region growing process is sufficient in our workflow

for the discovery of planes. Depending on the size of the building a number of ran-

dom seed points are selected, for which the normal vector is estimated from the local

neighbourhood. Starting from the seed points, neighbours are added which fit the ini-

tial plane estimate. This plane is regularly refined from the selected neighbours. Small

regions are rejected to improve the efficiency of the optimization phase. Due to their

frequency, close to horizontal planes are modified to make them exactly horizontal, the

other oblique ones are left unchanged.

3.2 Surfaces of Revolution

Planar approximations of certain roof shapes (domes and spires for example) obtained

from plane fitting algorithms, however, are not robust, visually displeasing and do not

take the redundancy provided by the symmetrical shape into account. Therefore it is
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necessary to be able to deal with other shapes as well and combine them seamlessly to

obtain a realistic model of the building.

Surfaces of revolution are a natural description of domes and spires and can be ro-

bustly detected. Mathematically such surfaces can be described by a 3D curve which

moves in space according to an Euclidean motion. Instantaneus kinematics gives a re-

lationship ([19]) between that Euclidean motion parameters and the corresponding ve-

locity vector field. Using that connection it is possible to estimate the parameters of

the Euclidean motion in a least squares sense given the normal vectors of the resulting

surface.

The equation

v(x) = c̄ + c × x (1)

describes a velocity vector field with a constant rotation and constant translation defined

by the two vectors c, c̄ ∈ R
3. If a curve sweeps along that vector field, the normal

vectors of all points on the resulting surface have to be perpendicular to the velocity

vector at the associated point. Thus

n(x)v(x) = 0 (2)

n(x) (c̄ + c × x) = 0

holds, where n(x) gives the normal vector at point x. With equation (2) it is possi-

ble to estimate the motion parameters given at least six point and normal vector pairs

(x, n(x)) lying on the same surface generated by such a sweeping curve. In the case

of point clouds describing an urban scene the parameter can be constrained by requir-

ing the rotation axis to be vertical. This already reduces the degrees of freedom to two

(assuming that z is vertical) and makes the problem easily solvable:

c̄ = (0, x, y)T
c = (0, 0, 1)T

(a) (b) (c)

Fig. 3. Illustrations how starting with the dense height data the 3D curve is derived which gen-

erates the dome if it rotates around a vertical axis. (a) Raw height field with the detected axis,

(b) all inliers are projected into the halfplane formed by axis and a radial vector, (c) the moving

average algorithm produces a smooth curve.
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where c̄ gives the position of the axis and c denotes the vertical rotation axis. The re-

maining two unknown parameters are estimated by transforming each 3D point with

the estimated normal vector (x, n(x)) into a Hough space ([20]). Local maxima in the

accumulation space indicate axes for surfaces of revolution. For each axis all inliers

are computed and projected into the halfplane spanned by the rotation axis and an ar-

bitrary additional radial vector. The redundancy of the symmetrical configuration can

be exploited by a moving average algorithm in order to estimate a smooth curve which

generates the surface containing the inliers. Figure 3 illustrates those steps with a point

cloud describing the shape of a spire.

4 Segmentation

The goal of the segmentation is to represent the general building structure - not only a

rectangular shape - as a set of 2D polygons.

The approach of Schmid and Zisserman ([21]) is used for the generation of the 3D

line set that is then used for the segmentation of the building into 2D polygons. A 3D

line segment must have observations in at least four images in order to be a valid hypoth-

esis. This strategy ensures that the reliability and geometric accuracy of the reported 3D

line segments is sufficiently high. The presence of outliers is tolerable since the purpose

of the 3D lines is to provide a possible segmentation of the building. Any 3D line that

does not describe a depth discontinuity can be considered as an unwanted outlier which

will contribute to the segmentation, but will be eliminated in the fusion stage.

The matched 3D line segments are used to obtain a 2D segmentation of the building

into polygons by appying an orthographic projection. The 2D lines cannot be used di-

rectly to segment the building, however, as the matching algorithm often yields many

short line segments describing the same height discontinuity. A grouping mechanism

merges those lines to obtain longer and more robust lines. A weighted orientation

(a) (b) (c)

Fig. 4. Segmentation into polygons: (a) The matched 3D lines are projected into the 2 1

2
D height

field, (b) outliers are eliminated by a weighted orientation histogram which helps to detect princi-

pal directions of the building. (c) Along those directions lines are grouped, merged and extended

to span the whole building.
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histogram - the weights correspond to the length of each line - is created. The prin-

cipal orientations are detected by finding local maxima in the histogram. Along those

directions quasi parallel lines are grouped and merged thus refining their position.

Each grouped line is extended to span the whole building in order to simplify the

segmentation process. The lines are splitting the area into a number of polygons. Each

polygon is considered to be one consistent entity where the 3D points can be approxi-

mated by one geometric primitive.

Figure 4 illustrates this concept. The advantage of this approach is that no assumption

or constraint of the shape, angles and connectivity of the building is necessary.

