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Abstract—Hyperspectral image classification has been an active
topic of research. In recent years, it has been found that light detec-
tion and ranging (LiDAR) data provide a source of complementary
information that can greatly assist in the classification of hyper-
spectral data, in particular when it is difficult to separate complex
classes. This is because, in addition to the spatial and the spectral
information provided by hyperspectral data, LiDAR can provide
very valuable information about the height of the surveyed area
that can help with the discrimination of classes and their separa-
bility. In the past, several efforts have been investigated for fusion
of hyperspectral and LiDAR data, with some efforts driven by the
morphological information that can be derived from both data
sources. However, a main challenge for the learning approaches
is how to exploit the information coming from multiple features.
Specifically, it has been found that simple concatenation or stack-
ing of features such as morphological attribute profiles (APs) may
contain redundant information. In addition, a significant increase
in the number of features may lead to very high-dimensional input
features. This is in contrast with the limited number of training
samples often available in remote-sensing applications, which may
lead to the Hughes effect. In this work, we develop a new efficient
strategy for fusion and classification of hyperspectral and LiDAR
data. Our approach has been designed to integrate multiple types
of features extracted from these data. An important characteristic
of the presented approach is that it does not require any regu-
larization parameters, so that different types of features can be
efficiently exploited and integrated in a collaborative and flexible
way. Our experimental results, conducted using a hyperspectral
image and a LiDAR-derived digital surface model (DSM) collected
over the University of Houston campus and the neighboring urban
area, indicate that the proposed framework for multiple feature
learning provides state-of-the-art classification results.

Index Terms—Digital surface model (DSM), hyperspectral, light
detection and ranging (LiDAR), multiple feature learning.

I. INTRODUCTION

H YPERSPECTRAL imaging is concerned with the extrac-

tion of information from objects or scenes lying on
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the Earth surface, using hundreds of (narrow) spectral bands

typically covering the visible and near infra-red domains [1].

In hyperspectral imaging, also termed imaging spectroscopy

[2], the sensor acquires a spectral vector with hundreds or

thousands of elements from every pixel in a given scene. The

result is the so-called hyperspectral image or hyperspectral data

cube. It should be noted that hyperspectral images are spec-

trally smooth and spatially piece-wise smooth; this means that

the values in neighboring locations and wavelengths are often

highly correlated [3].

Hyperspectral image classification has been a very active

area of research in recent years [4]. Given a set of observa-

tions (i.e., pixel vectors in a hyperspectral image), the goal of

classification is to assign a unique label to each pixel vector

so that it is well defined by a given class. The wider availability

of hyperspectral data with high spatial resolution has been quite

important for classification techniques. However, in some cases,

the spatial resolution of the hyperspectral data is not enough to

separate complex classes such as those present in urban envi-

ronments [4]. This aspect, together with the expected (linear

or nonlinear) mixing happening at subpixel scales [5], compli-

cates the classification process significantly. In some cases, the

data coming from other sources can be used to improve and/or

refine the results of classification. A good example is the use of

light detection and ranging (LiDAR) data [6], which can pro-

vide information about the height of the same surveyed area.

LiDAR has been shown to be a very useful source of data for

classification purposes [7].

In the literature, many techniques have been developed for

fusion of hyperspectral and LiDAR data for classification pur-

poses [8]. In 2013, the Data Fusion Technical Committee of the

IEEE Geoscience and Remote Sensing Society (GRSS) orga-

nized a contest1 involving two data sets: a hyperspectral image

and a LiDAR derived digital surface model (DSM), both at the

same spatial resolution (2.5 m), and two parallel competitions

were established to devise advanced methods for fusion and

classification of hyperspectral and LiDAR data.2 Many other

examples can be found in classification of urban areas [9], but

also in classification of complex forest areas [10]. Techniques

based on morphological features have been quite successful in

the literature. For instance, the methodology in [11] jointly con-

sidered the features extracted by morphological attribute pro-

files (APs) [12] computed on both the hyperspectral and LiDAR

data, and then fused the spectral, spatial, and elevation infor-

mation in a stacked architecture. In [13], it was pointed out that

1[Online]. Available: http://hyperspectral.ee.uh.edu/?page_id=459
2[Online]. Available: http://hyperspectral.ee.uh.edu/?page_id=795
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the simple concatenation or stacking of features such as mor-

phological APs may contain redundant information. The main

challenge in multiple feature learning is that how to adequately

exploit the information containing in these features. In addition,

a significant increase in the number of features may lead to high

dimensionality issues that are in contrast with the limited num-

ber of training samples often available in remote-sensing appli-

cations [14], which may lead to the Hughes effect. To address

these issues, decision fusion techniques have been applied [15].

