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Fusion of medical imaging and electronic health records

using deep learning: a systematic review and implementation

guidelines
Shih-Cheng Huang 1,2,6✉, Anuj Pareek 2,3,6, Saeed Seyyedi2,3, Imon Banerjee 2,4,5 and Matthew P. Lungren1,2,3

Advancements in deep learning techniques carry the potential to make significant contributions to healthcare, particularly in fields

that utilize medical imaging for diagnosis, prognosis, and treatment decisions. The current state-of-the-art deep learning models for

radiology applications consider only pixel-value information without data informing clinical context. Yet in practice, pertinent and

accurate non-imaging data based on the clinical history and laboratory data enable physicians to interpret imaging findings in the

appropriate clinical context, leading to a higher diagnostic accuracy, informative clinical decision making, and improved patient

outcomes. To achieve a similar goal using deep learning, medical imaging pixel-based models must also achieve the capability to

process contextual data from electronic health records (EHR) in addition to pixel data. In this paper, we describe different data

fusion techniques that can be applied to combine medical imaging with EHR, and systematically review medical data fusion

literature published between 2012 and 2020. We conducted a systematic search on PubMed and Scopus for original research

articles leveraging deep learning for fusion of multimodality data. In total, we screened 985 studies and extracted data from 17

papers. By means of this systematic review, we present current knowledge, summarize important results and provide

implementation guidelines to serve as a reference for researchers interested in the application of multimodal fusion in medical

imaging.
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INTRODUCTION

The practice of modern medicine relies heavily on synthesis of
information and data from multiple sources; this includes imaging
pixel data, structured laboratory data, unstructured narrative data,
and in some cases, audio or observational data. This is particularly
true in medical image interpretation where substantial clinical
context is often essential to provide diagnostic decisions. For
example, it has repeatedly been shown that a lack of access to
clinical and laboratory data during image interpretation results in
lower performance and decreased clinical utility for the referring
provider1,2. In a survey of radiologists, the majority (87%) stated
that clinical information had a significant impact on interpreta-
tion3. The importance of clinical context for accurate interpreta-
tion of imaging data is not limited to radiology; instead many
other imaging-based medical specialties such as pathology,
ophthalmology, and dermatology, also rely on clinical data to
guide image interpretation in practice4–6. Pertinent and accurate
information regarding the current symptoms and past medical
history enables physicians to interpret imaging findings in the
appropriate clinical context, leading to a more relevant differential
diagnosis, a more useful report for the physicians, and optimal
outcome for the patient.
In the current digital era, the volume of radiological imaging

exams is growing. To meet this increased workload demand, an
average radiologist may have to interpret an image every 3–4 s
over an 8-h workday which contributes to fatigue, burnout, and
increased error-rate7. Deep learning in healthcare is proliferating
due to the potential for successful automated systems to either
augment or offload cognitive work from busy physicians8–10. One

class of deep learning, namely convolutional neural networks
(CNN) has proven very effective for image recognition and
classification tasks, and are therefore often applied to medical
images. Early applications of CNNs for image analysis in medicine
include diabetic retinopathy, skin cancer, and chest X-rays11–18.
Yet, these models consider only the pixel data as a single modality
for input and cannot contextualize other clinical information as
would be done in medical practice, therefore may ultimately limit
clinical translation.
As an example consider the “simple” task in radiology of

identifying pneumonia on a chest radiograph, something that has
been achieved by many investigators training deep learning
models for automated detection and classification of pathologies
on chest X-rays19,20. Yet without clinical context such as patient
history, chief complaint, prior diagnoses, laboratory values, such
applications may ultimately have limited impact on clinical
practice. The imaging findings on chest X-rays consistent with
pneumonia, despite having imaging features that can generally
differentiate alternative diagnoses, are nonspecific and accurate
diagnosis requires the context of clinical and laboratory data. In
other words, the chest X-ray findings that suggest pneumonia
would be accurate in one person with fever and an elevated white
blood cell count but in another patient without those supporting
clinical characteristics and laboratory values, similar imaging
finding may instead represent other etiologies such as atelectasis,
pulmonary edema, or even lung cancer. There are countless
examples across different medical fields in which clinical context,
typically in the form of structured and unstructured clinical data
from the electronic health record (EHR), is critical for accurate and
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clinically relevant medical imaging interpretation. As with human
physicians, automated detection and classification systems that
can successfully utilize both medical imaging data together with
clinical data from the EHR, such as patient demographics, previous
diagnoses and laboratory values, may lead to better performing
and more clinically relevant models.
Multimodal deep learning models that can ingest pixel data

