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ABSTRACT

Unlike multispectral (MSI) and panchromatic (PAN) images,

generally the spatial resolution of hyperspectral images (HSI)

is limited, due to sensor limitations. In many applications,

HSI with a high spectral as well as spatial resolution are re-

quired. In this paper, a new method for spatial resolution en-

hancement of a HSI using spectral unmixing and sparse cod-

ing (SUSC) is introduced. The proposed method fuses high

spectral resolution features from the HSI with high spatial res-

olution features from a MSI of the same scene. Endmembers

are extracted from the HSI by spectral unmixing and the exact

location of the endmembers is obtained from the MSI. This

fusion process by using spectral unmixing is formulated as

an ill-posed inverse problem which requires a regularization

term in order to convert it into a well-posed inverse problem.

As a regularizer, we employ sparse coding, for which a dic-

tionary is constructed using high spatial resolution MSI or

PAN images from unrelated scenes. The proposed algorithm

is applied to real Hyperion and ROSIS datasets. Compared

with other state-of-the-art algorithms based on pansharpen-

ing, spectral unmixing and sparse coding methods, the pro-

posed method is shown to significantly increase the spatial

resolution while perserving the spectral content of the HSI.

Index Terms— Fusion, Sparse coding, Spectral unmix-

ing, Hyperspectral images, Multispectral images

1. INTRODUCTION

Remote sensing images have been widely used in different

practical applications such as earth surface monitoring, agri-

culture, forest monitoring, environmental studies and military

applications [1]. The main types of remote sensing images are

panchromatic, multispectral and hyperspectral images. PAN

images have a high spatial resolution and spatial structures

are well defined, but they are limited to one grayscale image

band. MSI have lower spatial resolution than PAN images and

contain a limited number of spectral bands. HSI usually have

lower spatial resolution than MSI and PAN images but have

a high spectral resolution [2, 3]. HSI have been used in many

different practical applications. In various applications, HSI

with high spectral and spatial resolutions are required [2].

In recent years, many techniques have been proposed to

enhance the spatial resolution of HSI or MSI. The first type

of methods are pansharpening methods and are based on the

fusion of MSI (HSI) and PAN images. Two popular groups

of pansharpening methods are component substitution (CS)

and multiresolution analysis (MRA) [4]. The CS family in-

cludes many popular pansharpening approaches such as prin-

cipal component analysis [5] and Gramm-Schmidt orthogo-

nalization [6, 7]. The MRA approach is based on the injec-

tion of spatial details of the PAN image into the MSI (HSI),

which are obtained through a multiscale decomposition (such

as decimated wavelet transform [8], Laplacian pyramid [9],

curvelets [10, 11] etc.). In general, pansharpening methods

are not suited for the fusion of HSI and PAN images or HSI

and MSI, because the spectral range of a HSI is not covered

by the PAN image or the MSI, which causes spectral distor-

tion. In addition, these methods have high computational load

because of the high dimensionality of the HSI [12].

Recently, new techniques have been proposed specifically

for spatial resolution enhancement of HSI based on the fusion

of HSI and MSI. Some of these methods are based on sparse

coding [2, 13, 14]. In these methods, the initial dataset is spa-

tially patched into sub images and sparse coding is applied

to each sub image, by constructing a dictionary. However,

in these methods the dictionary doesn’t consider the spectral

correlation of the HSI and spectral distortion is introduced in

the reconstructed images.

In order to overcome this limitation, spectral unmixing

methods can be used [15–18]. In the linear spectral unmix-

ing model (LMM), mixed pixel spectra are decomposed into

endmembers and abundance fractions [19]. Using this model,

one can assume that spectral and spatial features are repre-

sented by endmembers and abundance fractions respectively.

However, unmixing does not determine the exact location of

the endmembers. For this, an image with a higher spatial

resolution than the HSI can be used. If a MSI of the same

scene is available, it should contain the same endmembers.

