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ABSTRACT

We propose a method for data fusion of hyperspectral im-
ages (HSI) and digital surface models (DSM) basing on the
edge probabilities from both datasets. A height discontinu-
ity in DEM and change in material in HSI represent the high
probability of an edge. Edge probabilities are computed in
scale-space and combined according to the Gaussian mixture
model. The reliability of the datasets can be included into
this model as a prior knowledge. The method is tested on
an urban area, where building boundaries represent the high
probabilities of an edge in both datasets. Our results show,
that the probabilistic fusion technique is advantageous where
boundary detected from only one dataset are unreliable.

Index Terms— Hyperspectral, Fusion, Digital Elevation
Model, Image Processing

1. INTRODUCTION

Usage of different datasets enable to extract better knowledge
about objects of interest in a scene. The HSI contain informa-
tion about spectral properties of the objects, i.e. every pixel
from HSI is characterized by the spectral signature. Thus,
the HSI enable to identify the materials of the pixels in the
observed area. DSM include additional information about the
surface compared to the HSI, they comprise heights of ground
and aboveground objects. Consequently, different informa-
tion included in HSI and DSM is advantageous for the data
fusion. However, finding mutual features to combine two so
diverse datasets is a challenging task. Boundaries of some ob-
ject, such as building boundaries or forest edge, appear as a
material change in mixed pixel in HSI, and as a hight change
in DSM. This boundaries can be detected as image edges and
used for the data fusion. Computing the probability of an edge
evades the hard decision if a pixel belongs to an edge or not,
and the fused representation is also probabilistic. In this con-
tribution, we denote the importance of scale-space represen-
tation for edge detection in Section 2, and propose a method
for image fusion of HSI and DSM in Section 3 basing on the
edge probabilities.
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2. PROBABILITY OF AN EDGE

In this Section, the motivation for using scale-space for edge
detection is given, after edge detection in images and scale-
space are defined.

2.1. Edge Detection

An edge in an image is an abrupt change of intensity and rep-
resents a boundary between two regions. Image I is a sampled
representation of a continuous 2D function f(z,y), where
x,y variables. In this section, the edge detection principles
are first explained on 1D signals, and afterwards extended to
2D signals, on an example of an ideal step edge.

A continuous 1D signal is given by a function f(z). Many
classical edge detection algorithms such as Canny edge de-
tector [1] base on smoothing the image with the Gaussian fil-
ter, and then compute a magnitude of the first derivative of
a signal |f'(x)] = |fz|. In a stationary point, that is local
minimum, maximum or inflection point, f, = 0, elsewhere
the first derivative is larger for the larger changes in intensity.
Measured signals are a discrete representation of continuous
signals, so the first derivative can be approximated by the dis-
crete derivative f, = f(z) — f(z — 1), or central discrete
derivative f, = f(x — 1) — f(z + 1). The edge can also be
detected by finding zero crossings of a second derivative of a
signal f,.. [2] suggest to detect edges using two conditions.
First, the edge exists, if f,, has a zero crossing, and
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where Ax is half of a pixel. Some of detected zero crossings
correspond to the phantom edges. A second condition must
be fulfilled [3] to avoid phantom edges
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The edge detection using derivatives can be extended from
1D to 2D signals by convolving the image, i.e. 2D signal, with
the derivative filter in two perpendicular directions x,y. A



derivative in an edge direction is computed by a linear com-
bination of basis filters, and the edge direction is given by

¢ = atan,/ f2/f2.

2.2. Scale-Space Representation

Edges in natural images or earth observation images are not
ideal, as assumed in the previous Subsection 2.1. For exam-
ple, profile of a building is taken from DSM and a task is to
detect an edge of a building. The building profile is a 1D
discrete signal, thus an edge can be detected using discrete
derivative. The result depends on a selected step size of a
discrete derivative. Only some step sizes of a discrete deriva-
tive return meaningful results; too large or too small step size
results in failing to detect the edge or detecting noise, respec-
tively. A scale-space representation of the signals is a method-
ology that can handle the concept of different scales [4]. A
continuous signal of an arbitrary dimension f belongs to a
scale-space family L of a signal, given by convolution of the
signal with Gaussian kernel g. A scale-space representation
of a 2D signal f(z,y) is

