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The digital elevation model (DEM) is a significant digital representation of a terrain
surface. Although a variety of DEM products are available, they often suffer from
problems varying in spatial coverage, data resolution, and accuracy. However, the
multi-source DEMs often contain supplementary information, which makes it possi-
ble to produce a higher-quality DEM through blending the multi-scale data. Inspired
by super-resolution (SR) methods, we propose a regularized framework for the
production of high-resolution (HR) DEM data with extended coverage. To deal
with the registration error and the horizontal displacement among multi-scale mea-
surements, robust data fidelity with weighted L1 norm is employed to measure the
conformance of the reconstructed HR data to the observed data. Furthermore, a
slope-based Markov random field (MRF) regularization is used as the spatial reg-
ularization. The proposed method can simultaneously handle complex terrain fea-
tures, noises, and data voids. Using the proposed method, we can reconstruct a
seamless DEM data with the highest resolution among the input data, and an
extensive spatial coverage. The experiments confirmed the effectiveness of the
proposed method under different cases.

Keywords: multi-scale DEMs; data fusion; regularized framework; super-resolution

1. Introduction

As a popular digital representation of cartographic information, digital elevation

models (DEMs) are grids with regularly spaced elevation values in a raster form.

Due to their simple data structure and widespread availability, DEMs have been

broadly applied in scientific fields such as ecology (Kellndorfer et al. 2004), agricul-

ture (Fu and Rich 2002), and hydrological modeling (Passalacqua et al. 2010, Huang

et al. 2014, Zheng et al. 2015). There are a variety of DEM products available with

different sources. Early DEM data were mainly generated by digitizing existing

topographic maps. However, they can now be directly derived using remote sensing

and photogrammetric techniques (Erdogan 2009). Efforts have been directed toward

generating DEMs from digital stereo images acquired by satellite-based sensor sys-

tems, for example, the advanced space-borne thermal emission and reflection radio-

meter (ASTER) global digital elevation model (GDEM). Nevertheless, remote sensing

images are often sensitive to weather condition and terrain types (Hirano et al. 2003).
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Compared with other satellite-based techniques, the synthetic aperture radar (SAR)

remote sensing technique can provide high-resolution (HR) elevation data in all

weather conditions, both day and night, at a global scale (Chen et al. 2009). The

famous representative product is the Shuttle Radar Topography Mission (SRTM) 90 m

global DEM (Hormann et al. 2003). Additionally, ground-based or air-borne automatic

laser scanners can provide very high resolution elevation data and are suitable for

relatively small areas (Darboux and Huang 2003, Zhou and Zhu 2013).

Variations in quality always exist among different DEM products. For example, DEMs

derived from space-borne sensors generally provide data over broad areas, but the

inadequate spatial resolution may result in a limited application for surface terrain

analysis. Meanwhile, interferometric SAR-derived DEMs acquired from air-borne plat-

forms have prominent advantages in the spatial resolution. Nevertheless, they often suffer

from data voids or heavy noise, in addition to the narrow coverage due to the low altitude

(Jhee et al. 2013).

Generally speaking, DEMs with a very high spatial resolution are usually limited

in their spatial coverage or have data quality problems (e.g., data voids and noises)

without any preprocessing, as well as the high cost of data acquisition; while,

relatively low-resolution (LR) DEMs provide insufficient spatial information due to

their restricted spatial representative ability. Based on these facts, many researchers

have focused on the task of quality improvement of DEMs. A number of interpolation

methods can be used to enhance the spatial information of a DEM on a sparse grid,

for example, the bilinear, inverse distance weighted (IDW), spline, and kriging inter-

polation method based on geo-statistical theory (Liu 2008). However, finite informa-

tion for interpolation will oversmooth the terrain surface, especially over the rough

areas. Among the further studies, auxiliary data have been used to overcome the

oversimplification in DEM densification. Chen et al. (2013) made use of multispectral

information to reveal the actual surface reflection properties, and thus generated a

higher-resolution DEM using the shape-from-shading (SFS) technique. Robinson et al.

(2014) reconstructed a new DEM product called ‘EarthEnv-DEM90’ by combining

multi-scale DEM datasets (90 m and 30 m). The main contribution of this work was to

extend the coverage of current data, and improve the data quality by filling data voids

and suppressing the noise, but the spatial resolution of the final product was

only 90 m.

Moreover, researchers have also tried to introduce fusion ideas into DEM reconstruc-

tion. Karkee et al. (2008) attempted to fuse SRTM and ASTER GDEM data in the

frequency domain to fill the data voids and improve the overall accuracy of the fused

data. Jhee et al. (2013) adopted multi-scale modeling for DEMs to fill the voids in HR

data, while a multi-scale Kalman smoother (MKS) based on the Markov property was

used to remove blocky artifacts. In addition, Jiang et al. (2014) tried to fuse DEMs

derived from two HR InSAR data pairs acquired from the descending and ascending

orbits, employing a maximum likelihood fusion scheme to remove the voids in the fused

data. All the methods mentioned are inadequate for the use of supplementary DEM

information with different resolutions, coverage, and vertical accuracies. Additionally,

they have difficulty in simultaneously processing multiple problems, including noise, data

voids, and resolution enhancement.