5 Information Fusion

Each polygon resulting from the segmentation is assigned to one geometric primitive

(plane or surface of revolution, see Chapter 3). This labeling allows to create a piece-

wise planar reconstruction of the building - surfaces of rotation are approximated by

a rotating polyline and therefore also yield piecewise planar surfaces in the polyhedral

model.

The goal of the fusion step is to approximate the roof shape by the geometric prim-

itives in order to fullfill an optimization criterion. In this paper we use the Graph Cuts

algorithm with alpha-expansion moves ([22,23]), but other techniques like belief propa-

gation are suited as well. The goal of this optimization is to select a geometric primitive

for each polygon of the segmentation and to find an optimal trade-off between data

fidelity and smoothness.

5.1 Graph Cuts Optimization

The Graph Cuts algorithm finds a very good approximation of the globally optimal so-

lution for a broad range of tasks which can be stated as an energy minimization problem

of the following form:

E(f) =
∑

p∈P

Dp(fp) + λ ·
∑

{p,q}∈N

Vp,q(fp, fq) (3)

where Vp,q(fp, fq) is called the smoothness term for the connected nodes p and q which

are labeled fp and fq and Dp(fp) is called the data term which measures a data fidelity

obtained by assigning the label fp to node p.

In our approach the segmentation induces a set P of polygons, where each polygon

represent a node of the graph. The neighboorhood relationship is reflected by the set

N , which contains pairs of adjacent polygons, ie. polygons sharing an edge. The set of

labels used in the optimization process represent the geometric primitives (planes and

surfaces of revolution):

L = {plane
1
, plane

2
, ..., surface-of-revolution1, surface-of-revolution2, ...} (4)

Thus fp ∈ L reflects the label (current geometric primitve) assigned to node (polygon)

p ∈ P .
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The optimization using polygons is much faster than optimizing for each individual

pixel because there are much fewer polygons than pixels. On the other hand it also

exploits the redundancy of the height data because it is assumed that all pixels in one

polygon belong to the same geometric primitive.

In our context the smoothness term measures the length of the border between two

polygons and the data term measures the deviation between the observed surface (ob-

tained from the dense image matching algorithm) and the fitted primitive. The following

formulae are used to calculate those two terms:

Dp(fp) =
∑

x∈p

∣

∣heightobs(x) − heightfp
(x)

∣

∣ (5)

Vp,q(fp, fq) =

{

length(border(p, q)) iffp �= fq

0 iffp = fq
(6)

where p and q denote two polygons and fp is the current label of polygon p. The preset

constant λ can be used to weight the two terms in the energy functional. The data term

Dp calculates an approximation of the volume between the point cloud (heightobs(x))
and primitive fp (heightfp

(x)) by sampling points x which lie within the polygon p.

This sampling strategy allows to treat all geometric primitives similarly. because they

are reduced to the incurred difference in volume and induced border to other polygons

assigned to another geometric primitive. The smoothness term Vp,q penalizes neigh-

bouring polygons with different labels depending on their common border, thus favour-

ing homogeneous regions.

The alpha-expansion move is used in order to efficiently optimize the labeling of

all polygons with respect to all discovered primitives. The initial labeling can either be

random or a labeling which minimizes only the data term for each individual polygon.

After a few iterations (usually less than 5), the optimization converges and all 2D poly-

gons can be extruded to the respective height of the assigned primitive to generate a

polyhedral model of the building.

5.2 Levels of Detail

The second term in Equation (3) regularizes the problem and favors smooth solutions.

Depending on the actual value of λ in Equation (3) different results are obtained. Higher

values result in fewer and shorter borders at the cost of larger volumetric differences

Table 1. The impact of the smoothness parameter λ on the reconstructed model. The number of

unique labels used after the Graph Cuts optimization iterations decreases as well as the number of

triangles in the polygonal model. ∆ Volume denotes the estimated difference in volume between

the surface obtained by dense image matching and the reconstruced model (data term). The last

column refers to the accumulated length of all borders in the final labeling (smoothness term).

λ #Labels #Triangles ∆ Volume [m3] Border Length [m]

5 7 79 1210.79 710.4

10 6 69 1677.19 349.4

20 4 42 1699.31 337.0

100 3 33 2293.36 290.4
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between observed height values and reconstructed models. This feature can be used to

generate different models with varying smoothness, trading data fidelity for geometric

simplificationa as smaller details of the building are omitted. An example of such a

simplification is shown in Figure 6. The relevant numbers for that building are given in

Table 1.

6 Experiments

The first illustrative experiment was conducted on a test data set of a Graz. The ground

sampling distance of the aerial imagery is 8cm. The examined building features four

small cupolas at the corners. Additionally one façade is partially occluded by trees.

Figure 5 shows the results of the reconstruction process. The texture of the façades is

well aligned, implying that their orientation was accurately estimated by the 3D line

matching. The domes are smoothly integrated into the otherwise planar reconstruction.

