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Abstract

This article presents a novel method for the enhancement of the spatial quality of hyperspectral (HS) images through

the use of a high resolution panchromatic (PAN) image. Due to the high number of bands, the application of a

pan-sharpening technique to HS images may result in an increase of the computational load and complexity. Thus a

dimensionality reduction preprocess, compressing the original number of measurements into a lower dimensional

space, becomes mandatory. To solve this problem, we propose a pan-sharpening technique combining both

dimensionality reduction and fusion, making use of non-linear principal component analysis (NLPCA) and Indusion,

respectively, to enhance the spatial resolution of a HS image. We have tested the proposed algorithm on HS images

obtained from CHRIS-Proba sensor and PAN image obtained from World view 2 and demonstrated that a reduction

using NLPCA does not result in any significant degradation in the pan-sharpening results.

Introduction
Generally, for satellite images, the highest spatial res-

olution is captured by the panchromatic (PAN) image.

However the drawback of the PAN image is that it has

no spectral information beyond that which is averaged

within the bandpass of the PAN image. Unlike a PAN

image, multispectral (MS) and in particular hyperspec-

tral (HS) satellite images cover a wider spectral range with

moderate to high resolution. However, as compared to

MS images, HS images have a better spectral resolution,

that may result in a very high number of bands having

low spatial resolution. For better utilization and interpre-

tation, HS images having both high spectral and spatial

resolution are desired. This can be achieved by making

use of a high spatial resolution PAN image along with low

resolution HS images in the context of pan-sharpening.

Pan-sharpening, or image fusion, is the process of

improving the spatial quality of a low spatial resolution

image (HS or MS) by fusing it with a high resolution PAN

image [1,2]. One of the main challenges in image fusion is

to improve the spatial resolution i.e. spatial details, while
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preserving the original spectral information. This requires

addition of spatial details to each band of the image.

Due to the high number of bands the pan-sharpening

of HS images results in an increased computational load

and complexity. Thus a dimensionality reduction prepro-

cess, compressing the original number of measurements

into a lower dimensional space, becomes mandatory [3].

Among image fusion methods, the most popular are those

based on the substitution approach, such as intensity-hue-

saturation transformation (IHS) and principal component

analysis (PCA) [4]. Among these, PCA approaches are

commonly applied to HS images. PCA approaches are

based on the assumption that the first principal compo-

nent PC collects the information that is common to all

the bands. The fusion is achieved by substituting the first

PC band with the PAN image, whose histogram has pre-

viously been matched with that of PC band. In this way

the spatial information is encapsulated in the histogram

matched PAN image, while the spectral information that

is specific to each spectral band is contained in the other

principal components. In this case the dimensionality

reduction is performed discarding the less relevant princi-

pal components. This means that the image resulting from
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the inverse transformation will not have the same infor-

mation of the original one, resulting in a strong spectral

distortion. In this article, we propose a new approach to

enhance the spatial resolution of a HS image combining

both non-linear principal component analysis (NLPCA)

and Indusion for dimensionality reduction and fusion,

respectively. In particular NLPCA is applied to reproject

the original data into a lower space, thus the derived non-

linear principal components are then enhanced accord-

ing to the Indusion process. Finally, the inverse NLPCA

reprojects the enhanced components back to the original

dimensionality, resulting in a spatially enhanced HS image

having a similar spectral characteristic of the original one.

The article is organized as follows. In Sections

“Dimensionality reduction” and “Image fusion” the

NLPCA and Indusion are described, respectively. Section

“Experimental results” presents experimental results

obtained by applying the proposed approach to three dif-

ferent datasets, while conclusions are drawn in Section

“Conclusion”.

Dimensionality reduction
The main difficulty in processing HS images is that the

number of bands can vary from several tens to sev-

eral hundreds. Applying a pan-sharpening technique to

each band of the HS image, can lead to a dramatic

increase of the computational time of the entire pro-

cess. Hence, while enhancing the spatial resolution of a

HS image, it is generally desirable to reduce the num-

ber of bands. Another important property is that the

reduction method should allow a complete reconstruc-

tion of the original spectral information content. Conse-

quently, the dimensionality reduction should seek to avoid

loosing relevant spectral information from the original

dataset.

In the literature, many methods have been developed

to tackle the issue of high dimensionality of HS data

[5]. Summarizing, we may say that dimensionality reduc-

tion methods can be grouped into two classes: “feature-

selection” algorithms (which suitably select a sub-optimal

subset of the original set of features while discarding the

remaining ones) and “feature extraction” by data trans-

formation (which projects the original feature space onto

a lower dimensional subspace that preserves most of the

information) [6].