along with other data types (fusion) have been successful in
applications outside of medicine, such as autonomous driving and
video classification. As an example, a multimodal fusion detection
system for autonomous vehicles, that combines visual features
from cameras along with data from Light Detection and Ranging
(LiDAR) sensors, is able to achieve significantly higher accuracy
(3.7% improvement) than a single-modal CNN detection model21.
Similarly, a multimodal social media video classification pipeline
leveraging both visual and textual features increased the
classification accuracy to 88.0%, well above single modality neural
networks such as Google’s InceptionV3 which reached an accuracy
of 76.4% on the same task22. The improvements in performance
for these efforts not only echo the justification in medical
applications, leveraging fusion strategies for medical imaging is
also primarily motivated by the desire to integrate complementary
contextual information and overcome the limitation of image-only
models.
The recent medical imaging literature shows a similar trend

where both EHR and pixel data are leveraged in a “fusion-
paradigm” for solving complex tasks which cannot readily be
tackled by a single modality (Fig. 1). The new fusion paradigm
covers a wide range of methodologies and techniques with
varying terms and model architectures that have not been studied
systematically. The purpose of this review paper is to present a
comprehensive analysis of deep learning models that leverage
multiple modalities for medical imaging tasks, define and
consolidate relevant terminology, and summarize the results from
state-of-the-art models in relevant current literature. We hope this
review can help inform future modeling frameworks and serve as
a reference for researchers interested in the application of
multimodal fusion in medical imaging.

Terminology and strategies in fusion

Data fusion refers to the process of joining data from multiple
modalities with the aim of extracting complementary and more

complete information for better performing machine learning
models as opposed to using a single data modality.
Figure 2 illustrates the three main different fusion strategies,

namely early, joint, and late fusion. Here we define and describe
each fusion strategy in detail:
Early fusion23, commonly known as feature level fusion, refers

to the process of joining multiple input modalities into a single
feature vector before feeding into one single machine learning
model for training (Fig. 2 Early Fusion). Input modalities can be
joined in many different ways, including concatenation, pooling or
by applying a gated unit23,24. Fusing the original features
represents early fusion type I, while fusing extracted features,
either from manual extraction, imaging analysis software or
learned representation from another neural network represents
early fusion type II. We consider predicted probabilities to be
extracted features, thus fusing features with predicted probabil-
ities from different modalities is also early fusion type II.
Joint fusion (or intermediate fusion) is the process of joining

learned feature representations from intermediate layers of neural
networks with features from other modalities as input to a final
model. The key difference, compared to early fusion, is that the
loss is propagated back to the feature extracting neural networks
during training, thus creating better feature representations for
each training iteration (Fig. 2 Joint Fusion). Joint fusion is
implemented with neural networks due to their ability to
propagate loss from the prediction model to the feature extraction
model(s). When feature representations are extracted from all
modalities, we consider this joint fusion type I. However, not all
input features require the feature extraction step to be defined as
joint fusion (Fig. 2 Joint Fusion—Type II).
Late fusion23 refers to the process of leveraging predictions

from multiple models to make a final decision, which is why it is
often known as decision-level fusion (Fig. 2 Late Fusion). Typically,
different modalities are used to train separate models and the
final decision is made using an aggregation function to combine
the predictions of multiple models. Some examples of aggrega-
tion functions include: averaging, majority voting, weighted
voting or a meta-classifier based on the predictions from each
model. The choice of the aggregation function is usually empirical,
and it varies depending on the application and input modalities.