To overcome these limitations, we introduce the concept of super-resolution (SR). SR

is a technique which takes resolution limitation and common degradation factors into

consideration at the same time. Image SR can produce an image with higher resolution

using the redundant information among multiple low-resolution images (Park et al. 2003).
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It was first addressed by Tsai and Huang to improve the spatial resolution of Landsat TM

images with relative sub-pixel motion (Tsai and Huang 1984). Their methods deal with

the problem in the frequency domain, which is extremely sensitive to model errors.

Therefore, methods in the spatial domain have become more popular in recent years,

including iterative back projection (IBP) (Irani and Peleg 1991), projection onto convex

sets (POCS) (Zhang and Zhou 2011), and a group of regularized variational methods

(Park et al. 2003; Ng et al. 2007b; Zhang et al. 2007, Zeng and Yang 2013). Among these

methods, Bulyshev et al. (2011) attempted to employ a back projection (BP) method for

the processing of multiple three-dimensional Flash LiDAR DEM data. However, this

method has only been tested on simulated data, ignoring the possible inconsistency

between multi-sensor and multi-scale DEMs.

Early SR methods mainly assumed that all the LR images have the identical

spatial resolution. Nevertheless, multi-scale data are common in the real cases. Thus,

multi-scale SR for multiple image reconstruction with different resolutions started to

be focused (Joshi et al. 2005; Ng et al. 2007a; Tian and Yap 2013, Song et al.

2015). The key point of multi-scale SR is to solve the tradeoff between spatial

resolution and coverage, and obtain an image with high-resolution and wide cover-

age. Inspired by the SR methods, we propose a regularized framework for multi-

source and multi-scale DEM fusion. Despite the spatial resolutions, other factors

such as horizontal displacements, registration errors, data voids, as well as the

relative vertical discrepancies among the multi-source data should also be considered

in DEM fusion (Fisher and Tate 2006).

The motivation behind the proposed multi-scale fusion algorithm is to obtain a

seamless integration of data from DEMs with multiple resolutions, and thus recon-

struct the desired data with the highest resolution and extensive coverage among the

input data, as shown in Figure 1. The result was reconstructed using the LR data with

maximum coverage as fundamental information and partially HR information as a

constraint.

In view of this, there are three main problems we need to settle. First, the

proposed method conducted DEM fusion using the highest-resolution dataset as

the referenced coordinate datum. Although different DEM datasets have overlapped

areas, there will be relative horizontal displacements between them (Robinson et al.

2014). Moreover, the errors in the registration process will be included in the

proposed model. However, the horizontal errors are complicated and hard to

Figure 1. Fusion of DEM data with different scales and different spatial coverage.
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measure. Considering inaccurate error estimation will bring unmanageable distur-

bance to our model, sub-pixel horizontal errors are not considered separately, but

included as the influence of vertical errors in the article. Thus, the proposed algo-

rithm adopts L1 norm (Farsiu et al. 2004) for the data fidelity in the objective

function. Furthermore, using the relative residuals between the input multi-scale

data and the desired data (the reconstructed result), we compute the contribution

of each data to construct the weighted objective function, according to the quality of

the multi-scale data. Second, data voids and anomalies (pixels with gross error)

caused by radar shadowing, unwrapping errors, and low-backscattering targets are

always challenges for the data users (Reuter et al. 2007). This algorithm is capable

of filling data voids by detecting the invalid pixels, including the missing values and

the anomalies caused by production differences and terrain changes. Lastly, regular-

ization should be designed especially for DEMs to represent their intrinsic charac-

teristics. Markov random field (MRF) regularization is employed to preserve the

spatial neighborhood continuity of the reconstructed DEM. To better describe the

terrain surface, slope information was utilized to analyze the spatial distribution of

the landscapes, thereby handling the flat regions and the edges in a spatially adaptive

manner, both for inconsistent pixels detection and regularization construction. Unlike

the traditional methods for DEM enhancement, we integrate resolution enhancement,

noise suppression, and data voids filling into a universal framework.

The rest of this paper is organized as follows. Section 2 gives a specific and

detailed description of the proposed method. The experiments in multi-scale DEM

fusion, including two simulated and three real data experiments, are presented in

Section 3. This section also includes an analysis of the constructed data. Lastly,

Section 4 is the conclusion.

2. Method

2.1. The generative model

To get the desired reconstructed DEM from input multi-scale DEM data using a regular-

ized method, we should first describe the relationship among them. We assume that the

input DEMs can be acquired from the desired HR data with extensive coverage through a

degradation process. It has been mentioned that we want to obtain HR data with the same

coverage as the lowest-resolution input data (N1 � N2) and the same resolution as the

highest-resolution input data. Therefore, the size of the reconstructed HR DEM

(HN1 � HN2) can be calculated as

HN1 ¼ N1 �
g1

gK
;HN2 ¼ N2 �

g1

gK
(1)

where g1 and gK represent the lowest and highest resolutions, respectively, among the

total K data participating in the fusion. For example, if we want to fuse three overlapped

DEM datasets with resolutions of 10 m (70 × 70), 20 m (60 × 60), and 30 m (50 × 50),

then the reconstructed dataset is a seamless DEM with a 10 m resolution and a size of

150 × 150.