Feature selection techniques can be generally consid-

ered as a combination of both a search algorithm and a

criterion function [7-11]. The solution to the feature selec-

tion problem is offered by the search algorithm, which

generates a subset of features and compares them on the

basis of the criterion function. On the other hand, feature

extraction techniques seek to reduce the dimensionality of

the data by mapping the feature space onto a new lower-

dimensional space. While feature selection is a more

simple and direct approach, feature extraction methods

can be more effective in representing the information

content in a lower dimensionality domain. Nevertheless

the loss of information derived from a feature selection

approach does not allow a good reconstruction of the

original dataset. For this reason it is not recommended to

integrate feature selection methods into pan-sharpening

processes.

The most common techniques to reduce the number

of bands are the minimum noise fraction (MNF) trans-

form, where an operator calculates a set of transformed

features according to a signal-to-noise ratio optimization

criterion, PCA, where a set of uncorrelated transformed

features is generated and also independent component

analysis (ICA), where a computational method for sepa-

rating a multivariate signal into additive subcomponents

supposing the mutual statistical independence of the non-

Gaussian source signals [12,13]. For these techniques, the

dimensionality reduction is performed by discarding the

components with the lowest information content. Also,

for these techniques, the components obtained are lin-

early uncorrelated but the physical representation of the

image may be lost. Moreover, being linear methods, ICA,

PCA and MNF assume that the observed data set is com-

posed of linear combinations of certain basis. In [14,15], it

has been demonstrated that the nonlinear version of the

common PCA, namely kernel PCA (KPCA) is capable of

capturing part of the high order statistics, thus providing

more information from the original data set than the PCA.

In this case, the dimensionality reduction is once again

performed by discarding the less relevant components.

Other approaches, are based upon the characteristic of HS

images having adjacent bands that are spectrally highly

correlated [7,8].

In this article, we propose to perform the dimensional-

ity reduction by using NLPCA, commonly referred to as

nonlinear generalization of standard PCA.

Non-linear principal component analysis, originally

introduced by Kramer [16], is based on multi-layer per-

ceptrons (MLP) commonly referred to as autoassociative

neural network (AANN) or as autoencoder [17,18]. The

AANNs areNNs of a conventional type, i.e. featuring feed-

forward connections and sigmoidal nodal transfer func-

tions, trained by backpropagation or similar algorithms.

The particular network architecture used employs three

hidden layers, including an internal bottleneck layer of

smaller dimension than either the input or the output

(Figure 1). The network is trained to perform identity

mapping, where the input x has to be equal to the out-

put x̂. Training an AANN is not an easy task because of

the bottleneck layer where the data have to be projected

or compressed into a lower dimensional space Z. Since

there are fewer units in the bottleneck layer than the out-

put, the bottleneck nodes must represent or encode the



Licciardi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:207 Page 3 of 17

http://asp.eurasipjournals.com/content/2012/1/207

Figure 1 Auto-associative neural networks scheme used for feature reduction.

information obtained from the inputs for the subsequent

layers to reconstruct the input.

The AANN, as shown in Figure 2, can be divided into

two parts: the first part represents the encoding or extrac-

tion function Fencode : X → Z, while the second part

represents the inverse function, called decoding function

Fdecode : Z → X̂. After the training of the AANN the

NLPCs can be extracted from the extraction subnet, while

the reconstruction can be performed by the decoding

subnet. A topology with three hidden layers enables the

AANN to perform non-linear mapping functions. In fact,

if we design an AANN with only one hidden layer of lin-

ear nodes, the projection into the Z-dimensional subspace

would correspond exactly to linear PCA. Also if the acti-

vation functions in the bottleneck nodes were sigmoidal,

the projection into the sub-space would still be severely

constrained; only linear combinations of the inputs com-

pressed by the sigmoid into the range [−1, 1] could be

represented. Therefore the performance of an AANNwith

only one internal layer of sigmoidal nodes is often no bet-

ter than linear PCA [81]. The proposed AANN algorithms

can be trained by minimizing the sum-of-squares error of

the form:

E =
1

2

N
∑

n=1

d
∑

k=1

{yk(x
n) − xnk}

2 (1)

where yk(k = 1, 2, . . . , d) is the output vector. The non-

linear activation function σ(x) can be any continuous and

monotonically increasing function with σ(x) → 1 as x →

+∞ and u(x) → 0 as x → −∞. In this article the chosen

function is the sigmoid and is applied elementwise:

σ(x) =
1

1 + e−x
(2)

One of the main tasks designing the AANN is the selec-

tion of the number of nodes in the hidden layers and in

particular in the bottleneck layer that minimizes the loss

of information of the entire network. This problem has

been solved by a grid search algorithm that varies recur-

sively the number of nodes and evaluates the respective

error. The topology with the lowest error is then selected.