RESULTS

A total of 985 studies were identified through our systematic
search. After removing duplicates and excluding studies based on
title and abstract using our study selection criteria (see Methods),
44 studies remained for full-text screening. A total of 17 studies
fulfilled our eligibility criteria and were included for systematic
review and data extraction. The studies were in English except for
a single paper in Chinese. Figure 3 presents a flowchart of the
study screening and selection process and Table 1 displays the
included studies and extracted data.

Early fusion

The majority of the studies that remained after our full-text
screening (11/17) used early fusion to join the multimodal input.
Thung et al.25 conducted image-image fusion of PET and MRI
images using a joint fusion approach, but since they concatenated
clinical and imaging features into one single feature vector before
feeding into their neural network, we categorized their approach
as early fusion. Six out of eleven early fusion studies extracted
features from medical imaging using a CNN (Table 1). Four out of
the six studies that applied neural networks for feature extraction
simply concatenated the extracted imaging features with clinical
features for their fusion strategy26–29. The remaining two studies
by Liu et al.30 and Nie et al.31 applied dimensionality reduction
techniques before concatenating the features. Five studies used

Fig. 1 Timeline of publications in deep learning for medical
imaging. Timeline showing growth in publications on deep learning
for medical imaging, found by using the same search criteria on
PubMed and Scopus. The figure shows that fusion has only
constituted a small, but growing, subset of medical deep learning
literature.
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software generated and/or manually extracted features from
medical imaging before fusing with clinical data. Software-based
feature extraction included radiomics features such as skewness
and kurtosis32 or volume and thickness quantification of the
regions of interest25,33. Manually extracted features included
radiological assessments such as size, angle, and morphology of
anatomical structures34. Out of these five studies, two applied
feature selection strategies to reduce the feature dimension and
improve predictive performance. The employed feature selection
strategies included a rank-based method using Gini coefficients32,
a filter-based method based on mutual information of the
features35, and a genetic-algorithm based method35. Seven of
the early fusion studies compared the performance of their fusion
models against single modality models (Table 1). Six of these
studies showed an improvement in performance when using
fusion25,26,28,29,31,33, and the remaining one achieved the same
performance but reduced standard deviation27, alluding to a
model with better stability.

Joint fusion

Joint fusion was used in four out of the seventeen studies. Spasov
et al.36, Yala et al.37, and Yoo et al.38 implemented CNNs to learn
image features and fused these feature representations with
clinical features before feeding them into a feed-forward neural
network. Spasov et al. and Yala. et al. both used simple
concatenation to fuse the learned imaging and clinical features.
To cater to the differences between the dimensionality and
dynamic range between the imaging and clinical features, Yoo
et al. replicated and scaled their clinical features before fusion and
they observed improvements in performances. Kawahara et al.39

also used CNNs as feature extractors for imaging modalities but
experimented with a unique multimodal multi-task loss function
that considers multiple combinations of the input modalities. The

predicted probabilities of these multi-task outputs were aggre-
gated for prediction, but we do not consider this late fusion since
the probabilities were not from separate models. Kawahara et al.,

Yala et al. and Yoo et al. reported an improvement in performance
using fusion compared to image-only models (Table 1). Yoo et al.
further compared their joint fusion model to a late fusion model
and achieved a 0.02 increase in Area Under Receiver Operating

Characteristic Curve (AUROC).

Late fusion

Late fusion was used in three out of the seventeen included

studies (Table 1). Each of the three late fusion papers applied a
different type of aggregation strategy. Yoo et al.38 took the mean
of the predicted probabilities from two single modality models as
the final prediction. Reda et al.40 built another classifier using the

single modality models’ prediction probabilities as inputs. Qiu
et al.41 trained three independent imaging models that took as
input a single MRI slice, each from a specific anatomical location.
Max, mean and majority voting were applied to aggregate

predictions from the three imaging models. The results from the
three aggregation methods were combined again by majority
voting before another round of late fusion with the clinical

models. All late fusion models showed improvements in
performances when compared to models that used only single
modalities.