L(z,y;t) = g(z,y;t) * f(x,y) 3)

where ¢ is a scale parameter, and ¢ is a 2D Gaussian kernel
with variance ¢
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Scale-space representation at zero scale ¢ = 0 is equal to the
original signal
f=L(z,y:t=0). )
Physical interpretation of a scale-space family is the dif-
fusion equation
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with the initial condition given by Eq. 5. An intensity of a
pixel in an image can be interpreted as a temperature, and
f(z,y) as heat distribution at time ¢ = 0. A solution of the
diffusion equation is a scale-space representation of a signal
f,e.g. aheat distribution f over time ¢ in an infinite homoge-
neous medium [4].

2.3. Edges in Scale-Space

Convolving a discrete signal f with the sampled Gaussian
leads in some cases to faulty second derivatives as shown in
[4], so they suggest to convolve the signal with the discrete
Gaussian kernel T’
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where I,, is a modified Bessel function of integer order n.
Discrete Gaussian kernel is a scale-space kernel, because it
retains the scale-space properties of a signal convolved with
it between an arbitrary level of scale ¢.

3. FUSION OF HSI AND DSM

In this section we propose a methodology how to fuse the HSI
and DSM using the probabilities of edges from both datasets.
The probability of an edge is high on the building bound-
aries in DSM and HSI, representing height discontinuity and
change of material, respectively. The approximate position of
the building boundary must be known to define roofing ma-
terial, then the probabilities of the boundaries can be used to
combine the datasets. The precondition for suggested method
is pixel-precise registration of the used datasets.

3.1. Roofing Material Selection

The roofing materials largely differ in the spectral properties
and are not unique, e.g. concrete can be used for roofing
material as well as for pavement. Thus, we suggest to au-
tomatic extract the spectral signatures of roofing materials lo-
cally, using height information from DSM and HSI. The DSM
in normalized (nDSM) and local peaks in nDSM correspond-
ing to the building roofs or the high vegetation are selected.
The seed points belonging to the high vegetation are removed
by calculating Normalized Difference Vegetation Index from
HSI. Then, local peaks are connected according to the 4-pixel
neighbourhood and outliers in each region are discarded with
regard to spectral properties of each pixel. From the remain-
ing seed points, the reference spectrum is defined for each
region. In [5] the procedure of selecting spectrum of roofing
materials and seed points is explained in detail.

3.2. Edge Probabilities

[2] proposed a probabilistic framework for edge detection
in natural images, defining probability of an edge for every
pixel. They model the edges according to Eq. 1 and Eq. 2
assuming Gaussian noise o, realize the image derivatives
and define their statistical properties in scale-space. We apply
this methodology directly to calculate the edge probabilities
in nDSM.

We assume linear mixture model with full additivity con-
strain, i.e. abundances of each pixel sum up to one and are
non-negative on an interval [0, 1]. Our aim is to compute
the probability of an edge, which is indicated by a change
of roofing material in HSI on the building boundary. Both,
abundances and probabilities are bounded on the interval [0,
1] therefore, the abundance maps for roofing materials are
needed to estimate the edge probability. A complete spectral
library was not available for the given dataset, so the material



Fig. 1. Fusion of HSI and DSM with edge probabilities on an example of one building. Input HSI in false colour composit
(a) and DSM (b). Edge probabilities of the roofing material from the building (c), and edge probabilities of the DSM (d).
Combined edge probabilities (e). The colour bar for all the probability maps is the same (c,d,e). The lines on b-e present

location of profiles in Fig. 4.

map is defined as similarity between roofing material and ev-
ery pixel in HSI. We suggest to use Spectra Angle Distance
(SAD) as similarity measure, because it is insensitive to the
illumination. Then, the edge probability of a material is cal-
culated from the material maps using the same framework as
for probabilities in nDSM.