A general evaluation of the performance of this method, in

terms of time and memory, cannot be addressed because

it is mainly dependent on the number of nodes of the net-

work considered in each iteration. However usually each

iteration of the grid search required an average time that is

less than a minute, resulting in a computational time that

was less than 10min for each of the experiments described

in the following sections.

Compared to linear reduction techniques, NLPCA has

many advantages. First of all, while PCA and MNF can

detect and discard linear correlations among spectral
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Figure 2 The two subnets performing the encode (left) and the decode (right) functions.
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bands, NLPCA detects both linear and nonlinear cor-

relations. In this case the dimensionality reduction is

performed by discarding the less relevant components,

meaning that the reconstruction of the original image

would be extremely affected in terms of loss of informa-

tion. Moreover the first PCA usually retains information

from all the original spectral bands, meaning that it may

include features within the spectral bandpass of the PAN

image and will thus result in strong spectral distortions.

On the other hand, the information content in the NLPCs

is somehow focused on relevant spectral signatures. For

instance, in a HS image acquired on a landscape with

water, vegetation and manmade structures, one of the

derived NLPCs will contain all the information related

to the vegetation, while another one will have only infor-

mation about water surfaces. This allows NLPCA to be

significantly more effective than PCA or MNF in the

inverse operation of reconstruction of the original spec-

tral information [19]. Results similar to NLPCA can be

obtained through the use of KPCA, however, as for the

linear approaches, also in this case the dimensionality

reduction is performed by discarding less relevant com-

ponents. This let the NLPCA to be preferred for the

dimensionality reduction processing [15].

In this article we propose the use of NLPCA for dimen-

sionality reduction. The NLPCs obtained from the extrac-

tion function will be used as input for the pan-sharpening

task. After enhancing the NLPCs, the enhanced HS

image is eventually obtained with the decoding subnet of

the AANN.

Image fusion
The fusion of HS and PAN images is a useful technique

for enhancing the spatial quality of low-resolution HS

images. Generally, the fusion process can be subdivided

into two steps. In the first step, the low resolution image

is scaled up to the same size as the PAN image. Next,

fusion is achieved by adding high-frequency content of the

PAN image to theHS image. Literature on pan-sharpening

methods is rich with diversity, encompassing methods

based upon the use of discrete wavelet transform (DWT)

[20,21], Laplacian Pyramids [22], PCA transform [4], and

IHS transform [23]. The latter two methods fall in the

category of component substitution method and result in

fused images having high spatial quality but suffering from

spectral distortions [24,25]. The images fused using DWT

or Laplacian Pyramid based methods are not as sharp as

component substitution methods but they are spectrally

consistent [24].

In this article, we propose to use Indusion for pan-

sharpening. Introduced in [26], Indusion is a pan-

sharpening approach derived from the Induction scaling

technique. The Induction technique, considers enlarge-

ment as the inverse problem of reduction. This yields the

condition that an enlarged image should, when reduced,

give the initial image back. This condition is called the

reduction constraint. Assuming I as the original image and

R the reduction filter, with a reduction ratio a so that the

upscaled image is I1/a, the reduction constraint can be

written as:
[

I1/a ∗ R
]

↓ a = I. (3)

For a given image and a reduction filter, there is a set of

enlarged images, called the induced set, that verifies the

reduction constraint, and is defined as:

�I = {X |[X ∗ R]↓ a = I}. (4)

Induction, initially developed for image magnification

[27], simply consists of projecting an upscaled image J,

not adhering to the reduction constraint, onto the induced

set � so as to obtain an induced image K that belongs to

the induced set. Indusion process, deriving its name from

Induction and Fusion, defines the induced image as:

K = J−[ J ∗ R]↓ a ↑ a ∗ A+[ I]↑ a ∗ A. (5)

Where R and A are the Cohen–Daubechies–Fauveau

(CDF) 9/7 tap bi-orthogonal filter pair, respectively [28],

and J is the upscaled version of the initial image I that does

not adhere to the reduction constraint.

Applied to remote sensing, the concept of image fusion

consists in the extraction of the high-frequency informa-

tion from the PAN image and adding it to the upscaled

low-resolution image. The idea of Indusion is to replace

the unconstrained upscaled image by the PAN image

since, we want the high-frequency information of the PAN

image to be added to the upscaled NLPCA image obtained

from the original HS dataset.

