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Abstract The fusion of inertial and visual data is widely used to improve an object’s
pose estimation. However, this type of fusion is rarely used to estimate further
unknowns in the visual framework. In this paper we present and compare two
different approaches to estimate the unknown scale parameter in a monocular
SLAM framework. Directly linked to the scale is the estimation of the object’s
absolute velocity and position in 3D. The first approach is a spline fitting task adapted
from Jung and Taylor and the second is an extended Kalman filter. Both methods
have been simulated offline on arbitrary camera paths to analyze their behavior and
the quality of the resulting scale estimation. We then embedded an online multi rate
extended Kalman filter in the Parallel Tracking and Mapping (PTAM) algorithm of
Klein and Murray together with an inertial sensor. In this inertial/monocular SLAM
framework, we show a real time, robust and fast converging scale estimation. Our
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approach does not depend on known patterns in the vision part nor a complex
temporal synchronization between the visual and inertial sensor.

Keywords IMU vision fusion · Absolute scale · Monocular SLAM · Kalman filter

1 Introduction

Online pose estimation with sensors on board is important for autonomous robots.
We use an Inertial Measurement Unit (IMU), which is able to measure the 3D
acceleration and rotation of a moving object and a fisheye camera. With each sensor
it is possible to obtain the actual position of the moving vehicle. An integration of
the acceleration measurements over time from the IMU yields a position in meters
whereas an applied SLAM (Simultaneous Localization and Mapping) algorithm
on the vision data provides a position with unknown scale factor λ. By using two
cameras, which is not the case in this study, the scale problem would be solved.
However, for example due to weight restrictions, often only one single camera can be
applied. The estimate of the scale factor is essential to fuse the measurements of both
camera and IMU. This fusion leads to a drift free estimation of the vehicles absolute
position and velocity. Both are crucial parameters for efficient control.

We present two different methods for the scale estimation. The first is an online
spline fitting approach adapted from Jung and Taylor [1]. The second is a multi rate
Extended Kalman Filter (EKF).

The essence of this study, besides the scale estimation, was also to have a
completely different approach at hand, the spline fitting, which we then can compare
to the so often used EKF. Both approaches have been simulated in Matlab and
compared to each other. The EKF has then been implemented online, because of
its better performance. For the implementation, we modified the source code in the
PTAM algorithm of Klein and Murray [2]. and included some additional parallel
tasks which allowed us to filter both data with a relatively high sample rate. The
novelty in this paper is the possibility to estimate the absolute scale in real time
only with the help of a single camera and a 3D accelerometer. This simple, yet
effective method is applicable (on board) on any vehicle featuring these two devices.
Yielding also the absolute position and velocity of the vehicle the proposed algorithm
is directly applicable for control.

This paper is organized as follows: In Section 2 we discuss the related work.
Section 3 gives an overview of hardware and inputs used for the algorithms. In
Sections 4 and 5 the two approaches are outlined and the results are provided for
each of them. They are then discussed in the last section.

2 Related Work

Fusion of vision and IMU data can be classified into Correction, Colligation and
Fusion. Whereas the first uses information from one sensor to correct or verify
another, the second category merges different parts of the sensors. For example,
Nygards [3] integrated visual information with GPS to correct the inertial system.
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Labarosse [4] suggested using inertial data to verify the results from visual estima-
tion. Zuffery and Floreano [5] developed a flying robot equipped only with a low
resolution visual sensor and a MEMS rate gyro. They introduced gyro data into the
absolute optical flow calculations of two cameras.