Several HSI resolution enhancement methods are based on



this. In [18], high resolution HSI (HRHSI) are obtained using

spectral features of the HSI represented by endmembers, and

spatial features of the MSI represented by abundance frac-

tions. However, in these methods, the number of endmembers

is limited to be smaller than the number of MSI bands. There-

fore in [20], local spectral unmixing (LSU) is used, where

the HSI and MSI are partitioned into patches and the end-

members are independently extracted from each patch. An-

other method for the spatial resolution enhancement of HSI

is Coupled Nonnegative Matrix Factorization (CNMF) [21],

in which both HSI and MSI are alternately unmixed by NMF

[22] and, taking into account the sensor observation models,

the HRHSI image is produced by the endmember spectra of

the HSI and the abundance fractions of the MSI. Generally,

the spectral distortion in methods based on LSU is low but a

lower spatial resolution is obtained in comparison to sparse

coding methods.

In this paper, a new method for spatial resolution enhance-

ment of HSI is proposed, based on the fusion of HSI and MSI

using the LMM. In the proposed method, the HRHSI recon-

struction problem is formulated as a linear inverse problem

(LIP). A LIP is generally ill-posed and does not have a unique

solution. A regularization term needs to be included to con-

vert it into a well-posed inverse problem. In the proposed

method, the regularization term is constructed based on sparse

coding, for which dictionary is constructed by several high

spatial resolution MSI or PAN images which are unrelated to

the HSI. In this way, a method is obtained that simultaneously

makes use of the LMM to avoid spectral distortion and sparse

coding to optimize the spatial resolution improvement.

The proposed spectral unmixing and sparse coding algo-

rithm (SUSC) is applied to real datasets and compared with

state-of-the-art algorithms using pansharpening [6, 7, 23],

sparse coding [13], LSU [20] and CNMF [21]. The results

obtained by SUSC are superior to these methods from the

state of the art. The rest of the paper is organized as follows.

In Section 2, the proposed method is described. Section 3

presents the experimental results and Section 4 concludes the

paper.

2. PROPOSED METHOD

We assume that a HSI and a MSI or Pan image of the same

scene are available. As a first step, before the introduction of

the proposed method, pre-processing is performed to reduce

the noise in the HSI. For this, we apply a recently proposed

method, presented in [24].

Then, LMM is applied. In this model, the endmembers

are extracted using the spectral properties of the low reso-

lution HSI (LRHSI, which is the observed HSI). After that

the initial abundance fractions are calculated using the spa-

tial properties from the MSI. From this, an initial estimate of

the HRHSI is obtained. The proposed fusion method then

iteratively updates the abundance fractions. At the end, the

spectrum of each HRHSI pixel is reconstructed based on the

LRHSI endmembers.

The fusion process of the HSI and MSI is formulated as

an ill-posed inverse problem. A regularization term is used to

convert it into a well-posed inverse problem. The regulariza-

tion term is constructed based on sparse coding. We construct

a proper dictionary with several high spatial MSI or PAN im-

ages from unrelated scenes. Based on this dictionary and the

initial HRHSI obtained from LMM, the sparse coding is esti-

mated. By using the sparse coding as the regularization term,

the abundance fractions are calculated by solving the well-

posed inverse problem. The final HRHSI is obtained from the

obtained the abundance fractions and the endmembers. In the

following, we will explain the different steps of the procedure

in more detail.

2.1. OBSERVATION MODELS

Let us first define the observation models. In general, HSI and

MSI have three dimensions, two spatial dimensions and one

spectral. For notational convenience, these images are con-

verted to two dimensions [12]. If we define Z as the HRHSI

(desired image), Yh as the low spatial resolution HSI and Ym

as the MSI from the same scene, their relationship can be ex-

pressed as [21]:

Yh = ZBM +Nh;Z ∈ R
Lh×nm , B ∈ R

nm×nm , (1)

M ∈ R
nm×nh , Yh ∈ R

Lh×nh , NH ∈ R
Lh×nh

Ym = RZ +Nm;Ym ∈ R
Lm×nm , R ∈ R

Lm×Lh , (2)