In this paper, we develop a new strategy for fusing hyper-

spectral and LiDAR data for classification purposes. The main

contribution of our newly proposed approach is its capacity to

integrate multiple types of features extracted using spatial and

spectral information. For the LiDAR data, the DSM provides

rich information in spatial sense, while for the hyperspectral

data, the very rich spectral resolution provides detailed spectral

signatures that can be very useful for classification purposes. A

main characteristic of the presented approach is that it can adap-

tively exploit information from both spatially and spectrally

derived features, thus being able to address practical scenarios

in which different sources of information (spatial or spectral)

may be useful to separate different types of classes. In order to

achieve this goal, the proposed approach has been designed in

a way that it exhibits great flexibility to combine different types

of features without any regularization parameters, thus taking

advantage of the complementarity that the features can pro-

vide without any a priori restrictions. Our presented approach is

thus aimed at exploiting the different properties that both spa-

tial and spectral features can provide. In order to achieve the

desired spectral–spatial integration that is normally expected

in advanced classification problems, we consider morpholog-

ical features as an important part of our framework, which

also exploits the original spectral information contained in the

hyperspectral scene. The integration is achieved by a multiple

feature learning approach based on the subspace multinomial

logistic regression (MLRsub [16]) classifier.

The remainder of this paper is organized as follows.

Section II describes the methodological framework developed

in this work for the fusion of hyperspectral and LiDAR data.

Section III describes our experimental results, conducted using

a hyperspectral image and a LiDAR derived DSM collected

over the University of Houston campus and the neighboring

urban area. This scene was recently used in the IEEE GRSS

contest and, therefore, the results obtained for this scene will

be compared with other several approaches already tested with

these data. Finally, Section IV concludes this paper with some

remarks and hints at plausible future research lines.

II. METHODOLOGICAL FRAMEWORK

In this section, we introduce the proposed approach for the

integration of the hyperspectral and LiDAR data. The pro-

posed approach comprises the following main steps. In the

first step, we use morphological APs [12] to extract the spa-

tial features in the hyperspectral and LiDAR data. Then, in

the second step, we perform classification over all the obtained

spatial features and the original spectral features by using the

MLRsub classifier [16]. We have selected this classifier as it

provides great flexibility for multiple feature learning based on

the logarithmic opinion pool (LOGP) rule [17], while offer-

ing great ability for learning ill-posed problems by projecting

the data into its class-indexed subspace. In this way, by work-

ing in a subspace, the proposed method can adequately handle

the unbalance between the increased dimensionality of the data

(expanded even more after including the morphological APs)

and the very limited availability of training samples in prac-

tice. In a final step, we use Markov random fields (MRFs) [18]

for spatial regularization to promote spatial smoothness in the

final classification result, as indicated in [16]. In the follow-

ing, we present in detail each step of the proposed approach for

classification of hyperspectral and LiDAR data.

A. Feature Extraction by Morphological APs

Let XL ≡ (xL
1 , x

L
2 , . . . , x

L
n) be the DSM derived from

the LiDAR data, where n is the number of pixels in XL.

Similarly, let us denote the hyperspectral image as Xh ≡
(xh

1 ,x
h
2 , . . . ,x

h
n), where xi ∈ R

d, for i = 1, 2, . . . , n, denotes

a spectral vector, n is the number of pixels in Xh, and d is the

number of spectral bands.

In order to perform feature extraction from the hyperspec-

tral and LiDAR data, we use mathematical morphology (MM)

[19], a widely used approach for modeling the spatial char-

acteristics of the objects in remotely sensed images. Using a

structural element (SE) of predefined size and shape, morpho-

logical profile (MP) of a gray-scale image can be generated

by applying morphological opening or closing operations. For

example, by applying an opening operation on the image, the

objects smaller than the size of the SE are removed. Hence,

MP is built by changing the size of the SE and repeating

the opening and closing operations. Advanced MM techniques

such as derivative morphological profiles (DMPs) [20] have

been successfully used for multispectral image classification

by processing the panchromatic band of these instruments.