EKFs are widely used on the third category. In this paper we focus on the
scale problem which arises due to the combination of monocular vision and inertial
data. Unfortunately, most studies do not consider the scale ambiguity. For example
Huster [6] implemented an EKF to estimate a relative position of an autonomous
underwater vehicle, but the scale has not been included in the state vector. Arnesto
et al. [7] fused orientation and position both from camera and inertial sensors in
a multi rate EKF for a 6D tracking task. Stereo vision is used to solve the scale
ambiguity directly. Stereo vision was further used in [7–10]. Like in [9], huge dimen-
sional states render real time implementations difficult. Stratmann and Solda [11]
used a KF to fuse gyro data with optical flow calculations. Because no translation
was recovered, no scale factor had to be estimated. Also the authors of [12] and [13]
only included orientation. In [14] they used a single camera to track lane boundaries
on a street for autonomous driving. The authors did not provide information about
the scale. Also in Eino et al. [15], where inertial data from an IMU is fused with the
velocity estimation from a vision algorithm, no details about the scale problem are
reported. Ribo et al. [16] proposed an EKF to fuse vision and inertial data to estimate
the 6DoF attitude. There and in [10, 17–19] the authors use a priori knowledge to
overcome the scale problem. Aid of an unscented Kalman filter, Kelly estimated the
6 degrees of freedom (DoF) between a camera and an IMU on a rigid body [20]. In
his most recent work he did not use a known target but uses SLAM and estimates
thus also the absolute scale in the offline estimation as the algorithm is too slow for
real time implementation. In this study we present an online multi rate EKF which
provides an accurate estimate of the scale factor λ in a converging time as fast as 15 s.
The filter can be implemented online on any vehicle featuring a camera and a 3D
accelerometer. The novelty of our proposed method does not lie in the sensor fusion
as such, but more on its real-time implementation with the focus to apply it on an
embedded platform, thanks to small matrices in the multi rate EKF. Our approach
does neither rely on a complex temporal calibration of the sensors.

3 Setup and Inputs

For the vision input we used a USB uEye UI-122xLE camera from IDS with a fish-
eye lens. The camera has a resolution of 752 × 480 and a frame rate up to 87 fps. It’s
high dynamic range and global shutter minimized motion blur.

For the inertial inputs, we used the solid state vertical gyro VG400CC-200 from
Crossbow with up to 75 Hz, which includes a tri-axial accelerometer and a tri-axial
gyroscope. It has an input range of ±10 g with a resolution <1.25 mg. Internally, a
Kalman filter is run which already corrects for the bias and misalignment. The IMU
output is the rotation yaw, pitch and roll and the 3D acceleration ax, ay, az in its
coordinate system C.

The uEye camera was mounted underneath the Crossbow IMU which is shown
in Fig. 1a. The calibration to obtain the rotation matrix Rca was calculated with the
InerVis IMU CAM calibration toolbox in Matlab [21], see Fig. 1b. The subscript
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(a) (b)

Fig. 1 a The camera/IMU setup. b Schematics of the reference frames. The subscripts ‘wc’ denote
the rotation from the camera frame C to the world frame W and vice versa. The acceleration �a is
measured in the IMU frame and is then resolved in the world frame where we subtract the gravity
vector �g

‘ca’ denotes the rotation from the acceleration frame A to the camera frame C. In
Fig. 1b, there are three relevant reference frames, W, the fixed world frame, the
camera reference frame C and the IMU frame A which are mounted together.

4 Spline Fitting

4.1 Overview

Jung and Taylor considered the problem of estimating the trajectory of a moving
camera by combining the measurements obtained from an IMU with the results
obtained from a structure from motion (SFM) algorithm. They proposed an offline
spline fitting method, where they fit a second order spline into a set of several
keyframes obtained by the SFM algorithm with monocular vision. We used this ap-
proach because of the good results reported by the authors. We modified this spline
fitting so that we can implement it for an online scale estimation. Figure 2 shows
this concept. The black line belongs to the ground truth path of the Camera/IMU.
The blue points are the camera poses obtained from the visual SLAM algorithm. We
assumed noise with a standard deviation of σv varying from 0.01 to 0.05 m/λ, which
is close to reality for the chosen SLAM algorithm. For this visualisation we assume
a scale factor λ = 1. We divide our time line into sections with a fixed duration of
Ts = 0.5 to 1.5 s. For each section, three to five second order splines are fitted (green
dashed line). The red curve shows the integrated IMU over the time Ts which is
flawed by its drift. The spline fitting is done continuously when a new section is
finished. This introduced time delay of 0.5 to 1.5 s. Note that this can be critical
if used in control, albeit the scale is not prone to sudden changes. By introducing
a weighting into the least square optimization, it is possible to rely more on the
acceleration measurements when the quality of the vision tracking deteriorates as
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Fig. 2 Concept for the online spline fitting, only x(t) is visualized. In each section Ts we fit 3–5 s
order splines (green dashed line) into the blue points, which are the position without scale from the
SLAM algorithm. The red line shows the position obtained from integration of the acceleration data
over time. Each section has its own scale λ

shown in Fig. 2 ‘bad tracking’. For each section we estimate one scale factor λn, which
is then averaged over time.