K = PAN−[ [ PAN ∗ R]↓ a]↑ a ∗ A+[ I]↑ a ∗ A. (6)

The Indusion algorithm has been successfully tested

on true and simulated images [26]. The main intent of

this article is to evaluate the effectiveness of the Indu-

sion approach combined with a NLPCA dimensionality

reduction applied to HS images. In particular the origi-

nal HS image is reduced in dimensionality by means of

NLPCA, resulting in few nonlinear principal components.

Then according to the above described Indusion method

the high resolution spatial details contained in the PAN

image are injected into the nonlinear components. Finally

the spatially enhanced components are reprojected back

to the original space using the inverse NLPCA. The result

is a spatially enhanced HS image having the same spectral

characteristics as the original one.

The implementation of the proposed algorithm is as

follows.

1. Design/training of the AANN (selection of the

best topology);
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2. Extraction of the NLPCs through the encoding

function;

3. Downscaling of the PAN image using CDF9 filter to

fit the size of the NLPCs;

4. Perform histogram matching between the

downscaled PAN and the NLPCs;

5. Upscale the NLPCs and the histogram matched

PAN using CDF7 filter;

6. Perform histogram matching between the original

PAN and the upscaled NLPCs;

7. Obtain the difference between histogram matched

original PAN and the histogram matched upscaled

PAN;

8. Add the previously obtained difference to the

upscaled NLPCs;

9. Reconstruction of the original spectral bands

through the decoding function.

A complete scheme of the method is depicted in Figure 3.

Experimental results
In this article the proposed method was applied to three

different images having increasing complexity. In Section

“WorldView-2 dataset”, we discuss the results of apply-

ing the Indusion approach to a WorldView-2 dataset to

assess the accuracy of the fusion method. In Section

“CHRIS-Proba dataset”, the NLPCA+ Indusion approach

is discussed in the context of the fusion of a CHRIS-Proba

dataset and a QuickBird PAN image. The last section

evaluates the reduction-fusion algorithm on a Hyperion

image. While the enlargement of a MS image such as

provided by WorldView-2 satellite, can be an easy task,

pan-sharpening of HS imagery can be more complex not

only because of the huge number of HS bands, but also

because the spectral coverage of the PAN image does not

match the wavelength acquisition range of the HS bands.

Moreover a difference between the WorldView-2 dataset

and the CHRIS-proba and Hyperion datasets is that for

the latter two datasets the PAN image has been acquired

by a different satellite sensor i.e. QuickBird, having differ-

ent acquisition dates and geometry. A test of the spectral

fidelity of the fusion process is introduced using PAN

images not covering the spectral range of the HS bands,

and this is verified by pan-sharpening CHRIS-proba and

Hyperion images using a PAN image from the QuickBird

sensor.

Once the pansharpened images have been obtained, the

next phase is their quality assessment. Evaluating the qual-

ity of a fusion process is not a trivial task. For the quanti-

tative quality assessment, it is generally recommended to

Figure 3 Complete flowchart of the fusion process.
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make use of the synthesis property as proposed by Wald

[1]. This means that both the HS and the PAN images are

degraded to a lower resolution and then pan-sharpening

is performed. This is done so that the resultant pansharp-

ened image is at the same resolution as the starting refer-

ence and hence statistical analysis can be made between

the reference and the pansharpened images. If the refer-

ence image is at the same resolution as the fused image,

we can perform universal image quality index (UIQI), rel-

ative dimensional global error (ERGAS) and spectral angle

mapper (SAM) calculations between the pansharpened

and the reference image [1,29]. UIQI can be seen as a ratio

between the original image and the enhanced one, where

1 is the ideal value. ERGAS and SAM will both produce

positive values with an ideal value of 0. However, values

that are around 3 are referred to a good image enhance-

ment. SAM is a useful measure of the spectral quality

introduced by the fusion process, while ERGAS and UIQI

measure both spectral and spatial quality. On the other

hand, if we reduce our images to a lower resolution there

will be no significant information left in the images and

hence the pansharpened images would not be at a good

resolution. For this reason a qualitative analysis, through

visual inspection, will also be discussed without reduc-

ing the spatial resolution of the images before the fusion

process.

WorldView-2 dataset

WorldView-2, launched October 2009, is a high-

resolution 8-band MS satellite. WorldView-2 provides

PAN and MS images at 50 cm and 2m spatial resolution,

respectively. The spectral coverages are 450–800 nm for

the PAN images and 400–1,040 nm for the MS image.

The image used in this experiment was collected over

Tor Vergata area, in the south-east part of Rome, Italy, on

February 2010. The landscape represented is diverse, with

large pastures, industrial and dense urban areas.

In this first experiment, we evaluate the quality of

the fusion method without any dimensionality reduction.