This strategy has also been extended to hyperspectral image

classification, by extracting the first few principal components

of the data using, for instance, principal component analysis

(PCA) [21] and then building so-called extended morphologi-

cal profiles (EMPs) on the first few PCA components to extract

relevant features for classification [22]. Since redundant infor-

mation is generally present in DMPs and EMPs with high

dimensionality, feature extraction and selection techniques have

been used to extract the most relevant information prior to clas-

sification [23]. Recently, morphological APs [24]–[26] were

introduced as an advanced mechanism to obtain a detailed mul-

tilevel characterization created by the sequential application of

morphological attribute filters that can be used (prior to classi-

fication) to model different kinds of the structural information.

Similar to generating of MPs, in the procedure of construction

of APs, if the measured attribute of an object (e.g., area, vol-

ume, standard deviation, etc.) meets a predefined condition λ,

then that object is kept unchanged; otherwise, it is merged to

the most similar surrounding object. Hence, the merging oper-

ation to the adjacent object of a lower and higher gray level

are called thinning and thickening, respectively. Fig. 1 shows

an example of generating AP based on attribute of area which
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Fig. 1. Example of an AP using attribute of area with conditions λ1 = 100, λ2 = 500, and λ3 = 1000. (a)–(c) AP is composed of thickening images. (d) Original

image. (e)–(g) Thinning images.

can provide information about the size and the shape of objects

in the image. Extended attribute profiles (EAPs) are typically

obtained by generating an AP on each of the first few PCA com-

ponents (or any other features retained after applying feature

selection on the original hyperspectral image), thus building a

stacked vector using the AP on each feature, as illustrated in

Fig. 2. From the EAP definition, the consideration of multiple

attributes leads to the concept of extended multiattribute pro-

file (EMAP) [27] which combines the EAPs by concatenating

them in a single vector of features and improves the capability

in extracting the spatial characteristics of the structures in the

scene, where attribute filtering can be efficiently computed by

applying a Max-tree algorithm [28].

In our specific context, the multiple features available X
are defined as follows: X ≡ (X̃1, X̃2, X̃3, X̃4), where X̃1 =
Xh (i.e., the hyperspectral data); X̃2 = XL (i.e., the LiDAR

data); X̃3 = EMAP(Xh) (i.e., an EMAP built on the first few

PCA components of the original hyperspectal data); and X̃4 =
AP(XL) (i.e., the AP of the LiDAR data). Notice that, for

the LiDAR data, we could only generate its APs as it is a

single-channel DSM image.

B. Probabilistic Classification Using Spectral Features

Let Y ≡ (y1, . . . ,yn) denote an image of labels, yi ≡

[y
(1)
i , y

(2)
i , . . . , y

(k)
i ]T , where k is the number of classes. For

c = 1, . . . , k, if pixel i belongs to class c, y
(c)
i = 1, other-

wise, y
(c)
i = 0. With these definitions in place, let pm(y

(c)
i =

1|(x̃i)m,ωm) be the posterior density associated with feature

X̃m, for m = 1, 2, 3, 4, where ωm is the parameter associated

with the considered classifier.

In the literature, various probabilistic techniques have been

suggested for classification of remote-sensing data. In this

paper, we focus on two techniques: the support vector machine

(SVM) [29]–[31] and MLRsub [16], [32], which have shown

good performance in hyperspectral data classification.

1) SVM Classification Technique: The SVM is originally a

binary hard classifier that separates two classes by using a linear

hyperplane. For finding the separating hyperplane, the train-

ing samples located near the class boundaries (i.e., the support

vectors) that maximize the separation between the two classes

are found, by using a constrained optimization process [29].

An important advantage of SVM algorithm is the possibility

of using a kernel trick in the formulation [33]. In this paper,

we use the multiclass probabilistic SVM method [34], [35]

implemented in the popular LIBSVM library [36], considering

Gaussian radial basis function kernel K((x̃i)m, (x̃j)m) =
exp(−γ‖(x̃i)m − (x̃j)m‖2).