Fig. 2 Fusion strategies using deep learning. Model architecture for different fusion strategies. Early fusion (left figure) concatenates original
or extracted features at the input level. Joint fusion (middle figure) also joins features at the input level, but the loss is propagated back to the
feature extracting model. Late fusion (right figure) aggregates predictions at the decision level.
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DISCUSSION

The purpose of this review is to aggregate the collective
knowledge of prior work applying multimodal deep learning
fusion techniques that combine medical imaging with clinical
data. We propose consistent terminology for multimodal fusion
techniques and categorize prior work by fusion strategy. Overall,
we found that multimodality fusion models generally led to
increased accuracy (1.2–27.7%) and AUROC (0.02–0.16) over
traditional single modality models for the same task. However,
no single fusion strategy consistently led to optimal performance
across all domains. Since our literature review shows that
additional patient information and clinical context can result in
better model performance, and fusion methods better replicate
the human expert interpretation workflow, it is recommended to
always experiment with fusion strategies when multimodal data is
available.
The deep learning fusion models reviewed represent a

spectrum of medical applications ranging from radiology31 to
hematology29. For example, fusion strategies were often applied
to the diagnosis and prediction of Alzheimer’s disease25,28,33,36,41.
In clinical practice, neither imaging nor clinical data alone are
sufficient for the diagnosis of Alzheimer’s disease. Leveraging
deep learning fusion techniques consistently showed improve-
ments in performance for Alzheimer’s disease diagnosis, while
physicians struggle with accurate and reliable diagnostics even
when multimodality is present, as proven by histopathological
correlation42. This highlights the importance and utility of
multimodal fusion techniques in clinical applications.
Fusion approaches in other less complex clinical applications

also improved performance over single modality models, even
those in which single modality models have been widely reported
to achieve high performance, such as pixel-based models for
automated skin cancer detection43. While the fusion approach
varied widely, the consistent improvement in reported perfor-
mance across a wide variety of clinical use cases suggests that
model performance based on single-modal data may not

represent state of the art for a given application when multimodal
data are not considered.
The complexity of the non-imaging data in multimodal fusion

work was limited, particularly in the context of available feature-
rich and time-series data in the EHR. Instead, most studies focused
primarily on basic demographic information such as age and
gender25,27,39, a limited range of categorical clinical history such as
hypertension or smoking status32,34 or disease-specific clinical
features known to be strongly associated with the disease of
interest such as APOE4 for Alzheimer’s25,28,33,36 or PSA blood test
for prediction of prostate cancer40. While selecting features known
to be associated with disease is meaningful, future work may
further benefit from utilizing large volumes of feature-rich data, as
seen in fields outside medicine such as autonomous driving44,45.

Implementation guidelines for fusion models

In most applications early fusion was used as the first attempt for
multimodal learning, a straightforward approach that does not
necessarily require training multiple models. However, when the
input modalities are not in the same dimensions, which is typical
when combining clinical data represented in 1D with imaging
data in 2D or 3D, then high-level imaging features must be
extracted as a 1D vector before fusing with the 1D clinical data.
There were a variety of strategies used to accomplish this;
including using manually extracted imaging features or software-
generated features25,32–35. It is worth noting, that unless there is a
compelling reason for using such an approach, outputs from linear
layers of a CNN are usually effective feature representations of the
original image28,29,31. This is because learned features representa-
tions often result in much better task-specific performance than
can be obtained with manual or software extracted features46.
Based on the reviewed papers, early fusion consistently improved
performance over single modality models, and is supported by
this review as an initial strategy to fuse multimodal data.
When using CNNs to extract features from imaging modalities,

the same CNNs can also be used in joint fusion. However, joint
fusion is implemented using neural networks which can be a
limitation especially with smaller datasets better suited for
traditional machine learning models. For example, if there are
disproportionately few samples relative to the number of features
in the dataset or if some of the input features are sparsely
represented, early or late fusion is preferred because they can be
implemented with traditional machine learning algorithms (e.g.,
Lasso and ElasticNet47) that are better suited for this type of
data48. Nevertheless, joint and early fusion neural networks are
both able to learn shared representations, making it easier for the
model to learn correlations across modalities, thereby resulting in
better performance49. Studies have also shown that fusing highly
correlated features in earlier layers and less correlated features in
deeper layers improve model performance50,51. In addition, we
suspect that joint fusion models have the potential to outperform
other fusion strategies, as the technique iteratively updates its
feature representations to better complement each modality
through simultaneous propagation of the loss to all feature
extracting models. Yet to date, there is insufficient evidence to
systematically assess this effect in fusion for medical imaging and
is an important area for future exploration.
When signals from different modalities do not complement