This experiment aims to validate the ability of the Indu-

sion technique for image enhancement and also to provide

a benchmark for the following experiments. Following

the processing steps proposed in [26], the PAN image

(Figure 4) is downscaled from 0.5 to 1m, and then from

1 to 2m using CDF9 filter coefficient. In the same way,

the reduced MS (Figure 5) is upscaled from 2 to 1m and

again from 1 to 0.5m pixel size with a CDF7 filter. Then

the histogram of the PAN downscaled at 2m is matched to

the MS at 2m, resulting in eight histogram matched PAN

images at 2m resolution. The same procedure is applied

between the PAN at 0.5m and the MS at 0.5m, producing

eight histogram matched PAN images at 0.5m resolution.

The set of eight histogram matched PAN images at 2m is

then upscaled back to 1m and then to 0.5m using CDF7

Figure 4WorldView-2 PAN band.

filter. Finally the difference between the two series of eight

histogram matched PAN images is added to the upscaled

MS image.

On a visual analysis, the fused images obtained from

the Indusion approach appear to be very sharp, as can be

observed comparing Figures 5 and 6. As for the quanti-

tative analysis, the indices UIQI, ERGAS and SAM were

calculated and reported in Table 1. The results appear to

be very appreciable with values close to the optimum.

Figure 5 False color composite obtained combining NIR1, RED

and GREEN bands of the original WorldView-2 image.
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Figure 6 False color composite obtained combining NIR1, RED

and GREEN bands of the fusedWorldView-2 image.

CHRIS-Proba dataset

In the second test a CHRIS-Proba dataset and aQuickBird

PAN image at 1m have been used for testing the proposed

fusion technique. The two datasets were acquired during

different periods of 2006 over the Tor Vergata area, south-

east of Rome, Italy.

The PRoject for On Board Autonomy (PROBA) space-

craft is a mini-satellite operated by the European Space

Agency. Themain payload of PROBA is the Compact High

Resolution Imaging s Spectrometer (CHRIS) sensor which

can acquire up to 63 spectral bands (400–1,050 nm) with

nominal spatial resolutions of 17 or 34m at nadir, depend-

ing on the acquisition mode. The CHRIS sensor acquires

data in five different modes (aerosol, land cover, vegeta-

tion and coastal zones), varying the number and location

of spectral bands, the spatial resolution and the width of

the swath. Thus, the CHRIS-PROBA system acquires HS

images of the same scene with five different view angles

during a single overpass: +55°, +36°, 0°, -36° and -55°. To

test the proposed approach a 0° image, acquired in Land-

Cover mode (18 bands), was used. The spectral ranges of

the two images are very similar, 438–1,035 nm for CHRIS

and 405–1,053 nm for the QuickBird-PAN, respectively.

Table 1 Quality indexes for the fusion process applied on

WorldView-2

UIQI ERGAS SAM

Reference 1 0 0

Indusion 0.9891 2.6298 2.0500

Figure 7 False color composite of the original CHRIS-Proba

image obtained combining the 709nm 697nm and 668nm

bands for R, G and B, respectively.

Also the angles of view of the two images are very simi-

lar, thus avoiding any geometric or registration distortions

between the two images. The CHRIS image was atmo-

spherically corrected and accurately co-registered to the

PAN image for testing. In particular, the atmospheric

correction consists of estimating the contribution of the

atmospheric effects in terms of the total irradiance, the

direct and diffuse transmittance, and the radiance due to

Figure 8 PAN image used in the fusion process with the

CHRIS-Proba image.
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Figure 9 False color composite of the fusion process obtained

combining the 709nm 697nm and 668nm bands for R, G and B,

respectively.

the scattering. The estimations have been produced start-

ing from simulations carried out with the suite of libraries

libRadtran for the simulation of the radiative transfer bal-

ance [30]. A subset of 216×216 pixels for the CHRIS image

and 864×864 for the PAN image was selected according to

the overlapping areas of the two acquisitions. To obtain an

enlargement ratio of 4, that, respect to the description of

Figure 10 RGB composite obtained using the three original

NLPCs obtained from the CHRIS-Proba data.

Figure 11 RGB composite obtained using the three fused NLPCs.

the Indusionmethod, offers the best tradeoff between spa-

tial enhancement and spectral distortion [26], the CHRIS

image and the PAN image have been degraded to the spa-

tial resolutions of 20 and 5m, respectively adhering to the

consistency criteria of quality assessment as proposed by

Wald [1].