Fig. 2. Graphical illustration of the procedure adopted to construct an EAP

from a hyperspectral image. The EMAP is a combination of EAPs obtained

with different attributes.

2) MLRsub Classification Technique: Using the notations

in this paper, the MLR classifier is given by

pm(y
(c)
i = 1|(x̃i)m,ωm) =

exp
(

ω
(c)
m h((x̃i)m)

)

∑k

c=1 exp
(

ω
(c)
m h((x̃i)m)

) (1)

where h((x̃i)m) ≡ [h1((x̃i)m), . . . , hl((x̃i)m)]T is a vector of

l fixed functions of the input data, often termed as features,

ω
(c)
m is the set of logistic regressors for class c, and ωm ≡

[ω
(1)T

m , . . . ,ω
(k)T

m ]T . The MLRsub combines the classic MLR

formulation with a subspace projection method to cope with

highly mixed hyperspectral data using limited training samples.

The idea of applying subspace projection methods to improve

classification relies on the basic assumption that the samples

within each class can approximately lie in a lower dimensional

subspace. Thus, each class may be represented by a subspace

spanned by a set of basis vectors, while the classification cri-

terion for a new input sample would be the distance from the

class subspace [16]. In [32], a modified version of MLRsub is
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Fig. 3. (a) False color composition of the hyperspectral Houston data. (b) LiDAR-derived DSM for the Houston data. (c) Ground truth available for the considered

hyperspectral/LiDAR Houston data. (d) Training set used in our experiments. The class labels are as follows: 1, Grass healthy; 2, Grass stressed; 3, Grass synthetic;

4, Tree; 5, Soil; 6, Water; 7, Residential; 8, Commercial; 9, Road; 10, Highway; 11, Railway; 12, Parking lot; 13, Parking lot; 14, Tennis court; and 15, Running

track.

proposed for handling both linear and nonlinear mixtures hap-

pening at subpixel level in the data, as it is also common to

have nonlinear mixtures in real data set. In this work, we also

take nonlinearity into account so that the input function h(x̃i)
in (1) is given by

h((x̃i)m) = [‖(x̃i)m‖2, ‖(x̃i)
T
mU(1)

m ‖2, . . . , ‖(x̃i)
T
mU(k)

m ‖2]T

(2)

where U
(c)
m = {(u

(c)
1 )m, . . . , (u

(c)

r(c)
)m} is a set of r(c)-

dimensional orthonormal basis vectors for the subspace asso-

ciated with class c (r(c) ≪ dm, and dm is the dimensionality of

feature X̃m.

C. Probabilistic Classification Using Multiple Spectral and

Spatial Features

According to the LOGP rule [17], which is a decision fusion

scheme that is commonly applied to combine information from

multiple features, for any pixel i = 1, . . . , n, we have

pLOGP(y
(c)
i = 1|(x̃i)1, . . . , (x̃i)4,ω1, . . . ,ω4, α1, . . . , α4)

=

∏4
m=1 pm(y

(c)
i = 1|(x̃i)m,ωm)αm

∑k

c=1

∏4
m=1 pm(y

(c)
i = 1|(x̃i)m,ωm)αm

(3)

where {αm|0 ≤ αm ≤ 1,
∑4

m=1 αm = 1} is a tunable parame-

ter which controls the impact of each feature vector on the final

decision probability. Notice that, for the multiple feature learn-

ing problem in (3), we have two different types of parameters:

1) the logistic regressors ωm and 2) the weight parameter αm.

These parameters are respectively associated with the classifier

and with the features. This leads to difficulties from the view-

point of both their optimization and the overall computational

cost. Learning the weight parameter αm is generally the most

difficult task in the LOGP framework.

In order to relax the difficulty of learning the two differ-

ent types of parameters, in this work, we propose to use the

MLRsub classifier in [16] and [32] to model the posterior den-

sity pm(y
(c)
i = 1|(x̃i)m,ωm). This provides the possibility of

learning the regressors and the weight parameters in combined

fashion, so that we only need to learn one type of parameter.