For the simulation in Matlab on arbitrary camera paths, we simplified the follow-
ing aspects compared to the original version from Jung and Taylor:

– We assumed that the acceleration of the CAM/IMU is already given in the world
frame. Therefore the subtraction of the gravitation vector �g is not necessary.

– The keyframe position are now soft constraints, meaning that a least square
is done between the acceleration measurements and the keyframe points. This
differs from Jung and Taylor, where the keyframes are hard constraints for the
fitted spline curve. This allows more noise and even short periods of wrong
tracking in the visual part.

4.2 Least Square Optimisation

We obtain the following equations for the least square in one section Ts:
The second order spline yields,

min
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Where [ai, bi, ci] for each direction [x, y, z] and λ are the unknown parameters. The
subscript ‘i’ denotes the spline number running from 3 up to 5. τ j = (t j − iTs)/Ts and
[x̂ j, ŷ j, ẑ j] are the positions from the SLAM algorithm spaced over one section (blue
points in Fig. 2).
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The continuity constraints at the boundaries of the splines in each section are,
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The acceleration from spline yields:
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Where the subscript ‘w’ denotes the acceleration resolved in the world frame W and
�̂a are the noisy acceleration measurements from the IMU.

With Eqs. 1 and 5 we can form a least square problem in the form A�z = �b with
constraints C�z = 0 from Eqs. 2 and 3. The analytical solution to this problem can be
found with Lagrange multipliers. We solved this in Matlab with the function linsq,
which provides linear constraints in a least square problem.

4.3 Results

In Matlab, we simulated a 3D camera path in a 2 m cube, shown in Fig. 3a with its
appropriate velocity and acceleration curves shown in Fig. 3b. For the acceleration
measurements, noise with standard deviation varying from 0.1–0.5 m/s2 was assumed.

Despite the fact that Jung and Taylor achieved good results with his spline fitting
task, our scale estimation was not promising. Even with our simpler adaption which
should be more robust, the resulting estimation for the scale λ was quite random and
was heavily dependent on the noise which was added to the real acceleration and also
on the shape of the 3D camera path. The resulting scale estimates were from superb
(error of 5% and less) to very bad (error of 50% and more) with different noise and
different camera paths. The reason which accounts for this poor estimation is mainly
due to the ill conditioned matrix A, which should be preconditioned beforehand
and also to the fact that almost only the spline variables ci are in the matrix A
which results in bad estimation of all the other parameters. The online spline fitting
approach could not be realized satisfyingly, because the performance of a normal
spline fitting with 3 to 5 splines in a section Ts was not accurate at all. It turned out

�Fig. 3 Simulated path in its spacial and temporal representation: a The simulated 3D camera path
in Matlab. b The simulated velocity, acceleration and the acceleration with added noise from the 3D
spline in Matlab
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that the spline fitting task becomes more and more accurate the longer our time line
is. With up to 100 splines in 10 s we achieved scale estimation errors of around 5%
and less. This speaks for the suggested offline implementation by Jung and Taylor.
On the other hand, a duration of Ts = 10 s introduces a far too long lag into the
system, what makes an online application for a controller rather critical.