According to the DEM generation process, the different data scales are determined by

the sampling intervals. Moreover, the values in a gridded DEM are assumed to be the

height of a certain area on the earth’s surface above a defined datum. Based on this

2098 L. Yue et al.
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concept, it is possible to revisit each point and repeat the measurement (Fisher and Tate

2006). All the measurements are usually subject to errors, which appear as noise in the

elevation data. In this paper, we consider the error model as random with gross errors

excluded (Fisher and Tate 2006, Wechsler 2007, Gallant 2011). Thus, we define the

generation model for a multi-scale DEM as

yk ¼ OkDkM kuþ nk (2)

As N1k � N2k is defined as the size of the kth input data, HN1 � HN2 is set as the

size of the reconstructed HR data defined in Equation (1). In Equation (2), u is the

vector form of the reconstructed DEM with a size of HN1HN2 � 1, whereas yk is the

vector form of the kth input data with size of N1kN2k � 1. After registering u and

the corresponding degraded data to the reference coordinate datum, M k

(HN1HN2 � HN1HN2) describes the translation matrix. As shown in Figure 2, the

resampled LR data sometimes had sub-pixel misalignment with the referenced HR

grid. To avoid the extra errors brought by the geometric sampling, it was better to

directly move its pixels into the HR grid. By multiplying M k by u, we slightly adjust

the HR grid for alignment with the input data with the highest spatial resolution. Dk

(N1kN2k � HN1HN2) is the down-sampling matrix, and nk (N1kN2k � 1) represents the

random error. Given that the coverage for each observed dataset differs, we

define the cropping operator Ok (N1kN2k � N1kN2k) as a diagonal matrix with

the zero elements if the corresponding pixel was invalid or unobservable in the

kth input data. It crops out the unobservable pixels from the HR data at an appro-

priate position after registration and re-sampling. Furthermore, invalid values,

including voids and anomalies in the DEM, are also included in the unobservable

matrix Ok .

(a) (b)

Figure 2. The translational relationship between the LR data and HR data. The blue grids (low
resolution, wide spatial range) and green grids (referenced high resolution data grid with relatively
narrow spatial coverage) represent the input data, whereas the gray dotted mesh indicate the
reconstructed HR data.

International Journal of Geographical Information Science 2099
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2.2. The adaptive-weighted multi-scale regularized framework

Given the input multi-scale DEM data (known variables), we want to obtain a recon-

structed HR DEM (unknown variable). Once the generative model is fixed, we can set the

problem as an inverse process. To solve the ill-posed inverse problem, we choose the

regularized framework for its advantages in adding prior information and simultaneously

handling multiple degradation problems. Using the regularization techniques, the desired

DEM data can be obtained by solving the following minimization function:

û ¼ argmin
X

K

k

Ψ yk � Akuð Þ þ λR uð Þ
" #

(3)

where Ak ¼ OkDkM k . In this objective function, the first fidelity term Ψ �ð Þ provides a

constraint for the conformance of the reconstructed HR data to the observed LR data, in

accordance with the model in Equation (2). The second term R �ð Þ is the regularization, and
we can keep the balance between the two competing terms by tuning the regularization

parameter λ. Usually, a larger λ will cause a smoother terrain surface. A smaller λ can

preserve the details better, but noise and other errors will also be kept.

2.2.1. The robust adaptive-weighted norm fidelity for DEM fusion

This section describes the fidelity model for the proposed framework. The main task is to

determine the Ψ �ð Þ in Equation (3). First, geometric registration should be implemented

for datasets with different coordinate systems, and the specific registration strategy will be

described in the experiments (Section 3.3). The motion vector for calculating the transla-

tion matrix M k can then be easily acquired after registration, and the cropping region can

also be obtained according to the coordinates. We should then detect the inconsistent

pixels, which are common in DEM data. In general, data voids can be easily detected.

However, sometimes severe pixels with gross errors whose information is completely

invalid should also be regarded as missing values. Therefore, we detect these inconsistent

pixels using a threshold for the difference between the corresponding values at pixel i in

the multi-scale DEMs after geometric registration:

yk ið Þ � y
0

l ið Þ
�

�

�

�<T (4)

Here, y
0
l is the reference data after geometrically matching and re-sampling to yk .

Generally speaking, DEMs with a higher vertical accuracy and better data integrity will

be chosen as the reference data in Equation (4). The threshold T is usually set to be large

enough, to guarantee that the invalid pixels are detected. Nevertheless, it is sometimes

hard to achieve a balance between excluding the anomalies and preserving the useful HR

information. We consider spatial information into this procedure, and the expression is

modified to

yk ið Þ � y
0

l ið Þ
�

�

�

�<T � Si (5)

where S (N1kN2k � 1) is the slope vector for yk. Then Si represents the pixel’s normalized

slope value at pixel i with the location m; nð Þ in the corresponding DEM data in the form

2100 L. Yue et al.
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of matrix, where i ¼ n� 1ð Þ � N1k þ m. Slope is one of the most significant surface

morphological parameters, and there are a variety of algorithms for slope calculation

(Zhou and Liu 2004). Considering the popularity and robustness to noise, we choose the

third-order finite-difference weighted by reciprocal of squared distance (3FDWRSD)

algorithm to calculate the slope information. Given z (N1kN2k � 1) as the DEM data

vector, the slope value at pixel m; nð Þ can then be defined as

Si ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2x þ f 2y

q

fx ¼ zi�N1k�1 � zi�N1kþ1 þ
ffiffiffi

2
p

zi�1 � ziþ1ð Þ þ ziþN1k�1 � ziþN1kþ1

� �

= 4þ 2
ffiffiffi

2
p� �

gk

fy ¼ ziþN1kþ1 � zi�N1kþ1 þ
ffiffiffi

2
p

ziþN1k
� zi�N1k

ð Þ þ ziþN1k�1 � zi�N1k�1

� �

= 4þ 2
ffiffiffi

2
p� �

gk

(6)

where gk is the DEM resolution, and the pixel location i ¼ n� 1ð Þ � N1k þ m.