Nm ∈ R
Lm×nm , Lm ≪ Lh, nh ≪ nm

Eq.2 models the relationship between the HRHSI Z (with Lh

bands and nm pixels) and the LRHSI Yh (size Lh×nh). B is

a spatial blurring matrix representing the hyperspectral sen-

sors point spread function. Matrix M accounts for a uni-

form subsampling of the HRHSI. Eq.3 models the relation-

ship between Z and the high spatial resolution MSI Ym (size

Lm × nm). R holds in its rows the spectral responses of

the multispectral instrument. In practice, the information that

is available about the spatial and spectral responses is often

scarce or somewhat inaccurate. For example, there may be

discrepancies between the real spatial and spectral responses

and the data supplied by the manufacturers [12]. Therefore,

in the proposed method the matrices B and R are estimated

from the observed images using the method presented in [12].

Nh, Nm are Gaussian noises with zero mean and variance δ2h,

δ2m respectively.

2.2. SPECTRAL UNMIXING MODEL AND DIMEN-

SION REDUCTION

The first step is the use of the LMM:

Z = EX +N (3)



where E ∈ RLh×P (P represents the number of endmem-

bers) is the endmember signature matrix that can be e.g.

extracted by Vertex Component Analysis (VCA) [25] or N-

FINDR [26], X ∈ R
P×nm is the abundance fraction matrix

and N ∈ R
Lh×nm represents the noise matrix. By substi-

tuting Eq.3 into the observation models defined by Eq.2 and

Eq.3, we have approximately:

Yh ≈ EXh, Xh = XBM (4)

Ym ≈ EmX,Em = RE (5)

According to Eq.3, the construction of Z requires the end-

members and abundance fractions. From Eq.4, we deduce

that the HRHSI has the same endmembers as the HSI, and

the abundance fractions of the HSI are obtained from the spa-

tially degraded abundance fractions of the HRHSI. Therefore,

the required endmembers can be extracted from the original

HSI. A superresolution method then only requires the deter-

mination of the abundance fractions. An initial estimate of

these fractions is obtained from the MSI by using Eq.5. In

this work, we use the variable splitting and augmented (SUN-

SAL) algorithm [27] to do so. That the endmembers can be

directly obtained from the HSI, not only means a reduction in

the computational load, but the final HRHSI is also expected

to have low spectral distortion.

2.3. OPTIMIZATION PROBLEM

The fusion of the the HSI and the MSI is formulated as a LIP:

argmin
X

1

2
‖Yh − EXBM‖

2
F+

λm

2
‖Ym −REX‖

2
F+

λ

2
ϕ(x)

(6)

where ϕ(x) is a regularization term. The inverse problem

of Eq.6 can be ill-posed or well-posed, depending on the re-

duced dimension of the images and the number of spectral

bands [28]. If the product of the matrices R and E has a

full column rank, the LIP problem is well-posed. However, if

there are fewer bands in the MSI than the number of endmem-

bers, the matrix (RE) cannot have full column rank, which

turns the LIP problem in an ill-posed one. In this paper Eq.6

is assumed to be an ill-posed LIP. Therefore, a regularization

term is required. The first two terms are the fidelity terms,

describing that the estimated image is able to explain the ob-

served data according to the models defined in Eqs.4 & 5. The

last term is the regularizer. The parameters λm and λ control

the relative importance of the various terms [12].

2.4. SPARSE CODING

Although image content can vary greatly from image to im-

age, the micro-structures of images can be represented by a

small number of structural primitives (e.g., edges, line seg-

ments and other elementary features). These micro-structures

are the same for all images [2]. Sparse coding relies on this

observation by constructing a dictionary of such primitives

from a number of images and uses this dictionary to recon-

struct a specific image from the smallest number of dictionary

atoms.

In the proposed method, we use the concept of sparse cod-

ing for the regularization. A dictionary (φ) is constructed with

micro-structures of unrelated MSI or PAN images of high spa-

tial resolution. Then, a sparse code (S) for the HRHSI is cal-

culated from the smallest number of dictionary atoms, where

each pixel is represented by a linear combination of a few

atoms. The optimization problem becomes:

argmin
X,S

1

2
‖Yh − EXBM‖

2
F +

λm

2
‖Ym −REX‖

2
F + (7)

λ

2
‖φS − EX‖

2
F

Usually, to generate the dictionary, the images are di-

vided into several patches. Also, in order to construct the

image with this dictionary, it is divided into several patches

which are separately reconstructed by the dictionary atoms.