The dimensionality reduction phase was performed by

extracting the nonlinear principal components. To detect

the best topology configuration for the AANN, a grid-

search approach is performed. The best solution was

found with 18 inputs/output, 9 nodes both in the outer

hidden layers and 3 nodes in the bottleneck. The mean

square error (MSE) obtained after 500 training cycles was

0.003. The three NLPCs are then enhanced with a ratio

of 4, following the Indusion approach, fusing them with

the PAN image. Figures 7, 8 and 9 report a false color

Table 2 Quality indexes for the proposed fusion process

applied on the entire CHRIS-Proba image (complete

image) and on three different land cover types (pasture,

industrial and dense urban fabric)

UIQI ERGAS SAM

Reference 1 0 0

Indusion 0.9627 1.6798 2.3751

complete image 0.9229 2.6797 2.7413

Pasture 0.9373 2.2180 2.1511

Industrial 0.9313 2.2978 2.3871

Dense Urban fabric 0.8616 4.1971 3.9812

For sake of comparison, the quality indexes have been evaluated to the image

enhanced only by means of the Indusion approach, without any dimensionality

reduction preprocessing.
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Table 3 Quality indexes values for the reconstruction of

the CHRIS-Proba image obtained by PCA and NLPCA,

respectively

UIQI ERGAS SAM

Reference 1 0 0

NLPCA 0.9945 0.7953 0.8317

PCA 0.9903 1.0487 0.7467

representation of the original image, the panchromatic

image and of the fused image, respectively. Figures 10

and 11 show a RGB composite obtained combining the

three NLPC from the original CHRIS-Proba image and

the result of the Indusion process applied to the three

NLPCs, respectively. The pansharpened image shown in

Figure 9 is obtained by performing an inverse NLPCA

process on the results shown in Figure 11.

Also in this experiment, the qualitative analysis was

evaluated by visual inspection.While to better understand

the effectiveness of the proposed method, the quantita-

tive analysis is carried out in three different ways. Firstly

the quality indexes are calculated to evaluate the ability of

AANN to reconstruct the original spectral bands after the

Figure 12 Detail of the false color composites of the original

image and the enhanced one, obtained combining the 709nm

697nm and 668nm bands for R, G and B, respectively.

reduction into three NLPCs. This means that the evalua-

tion is performed between the original spectral bands and

the bands reconstructed considering the complete AANN

topology. A secondmeasurement is performed to evaluate

the accuracy of the fusion phase, comparing the original

NLPCs with the enhanced ones. Finally the quality indexes

are calculated on the complete end-to-end process. As

reported in Table 2, the quality indexes are derived not

only for the entire scene but also for the different areas in

the image representing three main types (industrial build-

ings, dense residential areas and pastures). For the sake

of comparison, Table 3 reports the quality index values

for a dimensionality reduction performed using the first

three components of the PCA. The table clearly shows

that a comparison of pansharpened images with the ref-

erence HS image reveals that all three SAM, ERGAS and

UIQI values for the NLPCA and Indusion method are bet-

ter than PCA based and Indusionmethod pan-sharpening

methods.

From a qualitative visual analysis, the fused image

obtained with the proposed approach appears to be very

sharp and spectrally consistent with the original image.

Also the quantitative analysis shows very good values for

the pan-sharpening image. It is important to notice that,

despite having an overall good quality, the index values

for the Pasture and Industrial areas are very good, while

the worst result was obtained on the dense urban fabric.

This effect can be explained because of the different geom-

etry of acquisition of the two images. In particular, the

very high reflectance values of industrial buildings, under

different illumination conditions, may result in spectral

Figure 13 Quality assessment areas noted in yellow, green and

cyan for pasture, industrial and dense urban fabric, respectively.
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Table 4 RMSE, mean difference and Standard deviation

computed between the values of original and enhanced

spectra for three different test areas (Grassland: 20

samples; Industrial: 8 samples; Residential: 12 samples)

Grassland Industrial Residential

RMSE 0.0539 0.1084 0.1474

Mean 0.1613 0.4193 0.2137

Std. Dev. 0.1437 0.0166 0.1658

distortions in the enlarged image. Another source of dis-

tortion came from objects that are present only in one

of the two images due to different dates of acquisition.

This is particularly clear for the burned areas and the cars

in the parking lots, as depicted on Figure 12. Aside from

the expected distortions introduced by errors in the reg-

istration phase and differences in terms of angles of view,

there are also other negative contributions introduced by

objects that are detected by the PAN image but not in the

HS image and result in mixed spectral signatures. In this

case, even if the spectral signatures of small objects can

be identified in the low resolution HS image, it is still not

possible to determine their spatial distribution. A possible

solution to this problem has been proposed in [31].

A further quality assessment of the proposed approach

evaluates the spectral distortion introduced by the entire

process. In particular, a comparison of the enhanced spec-

tra with the original spectra has been made. In this case

the comparison was set up on three different areas rep-

resenting, respectively an industrial building, a residential

building and a grassland area, as reported on Figure 13.