This greatly lightens the computational cost while relaxing the

optimization problem.

Under the present setup, by embedding the MLRsub model

in (1) into the LOGP framework for multiple feature learning in

(3), we can now obtain

pLOGP(y
(c)
i = 1|(x̃i)1, . . . , (x̃i)m,ω1, . . . ,ω4, α1, . . . , α4)

=
exp

(

∑4
m=1 αmω

(c)
m h((x̃i)m)

)

∑k

c=1 exp
(

∑4
m=1 αmω

(c)
m h((x̃i)m)

) . (4)
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TABLE I

INFORMATION CLASSES AND TRAINING-TEST SAMPLES

TABLE II

COORDINATES

Notice that, in (4), we still have two different types of param-

eters αm and ωm. In general, to learn the joint density (3) or

(4), learning of the weight parameter αm is essential. In [17],

several strategies were provided to learn the weight parameters.

However, as shown in [17] and also as it was mentioned before,

it is very time consuming and difficult to search for the opti-

mal value of αm. However, the MLRsub has the potential to

overcome these difficulties as it provides a different look to the

problem by associating the weight with the regressors instead

of the features, i.e., by letting

ω̃
(c)
m = αmω

(c)
m (5)

the regressors ωm and weight parameters αm are now com-

bined into a new set of regressors ω̃m associated with the

MLRsub classifier. In this way, we avoid the weight parameters

for the features by introducing them into the regressors. This

means that, under this transformation, the weight parameters for

the features will be learnt together with the classifier. This pro-

vides important advantages from the viewpoint of learning: by

transferring the weight parameter used for the features (obser-

vations) to the weight parameter used for the classifier, the

proposed approach joins two different problems (parameter and

classifier learning) into a single one, which represents a main

contribution of this work from the viewpoint of simplifying

and making more natural the process of learning from multi-

ple features (i.e., those derived by the hyperspectral and the

LiDAR data). By introducing the transformation (5), problem

(4) changes to

pLOGP(y
(c)
i = 1|(x̃i)1, . . . , (x̃i)m, ω̃1, . . . , ω̃4)

=
exp

(

∑4
m=1 ω̃

(c)
m h((x̃i)m)

)

∑k

c=1 exp
(

∑4
m=1 ω̃

(c)
m h((x̃i)m)

) . (6)

Notice that problem (6) is able to handle multiple features

with the advantage of having a similar structure as the original

MLRsub method. Therefore, problem (6) can be solved using

the same approach presented in [16], which provides a detailed

optimization framework for learning the logistic regressors. As

the goal of this work is to adequately exploit the informa-

tion coming from hyperspectral and LiDAR data, the proposed

framework in (6) provides a great flexility in handling features

from these two different sources of information, thus being

able to naturally integrate spatial and spectral features with-

out the need for ad hoc weights or regularization parameters.

Although the proposed framework has the ability to integrate

multiple types of features, in this work, we constrain ourselves

to the set X ≡ (X̃1, X̃2, X̃3, X̃4) with X̃1 = Xh, X̃2 = XL,

X̃3 = EMAP(Xh), and X̃4 = AP(XL) as described in the

previous subsection, for the validation of our approach

(although additional features can be included in future devel-

opments of the method).

III. EXPERIMENTAL RESULTS

In our experiments, we have considered two data sets: a

hyperspectral image and a LiDAR-derived DSM, both at the

same spatial resolution (2.5 m). The hyperspectral imagery con-

sists of 144 spectral bands in the 380–1050-nm region and

has been calibrated to at-sensor spectral radiance units, SRU =
µW/(cm2 sr nm). The corresponding coregistered DSM con-

sists of elevation in meters above sea level (per the Geoid

2012A model). The data were acquired by the National Science

Foundation (NSF)-funded Center for Airborne Laser Mapping

(NCALM) over the University of Houston campus and the

neighboring urban area. The LiDAR data were acquired on June

22, 2012, between the time 14:37:55 and 15:38:10 UTC. The

average height of the sensor above ground was 2000 ft. The

hyperspectral data were acquired on June 23, 2012 between

the time 17:37:10 and 17:39:50 UTC. The average height of

the sensor above ground was 5500 ft. For illustrative purposes,

Fig. 3(a) shows a false color composition of the hyperspectral

data. Fig. 3(b) shows the LiDAR derived DSM. Fig. 3(c) shows

the ground truth available for the Houston data, which comprise

15 mutually exclusive classes. Finally, Fig. 3(d) shows the train-

ing set used in our experiments. Table I details the classes and

the number of available training and test samples. The hyper-

spectral/LiDAR data and the ground truth are available online
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TABLE III

CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACIES (%) OBTAINED BY THE SVM AND THE SVM-MRF

FOR DIFFERENT TYPES OF COMBINED FEATURES

The best results for each class are outlined in bold typeface.

for public use, which allows for detailed intercomparisons

among different algorithms.

Tables III and IV show the classification results obtained by

the SVM and MLRsub classifiers, respectively, and the dif-

ferent individual features considered in this work: the original

hyperspectral image (i.e., Xh), the AP built on the LiDAR DSM

data [i.e., AP(XL)], and the EMAP built on the hyperspectral

data [i.e., EMAP(Xh)]. In order to build the EMAP(Xh), we

fixed the number of principal components to be retained to the

number of components that contain more than 98% of the total

variance of the original hyperspectral data, where the obtained

components are scaled to the range [0, 1000] and converted

to integer in order to build the attribute filters. Specifically,

the EMAPs are built using the area (related to the size of the

regions) and standard deviation (which measures the homo-

geneity of the pixels enclosed by the regions) attributes. The

threshold values are chosen in the range {50, 500} with a

stepwise increment of 50 for the area attribute. For the stan-

dard deviation, attribute values ranging from 2.5% to 20% of

the mean of the feature with a stepwise increment of 2.5%

are chosen [11]. Finally, to build the AP(XL), we also used

the area and standard deviation attributes, with the same con-

figuration indicated above, but this time applied to a single

component given by the LiDAR DSM data. Concerning the

probabilistic SVM and MLRsub classifiers, we optimized the

related parameters.

In Tables III and IV, we display the classification results

obtained for individual features, with and without the MRF-

based postprocessing. As shown by Tables III and IV, the orig-

inal spectral information contained in the hyperspectral image

seems to be the most useful type of feature for classification

purposes, while the AP built on the LiDAR DSM is not discrim-

inative enough to separate many of the classes. This is expected,

since the LiDAR DSM alone provides information about height

that is not expected to be able to discriminate between the dif-

ferent urban classes in the considered data. Interestingly, the

EMAP built on the original hyperspectral data is also not as

discriminative as the original spectral information in this exam-

ple. This also comes at no surprise, since the EMAP is mainly

based on the spatial features of the objects, but the classes in

the considered problem are all difficult to discriminate based

on spatial properties only; hence, the use of spectral properties
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TABLE IV

CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACIES (%) OBTAINED BY THE MLRsub AND THE MLRsub-MRF

FOR DIFFERENT TYPES OF COMBINED FEATURES

The best results for each class are outlined in bold typeface.

is quite important. Ideally, the separability of the classes could

improve if we considered multiple features simultaneously.

Additionally, if we compare the results obtained by SVM

with the results obtained by the MLRsub algorithm, we may

conclude that SVM shows better performance for classification

of the different individual features. However, the performance

of the two classifiers for classification of the original hyperspec-

tral image is comparable. Even the MLRsub-MRF has shown

slightly better results in comparison with SVM-MRF for clas-

sification of individual spectral features. This is expected, since

the MLRsub algorithm was originally developed for the classi-

fication of hyperspectral images based on the assumption that

the hyperspectral features lie in a lower dimensional subspace.

The other reason is that SVM is originally a hard classifier and

the estimated class probabilities used in the MRF-based relax-

ation procedure are often not reliable. At this point, it is also

important to reiterate that the main purpose of this paper is

developing a robust technique for improving the classification

of hyperspectral images using other complementary features,

and the MLRsub method shows good potential for this purpose.