After excluding the effect of the invalid pixels, there are two other problems that

we need to settle. One of the issues is the horizontal errors. Errors occur in the planar

(XY) coordinates due to the registration error. In addition, horizontal displacement is

inevitable, even for data with the same coordinate datum. This will affect the vertical

accuracy during the fusion process, because neighboring information will be used in

the fusion process. It has been proved that the L2 � norm fidelity model results in a

pixel-wise mean, while the L1 model results in a pixel-wise median of all the

measurements after motion compensation (Farsiu et al. 2004). For this reason, we

adopt the L1 norm rather than the L2 norm for the fidelity, and thus deal with

horizontal errors more robustly.

Another significant concern is the discrepancy between multi-scale DEMs. DEM pro-

ducts are acquired through various measurements and at different times. A variety of factors,

such as the spatial scales, data collection techniques, and noises, can influence the data

quality (Chaplot et al. 2006, Chen and Yue 2010). Furthermore, the quality for different areas

of the same data product may be not stable. Based on this fact, we should consider weights in

the construction, and assign larger weights for data with a better quality (Zhang et al. 2012).

Thus, the objective function in Equation (3) can be rewritten as

û ¼ argmin
X

k

wk � yk � Akuð Þk k11þλR uð Þ
" #

(7)

where wk represents the weight for the kth dataset. Then, how can we determine the

weight for each DEM dataset?

According to Fisher and Tate (2006), the error of a given set of point measurements of

a surface can be determined by comparison with reference data that is assumed to be error

free. It is natural that we assume that the reconstructed data are more accurate. Therefore,

we set the weight at the rth iteration on the basis of the residual as

w
rþ1ð Þ
k ¼ K

1= log 1þ yk � Aku
rð Þ�

�

�

�

2

� �

P

K

k¼1

1= log 1þ yk � Aku rð Þk k2
� �	 


(8)
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This function determines the contribution of each DEM data in the fusion. The log �ð Þ
function prevents the parameter being too sensitive, and the value of 1 ensures that the

weight is non-negative.

2.2.2. Slope-adaptive Markov random field regularization

The selection of the regularization is a pivotal task in SR, because it will determine

the spatial characteristics of the fused data. There are a variety of popular regulariza-

tions, such as the total variation (TV) model (Ng et al. 2007b), the MRF model (Pan

and Reeves 2006), and the nonlocal-based models (Zhang et al. 2010).

MRFs are commonly used in image processing due to their good performance in

modeling the contextual correlations between neighboring pixels. Two types of regular-

izations are popularly used, which are Gaussian-Markov random field (GMRF) and

Huber-Markov random field (HMRF) regularization. GMRF tends to oversmooth the

sharp edges and detailed information, while HMRF can overcome the criticism to a

degree by spatial information classification (Li and Singh 2009).

As we know, measurements in DEMs are often affected by random noise, and can

be even more obviously affected in low-relief areas where the shapes are subtle

(Gallant 2011). An ideal regularization can relieve the trade-off between removing

noise and preserving details. Inspired by MRF theory, we construct a spatially

adaptive MRF regularization in the proposed method. Different norm functions are

used for the constraint, and slope information is employed to measure the spatial

information of the DEM.

Based on MRF theory, the regularization is used with the objective function as

R uð Þ ¼
X

i

X

τ

t¼1

dtc uið Þ
�

�

�

�

pi

pi
(9)

where dtc �ð Þ is a coefficient operator for each clique c, and pi denotes the pixel-wise

adaptive norm constraint. For dc �ð Þ in this equation, it represents the measurement for

neighboring pixels in τ different directions. An approximately rotationally symmetric

operator within a 3 × 3 grid has proved to be a good choice for dc �ð Þ (Pan and Reeves

2006, Shen and Zhang 2009), as shown in Figure 3. Therefore, finite-difference

approximations to second-order derivatives in four directions are employed. To define

the data roughness, the measurement at pixel i of the data vector u (HN1HN2 � 1) is

given as

d1c uið Þ ¼ ui�1 � 2ui þ uiþ1

d2c uið Þ ¼ ui�HN1
� 2ui þ uiþHN1

d3c uið Þ ¼ 1

2
ui�HN1�1 � 2ui þ uiþHN1þ1ð Þ

d4c uið Þ ¼ 1

2
uiþHN1�1 � 2ui þ ui�HN1þ1ð Þ

(10)

We define the Lp norm as a constraint function, which satisfies some geometric

properties. A common criticism of the L2 norm–based regularization methods is that

the sharp edges and detailed information in the estimates tend to be overly smoothed.

2102 L. Yue et al.
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However, the L2 norm is usually better in suppressing noise and overcoming the

staircase effect than the L1 norm (Bertaccini et al. 2012). The compromise here is

to choose different constraint norms depending on the spatial distribution. Based on

this, the problem is how to determine the constraint function used. The height change

in DEM values can be dramatic, and often ranges from nearly zero or even negative to

hundreds or thousands of meters in one dataset. Local gridded elevation changes vary

with the terrain, as well as the sampling scale. Therefore, image gradients such as

first- and second-order gradients are not suitable for describing the real hypsography

of the earth’s surface, because it would cause the threshold selection to be a tough

task. In this paper, we use slope information for DEMs to distinguish different terrain

features, and thus determine the constraint norm used in Equation (9). To adaptively

select the threshold Ts, after calculating the slope S of u by Equation (6), we

normalize S and choose the median value as the threshold in general cases.