5 Extended Kalman Filter

5.1 EKF State Representation

Our final non-linear prediction model is (‘k’ denotes the time step),

�zk+1 = �fk(�zk) + νk (6)
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where �xk+1 ∈ R
3×1 is the position without scale of the IMU/Camera and �vk+1, �ak+1 ∈

R
3×1 are the velocity and acceleration of the IMU/Camera in metric unit [m]. νk is the

gaussian process noise. Equation 7 is a simple discrete integration over the varying
time T. Every vector in �zk is resolved in the world frame W. Note that we do not
include the orientation information in the model nor use it as a measurement in order
to keep the algorithm simple and fast. On each acceleration measurement we do the
conversion from the inertial to the world frame by using a zero order hold (ZOH) of
the unfiltered attitude measurement returned by the visual SLAM framework. As we
work in a middle size environment with enough loops we assume negligible drift in
the SLAM map and assume thus highly accurate attitude estimation from the visual
SLAM framework. The model in its linearised form yields,
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To implement the fusion we consider the measurements in different observation
vectors. For a multirate filter, as it is in our case, the literature suggests two solutions.
One would be using a (higher order) hold to synchronize the different measurements.
Another is to weight the uncertainty of the measurement according to its temporal
occurrence. We used the simplification in [12]. We claim no certainty at all if no
measurement is available (i.e. the measurement noise variance is infinite). Thus the
update equations simplify to Eqs. 11–13 if vision data arrive or to Eqs. 14–16 if IMU
data arrive. A more complex weighting function (i.e. exponential decay in time)
could also be applied, however, at the cost of speed.
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The measurement updates for the vision and the IMU yields (‘V’ and ‘I’ denotes
Vision and IMU)
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The innovation for the IMU part is,
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The two matrices RI, RV are the noise covariance matrices for the vision and
IMU measurement inputs �xSLAM, �aIMU which are resolved in the world frame W.
The vector �xSLAM is the position without scale obtained from the vision algorithm
(SLAM). The IMU measurement �aIMU needs special attention, because significant
errors arise in the conversion from the raw IMU output. According to Fig. 1b, the
acceleration in the world frame is given by,

w�a =RwcRca

(
a�a − �b

)
− w �g (17)

where a�a is the acceleration output from the Crossbow IMU in its coordinate frame
A. �b is the static offset of the IMU. The rotation matrix Rwc is provided by the SLAM
algorithm. This rotation is much more accurate than the rotation solely from the IMU
which is integrated over time and suffers from drift. The accuracy of Rwc depends on
the initialization of the map by the SLAM algorithm. With good initialization the
error of the angles are around ±1–2◦. This error is due to the fact that we did not
adapt the camera model in the SLAM algorithm of Klein and Murray, which is still
perspective and not for fisheye lenses. Another issue which causes significant errors
in the acceleration measurement c�a is the fact that our accelerations induced by the
camera motion are small compared to the gravitational field. The subtraction of the
gravitation vector w �g then introduces a dynamical bias in c�a when the camera rotation
is inaccurate.

5.2 Results with Simulated and Real Data

We have simulated the proposed Kalman filter offline with our 3D path generator
(see spline fitting) and also on real measurement sets. For each measurement set we
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Fig. 4 Distribution of the
measurements over time,
(I: IMU measurement arrived,
V: vision measurement
arrived)

recorded the two measurement inputs for the Kalman filter, the vision non-scaled
position from Klein and Murray’s SLAM algorithm and the acceleration from the
Crossbow IMU. For the measurement sets and for the path generator we used the
Kalman filter in Eq. 7 but with three different setups. The first is the same as in Eq. 7.
In the second we only use the Z-axis, meaning that the new state yields [�xz, �vz, �az, λ]
and in the third we use only the X and Y-axis. Figure 5 shows the scale estimation
λ(t) for the simulated 3D path on the left and for the measurement set on the right.
Always the same path and measurement set was used. To make the measurements of
the simulated 3D path close to the real data, we chose the same standard deviations
for the acceleration noise of the simulated data as measured on the real data
(σSLAM = 0.01 (with a λ = 1 → 0.01 m), σIMU = 0.2 m/s2) The initial velocity and
acceleration for the state vector were set to zero. The initial scale λ was set to the
worst case, where the initial value would have an error of 50%, which does not
normally happen. A simple integration over time of the acceleration gives an initial
guess for the scale with an error in a range of 5–20%. After 25 s we also lower the
variance of λ in the state space noise covariance matrix Q. This produces less over-
shoot and faster convergence. The two different correction updates, Eqs. 11 and 14,
are performed as soon as the measurements arrive. The distribution over time looks
as shown in Fig. 4. Before the correction we do a prediction either with Ti or Tv in
the matrix Fk.