On the other hand, Table V shows the classification results

obtained by the proposed framework for multiple feature

learning when different types of features are considered for

the classification. Here, we also reported the results obtained

by the MLRsub and the MLRsub-MRF with spatial post-

processing. The cases considered are as follows: the original

hyperspectral image plus the APs built on the LiDAR DSM

[i.e., Xh +AP(XL)]; the original hyperspectral image plus the

EMAPs built on the same image [i.e., Xh + EMAP(Xh)]; the

APs built of the LiDAR DSM plus the EMAPs built on the orig-

inal hyperspectral image [i.e., AP(XL) + EMAP(Xh)]; and

all the features available [i.e., Xh +AP(XL) + EMAP(Xh)].
As shown in Table V, the combination of multiple fea-

tures always increased the classification results with regard

to the single-feature cases reported in Table IV. In particu-

lar, the classification results improved significantly when the

three considered features Xh, AP(XL), and EMAP(Xh) were

used simultaneously. Interestingly, the combination of AP(XL)

and EMAP(Xh) without using the original spectral informa-

tion in Xh also provided good classification results, which

is interesting since the AP and EMAP are spatially guided

features. However, the combination of Xh and EMAP(Xh)

resulted in the lowest classification accuracies reported in

Table V. This observation is also interesting, since both Xh
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TABLE V

CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACIES (%) OBTAINED BY THE MLRsub AND THE MLRsub-MRF

FOR MULTIPLE FEATURE COMBINATIONS

The best results for each class are outlined in bold typeface.

TABLE VI

STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION ACCURACIES

and EMAP(Xh) are derived from the original hyperspectral

image without including any information about the LiDAR

DSM. In turn, the inclusion of the LiDAR-based AP(XL)

always resulted in an increase in the classification accuracies

reported which indicates that, under the proposed framework,

the LiDAR information represents a source of complementary

information that can improve the analysis of the hyperspectral

data alone.

In order to evaluate the statistical significance of the differ-

ence in accuracy between two classifications, the McNemar’s

test has been widely used in the remote-sensing community

[37]. In this test, a value of |Z| > 1.96 indicates that there is

a significant difference in accuracy between two classification

results. The sign of Z is also a criterion to indicate whether the

first classifier compared is more accurate than the second one

(Z > 0) or vice versa (Z < 0). As it can be seen from Table VI,

the differences in classification accuracies between the case

of using all considered features and the other combinations

are statistically significant. Moreover, in a different scenario,

in order to better evaluate the statistical significance of the
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Fig. 4. Classification maps obtained by the MLRsub for different features. (a) MLRsub classification (79.60%) using the hyperspectral image: Xh. (b) MLRsub

classification (58.08%) using APs built on the LiDAR DSM: AP(XL). (c) MLRsub classification (74.53%) using EMAPs built on the hyperspectral image:

EMAP(Xh). (d) MLRsub classification (87.91%) using the hyperspectral image plus APs built on the LiDAR DSM: Xh +AP(XL). (e) MLRsub classification

(84.40%) using the hyperspectral image plus EMAPs built on the hyperspectral image: Xh + EMAP(Xh). (f) MLRsub classification (86.86%) using APs

built on the LiDAR DSM plus EMAPs built on the hyperspectral image: AP(XL) + EMAP(Xh). (g) MLRsub classification (90.65%) using all the available

features: Xh +AP(XL) + EMAP(Xh).

differences, the McNemar’s test was used for each object class

and Bonferroni correction [38] was applied for McNemar test

values to control the family-wise type-I error rate. We con-

sidered each P value to indicate a significant difference if P
was less than or equal to 0.001. The significant differences

in accuracy between the case of using all considered features

and EMAP(Xh) were the most for the MLR method and the

least for the MLR-MRF method. Furthermore, differences in

accuracy between the case of using all considered features and

Xh were the most significant for the MLR-MRF method and

the least significant for the MLR method.

At this point, it is important to reiterate that the proposed

framework automatically integrates the different sources of

information (spatial and spectral) automatically, and without

the need to set a parameter to control their relative weight in

the final classification result. This is a very important char-

acteristic, as it allows for the integration of multiple features

in a very natural way. In fact, additional features such as
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Fig. 5. Classification maps obtained by the MLRsub-MRF for different features. (a) MLRsub-MRF classification (85.18%) using the hyperspectral image: Xh.