Therefore, the constraint norm for the pixel i is chosen as

pi ¼
2 Si <Ts

1 Si � Ts

(

(11)

The universal objective function can be finally expressed as

û ¼ argmin
X

k

wk � yk � Akuð Þk k11 þ λ

X

i

X

τ

t¼1

dtc uið Þ
�

�

�

�

pi

pi

" #

(12)

with wk , d
t
c �ð Þ, and pi defined above. This is a hybrid-norm and nonlinear minimization

problem. Using the iteratively reweighted norm proposed by Rodriguez and Wohlberg

(2009), it can be efficiently solved by approximating the equation with a weighted L2
norm, whose convergent properties have been provided. The preconditioned conjugate

Figure 3. The structure of the symmetric operator (3 × 3) for MRF regularization for data with a
size of HN1 � HN2.

International Journal of Geographical Information Science 2103

D
o
w

n
lo

ad
ed

 b
y
 [

W
u
h
an

 U
n
iv

er
si

ty
] 

at
 0

0
:4

6
 1

2
 O

ct
o
b
er

 2
0
1
5
 



gradient (PCG) method (Ng et al. 2007b) is then utilized to iteratively optimize the energy

function after linearization. More detailed information can be found in previous work (Yue

et al. 2014). The flowchart for the proposed regularized algorithm is given in Figure 4.

3. Experiments and discussions

The experiments consisted of two parts, to verify the proposed method under synthetic

and real cases, respectively. DEM products with various scales and characteristics were

used, while different terrain features were also considered to test the performance and

robustness of the proposed method.

3.1. Experiment data

3.1.1. CGIAR-CSI SRTM v4.1

The SRTM data were collected over an 11-day mission in 2000, with the elevations

measured via radar interferometry using an onboard/outboard antenna system and

single-pass data acquisition (Farr and Kobrick 2000). The resolution of this product

was 3 arc (~90 m) on the WGS84 coordinate. The current version of this DEM

product was released by the Consortium for Spatial Information of the Consultative

Group of International Agricultural Research (CGIAR-CSI) after data improvement

and void filling. It covered about 80% of the globe (from 60°N to 60°S) (Jarvis et al.

2008). The dataset was regarded as the most quality-controlled and one of the broadest

coverage DEMs currently available.

3.1.2. ASTER GDEM2

The ASTER mission was a joint project between NASA and the Ministry of Economy,

Trade and industry (METI), and the elevation products were measured onboard NASA’s

Terra satellite since 2000 (Tachikawa et al. 2011). The current version released in 2011

was the second data product after resolution improvement and water body coverage

refinement, with a resolution of 1 arc (~30 m) on the WGS84 coordinate. It covered a

nearly global geographic extent (latitudes from 83°S to 83°N). However, the dataset was

known to be influenced by a variety of artifacts and anomalies that limit its immediate

Figure 4. The flowchart for the proposed algorithm.
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use. With elevation measured from the earth’s reflective surface, the accuracy of ASTER

GDEM2 was sensitive to land cover, such as forest canopies and buildings. Furthermore,

numerous voids at high latitudes (above 60°N) and low latitudes (below 60°S) were also

problems (Wang et al. 2011, Robinson et al. 2014).

3.1.3. WorldDEM

This dataset was a new product that was first made available in 2014. WorldDEM was

the product of the TanDEM-X Mission (TerraSAR-X add-on for digital elevation

measurements), realized as a Public–Private Partnership between Airbus Defence and

Space (ADS) and the German Aerospace Center (DLR). According to the product

report released by ADS (Airbus Defence and Space 2014), the resolution of this DEM

product was about 12 m on the WGS84 coordinate, with an absolute vertical accuracy

of 4 m, which was much higher than any other global satellite-based elevation model

available. The dataset has not been released globally and for free so far, but it was

possible to download sample data for South Australia for academic research. A simple

comparison of the three global elevation data products is given in Figure 5. This was a

small area in Quorn, Australia, with relatively smooth relief. We can see that the

WorldDEM data give the most attractive visual effect.

3.1.4. Air-borne INSAR data

The final dataset we used was the C-band TOPSAR interferometric 10 m DEM, which

was derived from air-borne C-band INSAR data from the NASA/Jet Propulsion

Laboratory (JPL) TOPSAR instrument (Chen et al. 2009). It was collected in 1998 near

Camp Roberts, California, United States. The C-band INSAR-derived 10 m DEM has

been reported that the vertical accuracy has also been widely verified by the root mean

Figure 5. Comparison of the three DEM products. From left to right: 12 m WorldDEM, 30 m
ASTER GDEM2, and 90 m SRTM.
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square deviation (RMSD) as being less than 7 m over large areas, on a local coordinate

system (Schuler et al. 1998). Despite the considerable spatial resolution and vertical

accuracy, the limited spatial coverage and the data voids were the main obstacles for its

further application. We give a sample area of this dataset in Figure 6, with obvious data

voids in the area.

3.2. Synthetic experiments

In this part, we conducted two sets of synthetic experiments to test and quantitatively

evaluate the efficacy of the proposed method. In the two experiments, WorldDEM data

with a small selected area (192 × 192) were used as the original data, as well as the

reference data for quantitative evaluation. The height values range from 377.22 to

795.82 m. Following the generative model in Equation (2), we created three data with

different scales, coverage, and noise levels in each experiment. According to the previous

research (Fisher and Tate 2006, Gallant 2011), we defined the noise in the DEM as

random noise satisfying a Gaussian distribution.