In recent literature, overcomplete dictionaries with dimen-

sions larger than the image dimensions have been consid-

ered. Different methods such as Online Dictionary Learning

(ODL) [29] and Kmeans- Singular Value Decomposition

(K-SVD) [30] have been developed for constructing an over-

complete dictionary. There is no unique rule to select the dic-

tionary size and the number of atoms. Generally, the smaller

the patches, the more atoms can be determined. However,

too small patches are not efficient to properly capture the tex-

tures, edges, etc. With larger patch sizes, a larger number of

atoms is required to guarantee the overcompleteness (which

requires a larger computational cost). In general, the size

of the patches is empirically selected [28]. In the proposed

method, the dictionary was produced by the K-SVD algo-

rithm, trained on a dataset of 10000 patches with size 8 × 8.

Those patches are taken from an arbitrary set of natural im-

ages (unrelated to the test images). In fact, the resolution of

these images should be sufficiently high to capture the image

details. As an example, MSI from the Advanced Land Imager

(ALI) sensor are shown in Fig.1. The constructed dictionary

by using the K-SVD algorithm is shown in Fig.2.

After constructing the proper dictionary, the HRHSI can

be obtained from a linear combination of a small number of

atoms from the dictionary. The matrix with the obtained co-

efficients is called the sparse code [31]. It is obtained by:

Ŝ , argmin
S

1

2
‖Zinitial − φS‖

Subject to ‖S‖0 ≤ K (8)

where K is the number of atoms needed for reconstructing

Zinitial patches. Zinitial can be estimated by interpolation

[16], but in the proposed method, it is obtained from Eq.3. For

introducing sufficient sparsity, K is chosen much smaller than



Fig. 1: MSI used to construct the dictionary.

Fig. 2: Dictionary trained from the MSI of Fig. 1.

the number of dictionary atoms. In this paper, the sparse code

is estimated by Orthogonal Matching Pursuit (OMP) [32].

With the proposed regularization term, the LIP can be

rewritten as:

argmin
X,Ŝ

1

2
‖Yh − EXBM‖

2
F +

λm

2
‖Ym −REX‖

2
F + (9)

λ

2

∥

∥

∥
φŜ − EX

∥

∥

∥

2

F

2.5. SOLVING THE LINEAR INVERSE PROBLEM

The optimization problem Eq.9 can be solved by alternating

optimizing w.r.t. the abundance matrix X and the sparse code

(Ŝ). The optimization w.r.t. X is achieved by the the Split

Augmented Lagrangian Shrinkage Algorithm (SALSA) [33].

In SALSA algorithm an auxiliary variable besides the origi-

nal optimization variable X is considered. By this algorithm,

Eq.9 becomes:

argmin
X,Ŝ

1

2
‖Yh − EV1M‖

2
F +

λm

2
‖Ym −REV2‖

2
F + (10)

λ

2

∥

∥

∥
φŜ − EV3

∥

∥

∥

2

F

Subject to V1 = XB,V2 = X,V3 = X

The augmented Lagrangian associated with the optimization

of X can be written as [34]:

L(X,V1, V2, V3, G1, G2, G3) =
1

2
‖Yh − EV1M‖

2
F +

µ

2
‖XB − V1 −G1‖

2
F +

λm

2
‖Ym −REV2‖

2
F

+
µ

2
‖X − V2 −G2‖

2
F +

λ

2

∥

∥

∥
φŜ − EV3

∥

∥

∥

2

F
+

µ

2
‖X − V3 −G3‖

2
F (11)

where G is the so-called scaled dual variable and µ is a pos-

itive constant penalty parameter. The optimal X is evaluated

by Eq.11, and the sparse code is estimated by Eq.8. This pro-

cess is repeated until a stopping criterion, in this case a max-

imal number of iterations, (max-iteration) is obtained. The

pseudo-code of the proposed algorithm is summarized in the

following:

In the proposed method, we make two assumptions. The

first assumption is that the real datasets contain pure pixels

(or endmembers). By this assumption, VCA is used for end-

member extraction. If HSI do not contain pure pixels, other

methods such as minimum volume constrained non-negative

matrix factorization [35], the minimum volume simplex algo-

rithm [36], the convex analysis-based minimum volume en-

closing simplex algorithm [37] or simplex identification via

split augmented Lagrangian [38]) can be used for virtual end-

member extraction. The second assumption is that the num-

ber of endmembers equals the number of multispectral bands.

If the number of endmembers is larger than the number of

MSI bands, the HSI and MSI are patched until this assump-

tion is met (the number of endmembers can be obtained using



Algorithm 1 Pseudo-code of SUSC

Input: Yh,Ym, R, B, M , λm, λ, µ,max-iteration.

Yh: LRHSI, Ym: MSI.

R = spectral response matrix, B = spatial blur matrix, M = down-sampling matrix.

Output: Z (HRHSI).

1- Apply VCA to LRHSI in order to extract E and calculate the initial abundance fractions using SUNSAL.

2- Construct dictionary from high resolution MSI using K-SVD.

3- Extract sparse code matrix using OMP.

For T = 1, 2, ...,max-iteration.

4- optimize X using SALSA (∗)

5- optimize S using Eq.8

END

6- Z = EX

END

(∗) Optimize X using SALSA (Eq.11)

A. Initialization: V 0
1 , V 0

2 , V 0
3 , G0

1, G0
2, G0

3

For K = 0, 1, ..., stopping rule do (
∥

∥Xk+1 −Xk
∥

∥ < ε)
B. Optimize w.r.t. X:

Xk+1 = [(V
(K)
1 +G

(K)
1 )BT + (V

(K)
2 +G

(K)
2 ) + (V

(K)
3 +G

(K)
3 )][BBT + 2I]−1

C. Optimize w.r.t. V1, V2, V3:

V
(K+1)
1 M = [ETE + µI]−1[ETYh + µ(X(k+1)B −Gk

1)]M

V
(K+1)
2 = [λmETRTRE + µI]−1[λmETRTYm + µ(X(k+1)B −Gk

2)]

V
(K+1)
3 = [λmETE + µI]−1[λETφŜ + µ(X(k+1)B −Gk

3)]
D. Optimize w.r.t. G1, G2, G3:

G
(K+1)
1 = GK

1 − (X(K+1)B − V
(K+1)
1 )

G
(K+1)
2 = GK

2 − (X(K+1) − V
(K+1)
2 )

G
(K+1)
3 = GK

3 − (X(K+1) − V
(K+1)
3 )

END

E. Zinitial = EX

HySIME [39]) and the proposed method is applied to each

patch separately.

2.6. COMPLEXITY ANALYSIS

The SALSA algorithm has a complexity of O1(Pnitnmlog(Pnm)),
where nit is the number of SALSA iterations, P is the

number of endmembers and nm is the total number of pix-

els [28, 34]. The computational complexity of the sparse

coding is O2(KnpLh), where K is the number of dictionary

atoms and np is the patch size. Therefore, the complexity

of the proposed algorithm is Nth(O1(Pnitnmlog(Pnm)) +
O2(KnpLh)), where Nth is max-iteration.

3. EXPERIMENTS AND RESULTS

3.1. Quality Indices

In order to validate the quality of the obtained HRHSI, four

image quality measures have been applied, based on the com-

parison with a high resolution ground truth hyperspectral im-

age ZG. The first index is the Peak Signal-to-Noise Ratio

(PSNR):

PSNR =

Lh
∑

i=1

10log10

(

Max2

i

MSEi

)

Lh

,

MSEi =
1

nm

nm
∑

j=1

(

ZGi,j
− Zi,j

)2
(12)

where Maxi is the maximum pixel value in the ith band. nm

is the number of pixels and Lh is the number of bands.