(b) MLRsub-MRF classification (58.26%) using APs built on the LiDAR DSM: AP(XL). (c) MLRsub-MRF classification (77.44%) using EMAPs built on the

hyperspectral image: EMAP(Xh). (d) MLRsub-MRF classification (89.85%) using the hyperspectral image plus APs built on the LiDAR DSM: Xh +AP(XL).
(e) MLRsub-MRF classification (87.86%) using the hyperspectral image plus EMAPs built on the hyperspectral image: Xh + EMAP(Xh). (f) MLRsub-

MRF classification (88.56%) using APs built on the LiDAR DSM plus EMAPs built on the hyperspectral image: AP(XL) + EMAP(Xh). (g) MLRsub-MRF

classification (92.05%) using all the available features: Xh +AP(XL) + EMAP(Xh).

texture, border-related features, etc. could be integrated in

the proposed framework to enhance the obtained classification

results. As shown by our experiments, the classification results

were obtained using a relatively low number of training sam-

ples, and the fact that we increased the number of features

did not decrease but rather increase the classification accu-

racies for the same number of training samples. This is due

to the subspace-based nature of the MLRsub and MLRsub-
MRF classifiers used to obtain the final classification maps.

For illustrative purposes, Figs. 4 and 5, respectively, show

some of the classification maps obtained by using the MLRsub
and the MLRsub-MRF for the considered Houston hyperspec-

tral/LiDAR data. Effective classification results can be observed

in the final maps reported in these figures.

Moreover, using the described data set, we have conducted

another experiment to more carefully analyze the validation set

and the effectiveness of the selected features in the proposed

method. In this experiment, we have randomly selected 10% of

the available labeled samples of each class from the validation

set for training purposes. It is important to mention that in the
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TABLE VII

CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACIES (%) OBTAINED BY THE MLRsub FOR DIFFERENT SELECTION OF FEATURE

COMBINATIONS, USING 10% OF VALIDATION SAMPLES FOR EACH CLASS

The best results for each class are outlined in bold typeface.

original training set, no training samples were selected from

the right part of the image where a large cloud shadow is

present. However, in the validation set, there are a significant

number of samples from this part. Table VII details the aver-

age of the results for this experiment obtained after 30 Monte

Carlo runs. Several conclusions can be obtained from Table VII.

First and foremost, it is remarkable that the proposed multiple

feature learning method showed better performances in com-

parison with using single kind of features, which means that

our proposed method efficiently exploits the information con-

tained in both data sources. More importantly, the performance

improvements reported for the proposed method using all kinds

of suggested features are quite significant. For example, for

the classes Parking lot 2 corresponded to parked vehicles and

Highway in the cloud-covered region, we can see a significant

improvement in the obtained classification result.

IV. CONCLUSION AND FUTURE LINES

In this paper, we have developed a new efficient strategy

for fusion and classification of hyperspectral and LiDAR data.

Our approach effectively integrates multiple types of features

extracted from these data without the need for any regulariza-

tion or weight parameters, so that different types of features

can be efficiently exploited and integrated in a collaborative

and flexible way. In this work, we have considered several

types of spatial and spectral features derived from the origi-

nal hyperspectral image and from the LiDAR-derived DSM,

including the full original spectral information and different

types of MPs calculated for the hyperspectral and the LiDAR

data. Our experimental results, conducted using a hyperspectral

image and a LiDAR-derived DSM collected over the University

of Houston campus and the neighboring urban area, indicate

that the information provided by LiDAR can effectively com-

plement the spectral and the spatial information that can be

extracted from the original hyperspectral data, providing an

increase in the classification accuracies when the LiDAR data

are used as a complementary source of information with regard

to the original hyperspectral data. Although our analysis in this

work has been constrained to a reduced number and type of

features, the proposed framework is completely open and flexi-

ble in its capacity to integrate additional types of (spatial and

spectral) features. As a result, future work will be directed

toward the inclusion of additional types of features such as

texture and border-oriented features. Although our experiments

have been reported for a data set that has been widely used in

the recent literature as it was distributed as part of the IEEE

GRSS Data Fusion contest in 2013, in the future, we will also

conduct further experiments using additional hyperspectral and

LiDAR image pairs and perform comparisons of our approach

with regard to other techniques recently presented for fusing

hyperspectral and LiDAR data.
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