each other, that is to say input modalities separately inform the
final prediction and do not have inherent interdependency, then
trying a late fusion approach is preferred. This is chiefly because
when feature vectors from multiple modalities are concatenated,
such as in early and joint fusion, high-dimensional vectors are
generated which can be difficult for machine learning models to
learn without overfitting, unless a large number of input samples
are available. This is the so-called “curse of dimensionality” in
machine learning52,53. Late fusion mitigates this problem by

Fig. 3 PRISMA flowchart of the study selection process. Two
authors independently screened all records for eligibility. Seventeen
studies were included in the systematic review.
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utilizing multiple models that are each specialized on a single
modality, thus limiting the input feature vector size for each
model. For example, the quantitative result of a Mini Mental State
Examination and the pixel data obtained from a brain MRI (e.g.,
Qiu et al.41) are largely independent data, and would therefore be
suitable candidates for input into late fusion models.
Furthermore, in the common real-world scenario of missing or

incomplete data, i.e. some patients have only clinical data
available but no imaging data or vice-versa, late fusion retains
the ability to make predictions. This is because late fusion employs
separate models for separate modalities, and aggregation
functions such as majority voting and averaging can be applied
even when predictions from a modality is missing. When the
different input modalities have very different numbers of features,
predictions might be overly influenced by the most feature-rich
modality (e.g., Reda et al.40). Late fusion is favorable in this
scenario as it considers each modality separately. Yoo et al.38 also
showed that repeating or scaling the modality that has fewer
features before fusion achieved a boost in the model’s perfor-
mance. Nonetheless, joint fusion can also be tuned to mitigate the
difference in number of features, by setting feature producing
linear layers of the feature extraction model to output a similar
number of features as the other modalities. Our recommendations
are summarized in Table 2.
Ideally, researchers want to first build and optimize single

modality models to dually serve as baseline models and provide
inputs to fusion models. Multiple fusion strategies can then be
implemented to compare model performance and guide sub-
sequent fusion experiments. Since better performance is consis-
tently achieved with multimodal fusion techniques, routine best
practice should include reporting of the systematic investigation
of various fusion strategies in addition to deep learning
architectures and hyperparameters.

Limitations

We devised our search string to only consider papers after 2012.
This constitutes a limitation as we excluded earlier papers that
applied fusion using traditional machine learning techniques or
simple feed-forward neural networks. Publication bias is an
important limitation since positive results can be disproportio-
nately reported in the published literature, which may have the
aggregate effect of overrepresenting the advantages of fusion
techniques. Furthermore, using our study selection criteria, we
only looked at fusion techniques applied to clinical prediction and
diagnosis, but we recognize that fusion can be applied to other
interesting medical tasks such as segmentation and registration.
As the included studies investigate different objectives, use

different input modalities, report different performance metrics,
and not all papers provide confidence bounds, we are not able to
aggregate or statistically compare the performance gains in a

meta-analysis. In addition, the reported metrics cannot always be
considered valid, since some studies didn’t use an independent
test-set for an unbiased performance estimate29,40. The limited
number of studies per medical field and the heterogeneity of each
study also makes it difficult to compare the studies qualitatively. A
few studies implemented fusion in unconventional ways, which
may introduce subjectivity when we classify each study into early,
late, and joint fusion.

Future research

This systematic review found that multimodal fusion in medicine
is a promising yet nascent field that complements the clinical
practice of medical imaging interpretation across all disciplines.
We have defined and summarized key terminology, techniques,
and evaluated the state of the art for multimodal fusion in medical
imaging, honing in on key insights and unexplored questions to
guide task and modality-specific strategies. The field of multi-
modal fusion for deep learning in medical imaging is expanding
and novel fusion methods are expected to be developed. Future
work should focus on shared terminology and metrics, including
direct evaluation of different multimodal fusion approaches when
applicable. We found that multimodal fusion for automated
medical imaging tasks broadly improves the performance over
single modality models, and further work may discover additional
insights to inform optimal approaches.