The second index is the Spectral Angle Mapper (SAM)

that measures the spectral distortion between the recon-

structed image and the actual ground truth image:

SAM =
1

nm

nm
∑

j=1

arccos

(

Z:,j , Z
T
G:,j

‖Z:,j‖2
∥

∥ZG:,j

∥

∥

2

)

(13)

where Z:,j and ZG
:,j

are the spectra of pixel j of the estimated

and ground truth image respectively.

The third index is the Error Relative Global Dimensional

Synthesis index (ERGAS) which is also a measure for the



amount of spectral distortion in the images [40]:

ERGAS = 100
1

d

√

√

√

√

1

Lh

Lh
∑

i=1

MSE
(

Zi,:, ZGi,:

)

µ2
ZGi,:

(14)

where d is the ratio between the spatial resolutions of the HSI

and MSI. Zi,: and ZGi,:
are the ith bands of the reconstructed

and ground truth images, respectively. µZGi,:
is the mean of

ZGi,:
. For a perfectly reconstructed image, ERGAS = 0.

The fourth index is the Cross Correlation (CC), which is

a spatial measure for the geometric distortion:

CC =
1

Lh

Lh
∑

i=1

CCS
(

ZG
i,:
, Zi,:

)

(15)

where CCS is the cross correlation of 2 single-band images,

defined as:

CCS(ZGi,:
, Zi,:) =

nm
∑

j=1

(ZGi,j
− µZG

i,:
)(Zi,j − µZi,:

)

√

nm
∑

j=1

(ZGi,j
− µZG

i,:
)
2
(Zi,j − µZi,:

)
2

(16)

The ideal value of CC is one.

3.2. DATA SET

The proposed method has been applied to two real datasets.

The first dataset was acquired by the reflective optics system

imaging spectrometer (ROSIS) optical sensor over the urban

area of the University of Pavia, Italy1. The image size is 610×
610× 103 with a spatial resolution of 1.3m. For these HSI, a

MSI of the same scene does not exist. Therefore, we generate

a MSI of four band by filtering the HSI with the IKONOS-

like reflectance spectral responses. With these, R and B is

estimated as in [12]. In fact, the IKONOS satellite captures

both a panchromatic (0.45-0.90 µm) and four multispectral

bands (0.45-0.52, 0.52-0.60, 0.63-0.69 and 0.76-0.90 µm).

On the HSI, the water vapor absorption bands are re-

moved. The obtained HSI is applied as the ground truth image

with high spatial and spectral resolutions. For constructing a

low spatial resolution HSI (LRHSI), Gaussian blurring (B)

(with dimension7 × 7 and σ = 1.5) is applied to the ground

truth images and the blurred images are down-sampled by a

factor of 4 (M ). For the simulations, ground truth subimages

are selected with size 120 × 120 × 93 leading to LRHSI

with size 30 × 30 × 93 and MSI with size 120 × 120 × 4.

For the dictionary, twenty PAN QuickBird images2 with a

spatial resolution 0.7m, which are unrelated and do not over-

lap with the test images have been used. These images are

down-sampled by a mean filter with a factor of 2 in order to

1 http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes
2 Available at http://glcf.umd.edu/data/quickbird

have the same spatial resolution as the HRHSI. Fig.3 shows

for one of the subimages band 10 of the ground truth image

and the LRHSI, band 2 of the MSI and the Panchromatic im-

age. SUSC is applied to these images and the reconstructed

HRHSI is compared with the ground truth images.

The second dataset contains images taken above Shi-

raz city in Iran, and was obtained by two instruments, the

Hyperion instrument and the Advanced Land Imager (ALI)
3 . Hyperion is a hyperspectral imager with a spatial res-

olution of 30m, the entity ID of the Hyperion image is

EO1H1630392004316110PV -1R1. It has size 3858 ×
256 × 242 . The ALI instrument provides MSI and PAN of

the same scene at resolutions of 30 and 10 meters, respec-

tively. The MSI are used in our experiment. The entity ID of

the ALI data is EO1A1630392004316110PV -1GST . It has

size 4241× 256× 10.