From the point of view of terrain analysis, the representative ability of the

morphological and hydrological features of DEMs is also critical. As we know,

channel networks are significant skeleton information in the description of terrain

surfaces (Lashermes et al. 2007, Passalacqua et al. 2010). To measure the reliability

of the reconstructed result in a hydrographic application, channel networks in the

region were extracted for evaluation. In addition, as a fundamental element of a

topographic map, we took contour lines generated from the reconstructed results as

one of the better ways of visual evaluation of the fusion result.

The first experiment was under a noiseless condition, which means that no simulated

noise was added in the degradation process. The resolutions of the three acquired DEM

datasets were 12 m, 20 m, and 30 m, respectively (Figure 7). Using the three datasets with a

size of 76 × 76, our purpose was to reconstruct seamless DEM data (192 × 192) with a 12 m

resolution, and the same coverage as the 30 m DEM, by fusing the supplementary informa-

tion between them. The fused result by the proposed method was compared with the

Figure 6. The partial C-band InSAR-derived 10 m DEM. Large-area data voids and missing values
can be observed.
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interpolated results for the 30 m data by the bilinear, IDW, spline, and kriging interpolation

methods, which are commonly used in DEM densification. In addition, considering the

input HR information, mosaic results integrating the complementary data are also given for

a fair comparison. The quantitative indexes of the root mean square error (RMSE) (Chen

and Li 2013) and mean absolute error (MAE) were used to evaluate the vertical accuracy of

the results. As in Equation (13), u represents the reconstructed measurement, while uref is

the reference data of Ω points. The visual results can display the continuous property of the

reconstructed data. For more detailed analysis, the maximum and minimum values in the

results were also presented in Tables 1 and 2, respectively.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

u� urefð Þ2
Ω

s

MAE ¼
P

u� urefj j
Ω

(13)

(a) (b) (c)

Figure 7. The simulated data used in the first synthetic experiment. (a–c) The DEM data with
resolutions of 30 m, 20 m, and 12 m, respectively, while their coverage areas decrease.

Table 1. The quantitative results for the first experiment.

Bilinear IDW Spline Kriging Mosaic Proposed

MAE (m) 3.3637 2.1752 1.6131 1.6847 0.9261 0.6373
RMSE (m) 4.2042 2.7942 1.9778 2.0810 1.3548 0.8138
�MAX (m) 13.2254 13.2448 10.2128 11.0408 10.3896 8.9377
�MIN (m) −18.0399 −13.3466 −11.0835 −11.1600 −10.4210 −10.2900

Note: Δ, difference between the corresponding result and reference.

Table 2. The quantitative results for the second experiment.

Bilinear IDW Spline Kriging Mosaic MVF Proposed

MAE (m) 4.2521 3.1695 3.7236 3.6092 13.1435 2.8566 1.9263
RMSE (m) 5.3514 4.0247 4.6803 4.6359 80.9160 3.9431 2.5801
�MAX (m) 22.4949 17.8302 21.0339 22.8430 28.0336 28.0336 13.6748
�MIN (m) −20.6136 −16.2014 −15.9914 −24.3264 −776.1406 −24.5125 −16.7612

Note: Δ, difference between the corresponding result and reference.
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The reconstruction results are shown in Figure 8, as well as the referenced data. From

Figure 8, it can be seen that the bilinear and IDW interpolation methods obtain the

most unsatisfactory results, with an obvious smooth terrain surface apparent in the

upper right and middle part. The kriging and spline methods perform better at

preserving the detailed features; however, the limited information makes these meth-

ods difficult for handling more complex terrains. The main objective in this experi-

ment was to test the performance under an ideal situation. There is a narrow span in

the data resolution, and no noise affects the consistency between the data in this case.

Therefore, the mosaic method can acquire a relatively fine result. However, in the

upper right and the lower left corner in Figure 8(e) and 8(f), we can see that compared

with the mosaic result, the proposed method can reconstruct a seamless enhanced

elevation result, rather than a simple data integration. There are sharp edges and

features in the areas even without input high-resolution details, as shown in

Figure 8(f). The quantitative results in Table 1 also confirm the tendency. Only the

proposed method can reconstruct the topographic relief well.

However, the ideal case in the first experiment cannot practically describe general

situations. The second experiment was therefore simulated as closer to a real case.

Despite the down-sampling and coverage offset, noise and data voids were considered.

The same operations were conducted as in the first experiment to get the three DEM

datasets. We then added zero mean Gaussian noise with a standard deviation (SD) of 5

in the 20 m resolution data, and noise with SD 8 in the 30 m resolution data. Arbitrary

missing values were simulated in the 12 m resolution DEM. The input data in this

experiment are shown in Figure 9.

As mentioned in Section 2, by the use of the regularized framework proposed in this

paper, we can simultaneously handle data fusion, noise suppression, and void filling. The

results for this case are displayed in Figure 10. In this group, we use a color map

generated from the reconstructed DEM data to display the results for better visual

(a) (b) (c)

(e) (f) (g)

(d)

Figure 8. The reconstruction results for the first experiment. (a–d) The results for the bilinear,
IDW, spline, and kriging interpolation methods; (e, f) the results reconstructed by mosaic and the
proposed method. The original reference data are shown in (g).
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interpretation. It can be seen that with noise, the advantages of the proposed method are

more prominent. All the interpolation methods have difficulty in achieving a balance

between suppressing noises and preserving details. The kriging method can overcome the

effect of noise to a certain extent, but it simultaneously smoothes the sharp terrain

features. Because there are voids existing, we utilized the kriging method to fill the

voids in the mosaic result as postprocessing, and obtained an acceptable result. In this

paper, we use ‘MVF’ to indicate the mosaic result with a void-filling process.