Analyzing the original and the enhanced spectra related

to the grassland pixel, it can be noted that the pro-

cess produced a spectrum very close to the original one.

This accuracy can be quantified by the value of the root

mean square error (RMSE), the mean difference and the

standard deviation computed between the values of the

original and the enhanced spectra reported in Table 4.

A similar result is obtained with the industrial building

pixel. As for the residential building pixel, the comparison

Figure 14 Spectra of three different test areas: Grassland original spectrum (a) and enhanced spectrum (b), Industrial building original

spectrum (c) and enhanced spectrum (d), residential building spectrum (e) and enhanced spectrum (f).
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of the original and enhanced spectra shows a non perfect

reconstruction (Figure 14). These spectral distortions can

be explained by the presence in the PAN image of fea-

tures that are not detected by the HS image. In particular,

the spectral signature of the grassland is almost the same

over the entire field, independently from the spatial reso-

lution of the sensor, while for the buildings, the signature

is more heterogeneous. In this case the PAN image does

not introduce further information content and the spec-

tral signature of the grassland, on the other hand many

features detected only by the PAN image influenced the

enhanced spectrum. Also, the spectral signature of the

industrial building can be considered almost uniform over

the entire surface, non generating any significant distor-

tions. On the other hand, during the fusion process, the

high resolution image introduced a great amount of spa-

tial information that produced spectral distortions that

are particularly evident on buildings pixels, as reported in

Table 4.

Hyperion dataset

The last experiment shows the results of the proposed

technique applied to a Hyperion dataset acquired in 2002.

Hyperion is a grating imaging spectrometer providing 220

HS bands (from 0.4 to 2.5μm) with a 30m spatial reso-

lution. Each image covers a 7.5 km by 100 km land area

and provides detailed spectral mapping across all 220

channels with high radiometric accuracy. The test area

was selected over the Rome city centre, with a landscape

characterizedmainly by dense urban areas and sparse veg-

etation. Before the extraction of the NLPCs, noisy bands

Figure 15 Quickbird PAN image used in the fusion process with

the Hyperion image.

Figure 16 False color composite of the original Hyperion image

obtained combining the 925, 823 and 721 nm bands for R, G and

B respectively.

not containing relevant information were discarded from

the original dataset, resulting in 168 spectrally unique and

good quality bands [32]. In this experiment, two different

PAN images were used to evaluate the spectral distortion

introduced by these images. In a first attempt, we fused

the Hyperion image with a QuickBird PAN image.

Figure 17 False color composite of the fusion process obtained

combining the 925, 823 and 721 nm bands of Hyperion for R, G

and B, respectively.
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The ratio between the spatial resolution of the two

images has to be 4. Consequently the QuickBird image

was downscaled to the 7.5m spatial resolution. As for the

previous experiment, the dimensionality reduction phase

is performed by a grid search of the best AANN topology.

TheMSE is found to be 0.012, and is obtained with the fol-

lowing topology: 168 input/output nodes, 3 nodes in the

bottleneck layer and 75 in the other hidden layers, result-

ing in 3 NLPCs. Following the Indusion approach the

three NLPCs are fused with the PAN image and the three

fused NLPCs are then reprojected back into the original

168 spectral bands. The PAN image, original Hyperion

image, the three NLPCs before and after the fusion phase

and the enlarged Hyperion image resulting from the entire

process are featured on In Figures 15, 16, 17, 18 and 19.

From a visual analysis, the resulting image appears to be

sharper than the original and it can also be noted that the

road network, that was not visible in the original image,

is now clearly defined. Analyzing the values of quality

indexes in Table 5, it can be noted that the dimension-

ality reduction phase, performed through the NLPCA,

does not produced any relevant distortion. On the other

Figure 18 RGB composite obtained using the three original

NLPCs obtained from the Hyperion data.

Figure 19 RGB composite obtained using the three fused NLPCs

derived from Hyperion image.

hand, evaluation of the quality of the enhanced NLPCs

obtained by the Indusion process returned unacceptable

values. These results are generated mainly by the different

acquisition angles and the consequent imperfect registra-

tion betweenHS and PAN images. An enhancement of the

overall quality of the enlarged image can be obtained using

a different PAN image.

The best case scenario requires a PAN image acquired

by the same satellite at the same moment. For this reason

we choose a PAN image acquired by ALI instrument in

2002, onboard the EO1 satellite (Figure 20). The spectral

coverage of the ALI-PAN image covers the visible range

Table 5 Quality indexes for the fusion process applied on

Hyperion

UIQI ERGAS SAM

Reference 1 0 0

NLPCA 0.9759 3.0622 1.3400

Indusion 0.9627 1.6798 2.3751

Hyperion +QuickBird 0.7941 4.7472 6.3233

Hyperion +ALI-PAN 0.9001 3.6562 1.4861
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Figure 20 ALI PAN image.