First the HSI and MSI are geometrically co-registered.

Then the water absorption bands (1-7, 58-76, 121-128, 165-

180, 221-242) are removed from the HSI and it is denoised

using [24]. A LRHSI is constructed from it in the same way

as described for the first dataset. Also, since the original

HSI and MSI of this dataset have the same resolution, we

set B = I and estimate R. In the simulations, ground truth

images are selected with size 120 × 120 × 170 and LRHSI

with size 30 × 30 × 170 and MSI with size 120 × 120 × 9
are obtained. Fig.4 shows for one of the subimages band 170

of the ground truth image and the LRHSI and band 2 of the

MSI. The proposed algorithm is applied to these images and

the reconstructed HRHSI are compared with the ground truth

images.

In the proposed method, VCA is used for endmember ex-

traction. Since VCA is not robust, we performed ten runs of

the algorithm, and report the average of the corresponding re-

sults. The number of endmembers is equal to the number of

MSI bands. For constructing the dictionary the PAN images

are converted to 10000 patches with size of (8× 8). Then 40

atoms of the dictionary are used for constructing the HRHSI.

For solving the optimization problem, the regularization pa-

rameters are selected as: λm = 1 and µ = 5× 10−2 for both

datasets [12, 28]. In order to select an appropriate value of

λ, the performance of the proposed algorithm has been evalu-

ated as a function of λ. Fig.5 and Fig.7 display the results for

the first and second dataset respectively. The optimal value of

λ is found to be one.

3.3. Comparison with other fusion methods

The proposed method is compared with state-of-the-art algo-

rithms:

1) Pansharpening methods. For the spatial resolution

enhancement of HSI, the Gramm-Schmidt (GS) procedure

of [6], the adaptive GS method (GSA) of [7], the smooting

filter-based intensity modulation method (SFIM) of [23] and

3 Available at http://earthexplorer.usgs.gov/



a Modulation Transfer Function Generalized Laplacian Pyra-

mid with High-Pass Modulation (MTF GLP HPM) from [41]

are applied to the first dataset along with the proposed SUSC

method. All the methods are implemented in Matlab on a

computer with an Intel(R) Core(TM) i5-3210 processor (3.1

GHz), 4GB of memory and a 64-bit Operating System.

Fig. 3 shows the obtained results for one specific subim-

age. Table 1 displays the quality measures. In Fig.6 the

PSNR, ERGAS and CC values are shown in function of the

wavelength (0.4 to 0.9 µm). The simulation results show

that in component substitution-based fusion techniques (GS,

GSA), the spatial resolution of the reconstructed image is

low and the spectral distortion is high, because of the spec-

tral mismatch between the PAN image and the HSI spectral

range. In the multiresolution analysis approaches (SFIM,

MTF GLP HPM) the spatial resolution is low but the spec-

tral distortion is lower than with the CS methods. The recon-

structed images by the proposed method SUSC are visually

very close to the ground truth images. As is shown in Table 1,

the spectral distortion is the lowest in the proposed method.

The required computing time of the proposed method how-

ever is much higher than the Pansharpening methods. The

construction of the dictionary and the estimation of the sparse

code take a considerable amount of time. Moreover, the

method iteratively updates the abundance fractions and the

sparse code, which makes the proposed method time consum-

ing.

2) Spectral unmixing and sparse coding methods. The

Sparse Coding method (SC) from [13], CNMF from [21] and

Local Spectral Unmixing (LSU) from [20] are applied to the

second dataset. In CNMF, the maximum number of iterations

in the inner and outer loops is selected as 10 and 300, respec-

tively. In LSU, the image is divided into several patches, the

proper size for the patches is related to the number of end-

members in each patch. In the experiment, different patch

sizes were applied. Using SUSC, the same parameters as in

the first dataset are applied.

Quality measures and computing time for the proposed

algorithm and the other algorithms are reported in Table 2.

Fig. 4 shows results for band 170 of a specific subimage.