Under this complex case, only the proposed method can obtain a similar result to the

reference data, considering the inconsistency between the input data. In this case, the weights

were assigned as in Equation (8), in accordance with the quality of the input data. Thus, the

12 m data got the highest weight, while the noisy 30 m DEM data made the smallest

contribution to the reconstructed result. The elevation deviation between the comparative

(a) (b) (c)

(e) (f) (g) (h)

(d)

Figure 10. The reconstruction results for the second experiment. (a–d) The results for the bilinear,
IDW, spline, and kriging interpolation methods, and (e, f) the results reconstructed by mosaic, and
the mosaic result after void filling (MVF). (g) Result of the proposed method, and the original
reference data are shown in (h).

(a) (b) (c)

Figure 9. The simulated data used in the second synthetic experiment. (a–c) The DEM data with
resolutions of 30 m, 20 m, and 12 m, respectively, with different noise levels and data voids.
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methods and the proposed method can be clearly observed in the horizontal and vertical

elevation profiles, as shown in Figure 11. The result of the proposed method, displayed as the

red line, closely resembles the reference data, in both directions. Although the kriging method

can get a visually fine result with the small voids in this test, it can be observed that the height

values are indeed estimated unfaithfully. The quantitative assessment in Table 2 also shows

the clear superiority of the proposed method. Interpolation methods were inevitably under the

influence of noises, thus the height values in the corresponding result will be somewhat

higher than the referenced data. IDW method achieved the best quantitative index among the

interpolation methods, probably for the preservation of sharp details. Nevertheless, terrain

noises inevitably affect the accuracy. The proposed method performs best by combining SR,

noise suppression, and void filling into a universal framework.

Furthermore, we used the results acquired by kriging interpolation, MVF, and the

proposed method to extract the channel network, as shown in Figure 12. This

procedure was undertaken by the hydrology analysis tool and map algebra tool in

ArcGIS software, following the steps of filling sinks, tracing flow directions,

computing the flow accumulation, and conditional operation. It can be observed in

Figure 12 that the channel network generated from the proposed method

closely resembles the reference data. The results show that the channel network in

Figure 12(a) and 12(b) has too many spurious branches while missing some

significant branches in the bottom part. This is caused by the noise and subtle

distortions in the DEM terrain representation. With noise, the mosaic results preserve

the inconsistency between the data, and thus there is an apparent staircase effect.

(a) (b)

(c) (d)

Figure 11. The horizontal and vertical elevation profiles for the comparative results in the second
synthetic experiment. (a, b) The horizontal profile, and (c, d) the vertical elevation profile.
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3.3. Real data experiments

We also conducted three sets of experiments using real DEM data, with the DEM products

described in Section 3.1 being involved in the test. In the three tests, there might not be

ideal referenced data for evaluation. Fortunately, the subjective visual effects can help us

judge the methods’ performance. For the first real data experiment, the proposed method

was tested for the fusion of 12 m WorldDEM data and 30 m resolution ASTER GDEM

data with a relatively small selected area (181 × 181). The input data were from Quorn,

Australia, which belong to a relatively diverse terrain, with the elevation ranging from 118

to 666 m. The results (452 × 452) are given in Figure 13. In this case, the main problem

was the noise existing in the GDEM data; however, the proposed method is good at

handling such a problem.

(a) (b) (c)

(d) (e) (f)

Figure 13. The reconstructed results in the first real data experiment. (a–d) The results for the
bilinear, IDW, spline, and kriging interpolation methods, and (e, f) the results reconstructed by
mosaic and the proposed method.

(a) (b) (c) (d)

Figure 12. The extracted channel network in the second experiment. (a–c) The extraction results
from the DEM data reconstructed by kriging interpolation, MVF, and the proposed method,
respectively. (d) The reference data.
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In Figure 13, we can see that the results in parts (a)–(c) are severely influenced by

noise. It is worth mentioning that the subtle rolling topography, for example, the upper

right part of the figures, does not represent real terrain. This is in fact caused by noise,

which is a common problem in GDEM data. Among the interpolation methods, the

kriging algorithm is able to suppress the noise by tuning the statistical parameters.

However, compared with the result of the proposed method, the kriging result loses the

sharp features, while the mosaic result suffers from noise and the artifacts near the mosaic

edges. To allow a better visual judgment, cropped regions from Figure 13(a)–(f) are given

in Figure 14(a)–(f). Compared with the results of the other methods, the result of the

proposed method not only removes the noise but also fuses the HR and LR information to

be oversampled DEM data without apparent joints.