Even the portion occluded by the tree has been straightened by the extension of the

matched 3D lines.

The next example is taken from a data set of Manhattan, New York. This building

shows that the reconstruction algorithm is not limited to façades perpendicular or par-

allel to each other. Figure 6 illustrates the effect of the smoothness term in the global

optimization energy function. Various runs with different values for λ yield a reduced

triangle count as the geometry is progressively simplified. Table 1 gives details about

the solution for different values of λ. The Graph Cuts algorithm allows to find a glob-

ally optimal tradeoff between data fidelity and generalization. Those properties are ex-

pressed by the decreased length of borders and number of labels (which translate in

general to fewer triangles) at the cost of an increase of the average difference between

reconstructed and observed surface.

(a) (b) (c)

Fig. 5. The stages of the reconstruction are illustrated by means of the building of the Graz Uni-

versity of Technology: (a) Segmented height field, (b) labeled polygons after the Graph Cuts

optimization, (c) screenshot of the reconstructed model (λ = 5)
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(a) 7 Primitives, λ = 5 (b) 4 Primitives, λ = 20 (c) 3 Primitives, λ = 100

Fig. 6. Levels of Detail: The same building was reconstructed with different values for λ. The

number of geometric primitives used to approximate the shape of the roof is decreasing with

higher values for λ. In the upper row a screenshot of the reconstruction is depicted, below are

illustrations of the matching labeling obtained by the Graph Cuts optimization.

Apart from judging the visual appearance of the resulting models, we assess the

quality of the reconstructed models by comparing them to a ground truth which was

obtained manually from the same imagery. For this purpose we use a stereoscopic de-

vice to trace the roof lines in 3D. Those roof lines are connected to form polygons and

then extruded to the ground level. Those manually reconstructed models are considered

ground truth data in this paper. Using this procedure the whole data set from Manhattan

(consisting of 1419 aerial images at 15cm ground sampling distance) was processed

yielding 1973 buildings.

A comparison of manual and automatic reconstruction for one building is illustrated

in Figure 7. Both building models are converted into a height field with a ground sam-

pling distance of 15cm. This makes it easy to determine and illustrate their differences.

Figure 8 gives a break down of the height differences as a cummulative probabilty

distribution. Those graphs give the percentage of pixels where the height difference be-

tween manual and automatic reconstruction is lower than a certain threshold. Analysis

of this chart shows that for the whole data set of Manhattan (1973 buildings) 67.51%

of the pixels have a height difference smaller than 0.5m, 72.85% differ by less than

1m and 86.91% are within 2m. There are two main reasons for discrepancies of height

values: On the one hand there are displacement errors of roof edges which lead to large

height differences, depending on the height of the adjacent roof. On the other hand the

human operator is able to recognize small superstructurial details on the roofs like el-

evator shafts and air conditioning units which cause height differences usually below

2m. Those small features are sometimes missed by the automatic reconstruction.
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(a) (b) (c)

Fig. 7. Quality assessment with a manually generated ground truth: In (a) and (b) the height fields

for the manually and automatically reconstructed building are shown, in (c) the height differences

are shown. The largest difference in the placement of edges is about two pixels, which is about

30cm.

Fig. 8. The cummulative probabilty distribution of the height difference for manual and automatic

reconstruction. The graph shows the error distribution for 1973 buildings from a data set of Man-

hattan, New York. The left image shows the graphs for height differences up to 100 meters; the

right graph zooms on differences up to five meters.

Detailed views of typical results from the Manhattan data set are shown in Figure 9.

The reconstruction of rectangular buildings is very successful, even though huge por-

tions of their façades are occluded by trees. The integration of surfaces of revolution

realistically models domes and spires (see 9b and 9d). It is important to note that for the

purpose of visualization the surfaces of revolution are converted to triangle meshes by

sampling them regularly (2m radially with 45 degrees of angular separation).

7 Conclusions and Future Work

In this paper we proposed a novell approach to reconstruct building models from aerial

images by combining 3D line segments and dense image matching algorithms with a

global optimization technique. The framework is able to use arbitrary basic geomet-

ric building blocks to describe the roof shape. The proposed surfaces of revolution

elegantly describe domes and spires which are difficult to recover with an approach

based on planes only. The combination of line based features and dense image matching
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(a) (b)

(c) (d)

Fig. 9. Four detailed views of typical results for different types of buildings from the Manhat-

tan data set: (a) rectangular buildings, (b) rectangular building with nicely integrated dome, (c)

skyscrapers in downtown and (d) skyscraper with a spire
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algorithms using a global optimization technique is very promising and is not restricted

to the reconstruction of urban scenes from aerial imagery. Additionally it allows for the

generation of different globally optimal levels of detail.

Future work will involve the investigation of other geometric primitives and methods

to exploit symmetries encountered in common roof shapes like gabled roofs. Further re-

search will be needed to evaluate the possibilities of this approach in other applications

like streetside imagery.
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