The simulation results show that sparse coding produces high

spatial resolution HRHSI, because of the use of the high spa-

tial resolution dictionary, but spectral distortion occurs. Us-

ing, LSU and CNMF, the spectral distortion is lower than for

sparse coding, but the spatial resolution is limited. The recon-

structed image by the proposed method is visually very close

to the ground truth image.

The PSNR, ERGAS and CC in function of the wavelength

(0.4 to 2.5 µm) are shown in Figs.8-10 respectively. Fig.11

shows the spectra of pixel (1,100) in the ground truth and re-

constructed image; the spectral distortion value is lowest in

the proposed method. In the proposed method, spectral un-

mixing is used to preserve the spectral content of the HSI

and sparse coding is used to enhance the spatial resolution

of the HSI. Therefore, the reconstructed HRHSI have, simul-

taneously, a higher spatial and spectral resolutions compared

to the other methods.

4. CONCLUSION

In this paper a new method for enhancing the spatial reso-

lution of HSI based on fusion with MSI is proposed. The

method combines the spectral mixing model to reduce spec-

tral distortions with sparse coding to inject high spatial infor-

mation from a dictionary of unrelated high spatial resolution

images. The problem is expressed as a linear inverse problem

with the sparse coding as regularizer. The inverse problem is

solved by iteratively updating the abundance fractions using

SALSA and the sparse code using Orthogonal Matching Pur-

suit. Based on the visual and quantitative results, in the pro-

posed method, the spatial resolution is significantly enhanced

and the spectral distortion of the reconstructed image is low

compared to state of the art reconstruction techniques based

on local unmixing and sparse coding. In the future our aim is

to reduce the computational complexity of the proposed algo-

rithm.
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Table 1: simulation results of the different methods for the ROSIS dataset.

Method PSNRdB SAM0 ERGAS CC time

GS [6] 31.7388 4.3550 3.9310 0.9406 1.09

GSA [7] 30.0771 5.7625 4.5955 0.9135 1.22

SFIM [23] 30.0419 4.6117 3.7014 0.9396 0.80

MTF GLP HPM [41] 30.4563 4.6388 3.7988 0.9396 0.95

Proposed method (SUSC) 32.3052 3.2560 2.3815 0.9833 551.36

(a) Ground truth image (b) LRHSI (c) MSI (band 2) (d) PAN image

(e) GS (f) GSA (g) SFIM (h) MTF-GLP-HPM

(i) Proposed method (SUSC)

Fig. 3: (a): Band 10 of the ROSIS ground truth image; (b): LRHSI; (c): band 2 of the MSI; (d): PAN image; (e)-(i): Spatial resolution

enhancement results of band 10 of the HSI.



(a) Ground truth (b) LRHSI (c) MSI (band 2) (d) Sparse coding

(e) Spectral unmixing (f) LSU (15× 15) (g) LSU (10× 10) (h) LSU (5× 5)

(i) CNMF (j) Proposed method (SUSC)

Fig. 4: (a): Band 170 of the Hyperion ground truth image; (b): LRHSI; (c): band 2 of the MSI; (d)-(j): Spatial resolution enhancement results

of band 170 of the HSI.

Table 2: simulation results of different methods for the Hyperion dataset.

Method PSNRdB SAM0 ERGAS CC
Times

(in second)

Sparse Coding [13] 31.4750 7.2975 5.1038 0.9518 143.55

Spectral Unmixing [20] 30.8580 3.4904 1.7093 0.9872 58.82

CNMF [21] 31.8062 2.4170 1.5556 0.9919 61.69

Local Spectral Unmixing

(15× 15) [20]
32.1964 2.9629 1.4837 0.9876

57.73

Local Spectral Unmixing

(10× 10) [20]
32.0751 2.9576 1.4996 0.9874

93.35

Local Spectral Unmixing

(5× 5) [20]
31.9046 2.9539 1.5210 0.9866

65.14

Proposed method (SUSC) 34.5155 2.2376 1.1298 0.9916 617.38
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Fig. 9: ERGAS in function of wavelength for the Hyperion dataset.
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