3.3. Fusion of Edge Probabilities

The probability of an edge is separately estimated from two
independent datasets, DSM and HSI. If both datasets, i.e.
components, are normal distributed ~ A (puy, Xp) with g
mean and X; covariance, they can be combined according to
the Gaussian Mixture Model [6]. The probability of an edge
is given by marginal density
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where p(edgelk) is probability of edge given component k,
and 7y, are mixing coefficients equal to prior probability p(k)
of picking k** component. Mixing coefficients are non nega-
tive 0 < 7, < 1 and they sum up to one Zi:l =1

4. EXPERIMENT

4.1. Data Description

Two datasets of a residential area of the city of Munich are
used for fusion, HSI and DEM, both acquired in June 2012.
First dataset, HSI was acquired with a HySpex hyperspec-
tral camera (Fig. 2, left). The system consists of two sen-
sors, VNIR and SWIR camera, providing two images that are
combined in post processing. For the tests we used the VNIR
image only, consisting of 160 channels in a spectral range of
410-990 nm, and 3.7 nm sampling interval. Four channels
were removed before processing due to the high noise level.

Fig. 2. Input data sets: HSI as false colour composit (left) and
DSM (right), both with spatial resolution of 2 m.

Second dataset, DSM was computed from multi-view op-
tical images using semi global matching (Fig. 2, right). The
optical images were acquired with the 3K camera system,
consisting of three non-metric cameras, one looking at nadir
and two looking oblique sidewards [7]. A lidar DSM with
the average density of 1.69 points/m? is resampled with the
nearest neighbour method to 1 m grid and used to compare
computed edge probabilities and building profile.

4.2. Results

The DSM and HSI are smoothed with the discrete Gaussian
kernel of size 3x3 pixels and ¢ = 1, then the edge probabilities
are computed with selected noise level o,, = 1. The results
are presented on an example of one building (Fig. 1, Fig.
4) and for complete area for one roofing material (Fig. 3).
We assume no prior information, so the mixing coefficient
are m; = mo = 0.5.

Edge probabilities for a building in Fig. 1a (HSI) and Fig.
1b (DEM) are computed and combined (Fig. le). Next to a
part of a northeast and southeast side of a building are high
trees, so the edge probability computed from DSM (Fig. 1d)
is low, compared to the edge probability computed from HSI
(Fig. 1c). This can also be observed in a profile (Fig. 4),
between 10*" and 11*" pixel (pix), where edge probability



Fig. 3. Fusion of HSI and DSM with edge probabilities on an example of red roofing tiles material. Edge probabilities for one
material - red roofing tiles (left), edge probabilities of the DSM (centre) and combined edge probabilities (right).

computed from HSI is high (orange line), but low computed
from DSM (magenta line). In this case, the combination of
edge probabilities is advantageous (Fig. 4, red line). What is
more, in a case where both probabilities are high, e.g. in Fig.
4, around 2.5t pix, the fusion has no significant influence.

The first peak detected with a fusion technique has a shift
of 0.6 pixel (pix) compared to the peak in the lidar DSM (Fig.
4). We assume this shift is a consequence of not precise coreg-
istration between 3K and lidar DSM and their positional ac-
curacy. The second peak is good localized in the fusion result,
it coincides with the peak in the lidar DSM.

5. CONCLUSIONS AND FUTURE WORK

We presented a probabilistic approach for data fusion of HSI
and DSM using detected edges in scale-space. Our experi-
ment shows, that probability of edges in fused result is higher
compared to the probabilities from a single image input. The
usage of HSI instead of multispectral images is of a crucial
importance for the proposed method, because HSI enable to
define material maps. We used SAD similarity measure, how-
ever any other similarity measure or unmixing results can be
used. Further experiments for different target objects should
be performed and quality of the fusion estimated to fully eval-
uate the proposed method. In addition, the fused result has
well-defined edges and can support classification techniques
in the border areas of two classes. In this contribution, we as-
sumed that the datasets are registered, but the edge probability
maps have a potential to be used for precise coregistration of
multi-modal datasets.
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Fig. 4. Profile of fused edge probabilities from HSI and DSM
on an example of one building. Full lines represent the edge
probability computed from DSM (magenta), HSI (orange)
and combined edge probability (red). Dashed lines are scaled
profiles of the lidar (cyan) and 3K DSM (blue), respectively.
The black vertical lines denote the position of edges.
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