Figure 21 False color composite of the original Hyperion image

obtained combining the 518, 620 and 721 nm f bands or R, G

and B, respectively.
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Figure 22 False color composite of the fusion process obtained

combining the 518, 620 and 721 nm bands for R, G and B,

respectively.

(0.48–0.69μm), with a spatial resolution of 10m. Since

this PAN image was acquired on a different date than the

HS image, there are isolated clouds that are not present in

the HS image. This does not allow to select the same refer-

ence area. Only a subset of the area is selected as depicted

in Figure 21. Moreover, to respect the algorithm require-

ment to have a ratio of 4, we have degraded the HS image

resolution to 40m.

The dimensionality reduction was performed using the

same AANN of the previous case, while the fusion of

the three NLPCs with the new PAN image was obtained

with the Indusion approach. From the Table 5 it can be

noted that the use of a new PAN image, acquired by

the same satellite, provides better values for the quality

indexes, demonstrating the effectiveness of the proposed

approach. Also from a visual analysis, the pansharpened

image obtained with ALI-PAN (Figure 22) seems to be

sharper than when a QuickBird-PAN image was used for

pan-sharpening. As for the dimensionality reduction, it

can be noted that the quality of the transformed image

is very similar to the previous one. In Figure 23a-f is also

reported a comparison of the enhanced spectra with the

original spectra. Also in this case the comparison was set

up on three different areas representing respectively an

residential building, a industrial building and a vegeta-

tion area. Apart from distortions introduced by features

detected by the PAN image and not present in the low

resolution one, it is possible to note also some spectral

distortions in the vegetation area. The selected vegeta-

tion area is mainly composed of sparse deciduous trees,

so the spectral distortion can be explained by the differ-

ent seasonal growth cycle of the trees spotted by the two

sensors.

Conclusion
In this, we have presented a novel approach combining

dimensionality reduction and a pan-sharpening technique

for spatial quality improvement of HS images while pre-

serving the spectral quality of the original HS image.

The proposed method introduces dimensionality reduc-

tion of HS images based on the nonlinear generalization

of standard PCA. The nonlinear principal components

were obtained by an AANN. The use of the Indusion

technique has been investigated in the framework of pan-

sharpening. The innovation proposed by this technique

relies in fusing NLPCs with the PAN images instead of

the spectral bands to reduce the computational load of

the pan-sharpening process. In the experimental section

the Indusion was first tested on a WorldView-2 image

to assess the performance of the fusion algorithm, while

Indusion combined with NLPCA was tested on a two HS

images, a CHRIS-Proba and a Hyperion dataset, respec-

tively. These two latter experiments were carried out
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Figure 23 Spectra of three different test areas: residential building spectrum (a) and enhanced spectrum (b), industrial building original

spectrum (c) and enhanced spectrum (d) and vegetation original spectrum (e) and enhanced spectrum (f).

fusing NLPCs with PAN images collected under differ-

ent geometries and for images acquired at different dates.

Moreover in both cases the PAN image does not cover the

same spectral range as covered by the original HS bands.

A further experiment has been made fusing a Hyperion

image with a PAN image acquired by the same satellite

and having the same geometry as the HS image. Being

the proposed method applied to real data, it is important

to consider that many sources of spectral distortion are

introduced, such as error in the registration phase and

differences in terms of angles of view. Moreover, it has

to be considered that there are also other negative con-

tributions introduced by objects that are detected by the

PAN image but not in the HS image where their spectral

signature results to be mixed with the signatures of the

surrounding objects. Finally there are also some objects

in one image that are not present in the other due to the

different dates of acquisition. However, apart from these

negative contributions, the results demonstrated a good

behavior of the proposed method in mitigating the spec-

tral distortions. Aside from the benefits of using Indusion

for image fusion, the use of NLPCA for dimensionality

reduction results in a better reconstruction of the original

HS image. However, one main drawback on the use of this

technique relies on the necessity to perform a grid search

to find the neural network topology that may lead to the

best performances. In any case, the UIQI and ERGAS

quality indexes quantitatively demonstrate the good per-

formance of the proposed method on CHRIS-Proba and a

Hyperion images. Visually, Indusion produced sharp and

spectrally consistent images while NLPCA reduced the

original dataset dimensionality minimizing the introduc-

tion of further spectral distortions while speeding up the

pan-sharpening process.
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