METHODS

This systematic review was conducted based on the PRISMA
guidelines54.

Search strategy

A systematic literature search was implemented in PubMed and
Scopus under the supervision of a licensed librarian. The key
search terms included a combination of the three major themes:
‘deep learning’, ‘multimodality fusion’, and ‘medical imaging’.
Terms for segmentation, registration, and reconstruction were
used as exclusion criteria in the search. The search encompassed
papers published between 2012 and 2020. This range was
considered appropriate due to the rise in popularity in applying
CNN on medical images since the 2012 ImageNet challenge. The
complete search string for both databases is provided in
Supplementary Methods. For potentially eligible studies cited by
articles already included in this review, additional targeted free-
text searches were conducted on Google Scholar if they did not
appear in Scopus or PubMed.
We included all research articles in all languages that applied

deep learning models for clinical outcome prediction or diagnosis
using a combination of medical imaging modalities and EHR data.

Table 2. Properties and benefits of different fusion strategies.

Early Joint Late

Able to make predictions when not all modalities are present × ×a ✓

Able to model interactions between features from different modalities ✓ ✓ ×

Able to learn more compatible features from each modality × ✓ ×

Does not necessarily require a large amount of training data × × ✓

Does not require training multiple models ✓
b

✓ ×

Does not necessarily require meticulous designing efforts ✓ × ✓

Flexibility to join input at different levels of abstraction × ✓ ×

Different properties and benefits for each fusion strategy.
aSpecialized joint fusion architecture such as Kawahara et al.’s multi-modal multi-task model is capable of handling missing data.
bEarly fusion requires training of multiple models when the imaging features are extracted using CNN.

S.-C. Huang et al.

7

Seoul National University Bundang Hospital npj Digital Medicine (2020)   136 



Studies specific to deep learning were included rather than the
broader field of machine learning because deep learning has
consistently shown superior performance in image-related tasks.
We selected only studies that fused medical imaging with EHR
data since, unlike image-image fusion, this is an exciting new
technique that effectively merges heterogeneous data types and
adds complementary rather than overlapping information to
inform prediction and diagnosis. We defined medical imaging
modalities as any type of medical images used in clinical care.
Studies that used deep learning only for feature extractions were
also included for our review. We excluded any study that
combined extracted imaging features with the original imaging
modality, as we still considered this a single modality. Articles that
fused multimodal data for segmentation, registration or recon-
struction were also excluded due to our criteria for outcome
prediction and diagnosis. Articles from electronic preprint archives
such as ArXiv were excluded in order to ensure only papers that
passed peer-review were included. Lastly, papers with poor quality
that hindered our ability to meaningfully extract data were also
excluded.

Study selection

The Covidence software (www.covidence.org) was used for
screening and study selection. After removal of duplicates, studies
were screened based on title and abstract, and then full-texts were
obtained and assessed for inclusion. Study selection was
performed by two independent researchers (S.-C.H. and A.P.),
and disagreements were resolved through discussion. In cases
where consensus could not be achieved a third researcher was
consulted (I.B.).

Data extraction

For benchmarking the existing approaches we extracted the
following data from each of the selected articles: (a) fusion
strategy, (b) year of publication, (c) authors, (d) clinical domain,
(e) target outcome, (f) fusion details, (g) imaging modality, (h)
non-imaging modality, (i) number of samples, and (j) model
performance (Table 1). We classified the specific fusion strategy
based on the definitions in the section “Terminology and
strategies in fusion”. The number of samples reported is the full
data-size including training, validation and testing data. For
classification tasks we extracted AUROC whenever this metric
was reported, otherwise we extracted accuracy. When the article
contained several experiments, metrics from the experiment
with the best performing fusion model were extracted. These
items were extracted to enable researchers to find and compare
current fusion studies in their medical field or input modalities
of interest.
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