The simulation on the 3D path produced very nice results in any setup which is
not surprising because we simulated the acceleration from the spline ideally and
already resolved in the world frame, so Eq. 17 was not needed. This is also the reason
why the plots in Fig. 5a and Fig. 5c do not differ from each other very much. The
contrary shows the simulation on the real data. The fewer directions (X,Y,Z) are
included in the Kalman filter, the more accurate the estimate becomes. The reason
for this is mainly due to the influence of the measurement inputs on λ. Because we
have significant errors which arise due to the conversion in Eq. 17, the acceleration
in the world frame has a dynamic bias which is difficult to estimate. These wrong
measurements influence λ (Kalman gain K) and make the scale estimation very
sensitive, which can be seen in Fig. 5b. Therefore, a one-axis-only estimate gives the
best result. In our case, the Z-estimate proved to be much better than the X and Y,
because in our Cam/IMU movements, the subtraction of the gravity vector gives the
smallest errors on the Z acceleration.

5.3 Online Implementation Results

For an online implementation, we embedded only the third setup into the code of
Klein and Murray [22]. The code is written in C++ and uses the computer vision
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Fig. 5 On the left: Offline simulation of the Kalman filter with the simulated 3D path. On the right:
Offline Simulation of the Kalman filter with real data. The green line shows the time when the Q
Matrix is changed. The scale is fixed to λ = 1 for the 3D path and an exactly measured λ = 1.07 for
the real data. The fewer directions (X,Y,Z) are included in the Kalman filter, the more accurate the
estimate becomes. The reason for this is mainly due to the influence of the measurement inputs on λ.
The Z-estimate proved to be much better than the X and Y, because in our Cam/IMU movements,
the subtraction of the gravity vector gives the smallest errors on the Z acceleration

library libcvd and the numeric library TooN. The work flow of our implementation
is shown in Fig. 6. The original code consists of 2 threads, the Tracker and the Map-
Maker. The core thread, the Tracker, is responsible for the tracking of the incoming
video frames and provides a translation �twc and a rotation matrix Rwc of the camera.
The MapMaker is responsible for the storage of the keyframes and executes the
bundle adjustment over the whole map. The MapMaker also pokes the recovery
algorithm when the Tracker gets lost.

We added the IMU thread and the Kalman thread. The IMU thread provides the
acceleration measurements from the Crossbow IMU. The Kalman thread starts with
the initial position from the SLAM algorithm and with velocity and acceleration set
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Fig. 6 Work flow of the online implementation. The original SLAM algorithm consists of the
Tracking and the MapMaker thread (blue). We added two more threads (yellow) for the scale
estimation. The IMU thread which provides the IMU acceleration data and the Kalman filter thread
itself which estimates the scale factor λ

to zero. The value for the initial λ is calculated by integration of the acceleration over
1 s beforehand.

We also introduced time-varying values into the covariance matrix Q, which
allows a certain control of the sensitivity of the Kalman filter. Additionally, we
suspend the Kalman filter thread when the Tracker is lost. After the map has been
recovered we continue the Kalman filter, but with newly acquired values for the
state space. The velocity is set to zero, because we do not have an accurate velocity
measurement at hand. The error covariance matrix P is not reset.

6 Conclusion and Future Work

This paper describes two different approaches to estimate the absolute scale factor of
a monocular SLAM framework. We analyzed and compared a modified spline fitting
method by Jung and Taylor to the EKF. We revealed the limitations of the spline
method with respect to an online implementation. We implemented then a multi rate
EKF running in real time with over 60 Hz. The filter produced good and accurate
results within a very fast converging time of down to 15 s. Our approach is kept
simple yet effective in order to be applied on any vehicle featuring a camera and a 3D
accelerometer. We are not dependent on any known pattern in the visual framework,
nor on a complex temporal calibration of camera and IMU. Using the estimated scale
factor the vehicle can be controlled on its absolute position and velocity.
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