The objective of the second real data experiment was to fuse an air-borne SAR dataset

with a space-borne elevation data product. Given that air-borne SAR data are often

acquired at a high cost and are limited to relatively narrow areas, we tried to improve

the quality of the HR dataset by fusing it with other auxiliary datasets by the use of the

proposed method. The kriging interpolation method was used for comparison, as well as

the mosaic method. The C-band InSAR-derived 10 m DEM we used in this paper was

introduced in Section 3.1.4. In this experiment, we selected an area with a size of

300 × 300 (Figure 15), and attempted to obtain a 900 × 900 DEM with the same coverage

as the 30 m data. Differing from the experiments before, the considerable inconsistency

between the two kinds of data makes the problem more complex. First, the coordinate

systems need to be matched before the fusion. Errors brought about by the coordinate

registration may affect the accuracy of the result. Second, the different vertical coordinate

systems of the two datasets should also be considered. In addition, voids with a large area

exist in the data. For the first problem, the scale-invariant feature transform (SIFT)

algorithm was utilized for the registration, and a manual check was implemented to reject

the errors. By tuning the regularization parameter, the proposed method can make use of

the robustness of the L1 norm to overcome the registration errors. In terms of the second

(a) (b) (c)

(d) (e) (f)

Figure 14. Detailed regions cropped from Figure 13(a–f).
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problem, to ensure the consistency of the vertical coordinate systems, we chose a small

shared area in the input data after registration to calculate the average vertical offsets

between them. The offset values were then regarded as the vertical differences between

the input data on different datum.

According to the results given in Figure 16, the proposed method can obtain an

acceptable result with large areas of missing values. In Figure 16, we give the complete

reconstructed result by the proposed method in Figure 16(a), with the generated contour

lines. Figure 16(b)–(e) are the cropped regions corresponding to the rectangular area in

Figure 16(a) processed by the different methods. It can be observed that with a large

missing area, the mosaic method cannot handle this situation, even when further processed

by kriging interpolation. Compared with the result of the interpolation method, the

Figure 16. The reconstructed results in the second real data experiment. (a) Complete result and
generated contour lines for the proposed method. (b–e) The cropped regions for kriging interpola-
tion, the mosaic method, MVF, and the proposed method (T ¼ 50), respectively.

(a) (b)

Figure 15. The input multi-scale DEM data in the second real experiment. (a) 30 m GDEM data,
and (b) C-band InSAR-derived 10 m DEM with large-area voids as input data.
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proposed method can use the auxiliary information obtained from the multi-scale DEM

data, and thus obtain more accurate and detailed terrain features. To better evaluate the

results, we give the L-band PolSAR Pauli color-coded image with a 10 m resolution as the

reference in Figure 17. It can be clearly observed that results of the proposed method can

provide a more accurate bank line, which makes sense in hydrological applications. The

contours generated from Figure 16(b)–(e), respectively, are given in Figure 18. The details

are enhanced by fusing the high-resolution DEM data, while the data voids are filled with

the supplementary information in the LR data by the proposed method. The proposed

method consistently obtains more visually attractive contour line results and detailed

terrain features, especially in the two highlighted regions.

For better comparison and parameter analysis, we also give the results with the

detection method expressed in Equation (4). As Figure 19 shows, without spatially

adaptive strategy, we cannot distinguish details and noises in the flat regions (e.g., the

water area). And the inaccurate detection results will result in the remaining anomalies in

the fused data. The adaptive method employs slope information to increase the accuracy

of anomalies detection and exclusion in the fusion.

The last real data experiment was the fusion of three multi-scale DEM datasets. In this

experiment, in addition to the C-band InSAR-derived 10 m DEM and the 30 m GDEM

data, we also took 90 m SRTM DEM data as auxiliary input data. Here, the resolution gap

between the 10 m data and the 90 m data becomes the main critical issue. We need to

reconstruct a DEM with a size of 720 × 720 by fusing three small areas of data (80 × 80).

However, the well-controlled quality of the SRTM data makes the result visually attrac-

tive. The color maps covered by the generated contour lines are shown in Figure 20, while

partial comparative results are given in Figure 21. It can be seen that there are obvious

visual differences in this group of results. Overall, the proposed method provides more

continuous and detail-enhanced large-scale DEM data with a 10 m resolution.

4. Discussion and conclusion

Although a variety of DEM products were available, they were all characterized by trade-

offs in spatial coverage, data resolution, and quality. In general, DEMs with a very high

spatial resolution (less than 30 m) were usually limited to a narrow coverage and have

Figure 17. The reference L-band PolSAR Pauli color-coded image (|HH + VV|, blue; |HH − VV|,
red; 2|HV| green).
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(a) (b)

(c) (d)

Figure 18. The comparative generated contour lines for the results in the second real data
experiment. (a–d) The results for the kriging interpolation, the mosaic method, MVF, and the
proposed method, respectively.

(a) (b)

Figure 19. The comparative results with anomalies detection by (Equation (4)) with T ¼ 45. (a, b) The
partial fused data and corresponding generated contours in the second real data experiment, respectively.
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data quality problems (e.g., data voids and noise). Therefore, in this paper, we have

proposed a novel regularized framework for multi-scale DEM fusion. Rather than a simple

mosaic result of data with different spatial coverage, the reconstructed data were generated

using the supplementary information between different DEMs. In the proposed method, a

weighted L1 norm was utilized to restrain the errors brought about by horizontal errors,

while a slope-based spatially adaptive MRF prior was employed for the spatial constraint.

Multiple problems, including data inconsistency, noise, and data voids can be overcome

by taking advantage of the proposed method.

The experimental results confirmed the performance of the proposed method in

various cases, compared with other methods, including popular geo-statistical

(a) (b)

(c) (d)

Figure 20. The corresponding color maps covered by the generated contour lines in the last
experiment. (a–d) The results for kriging interpolation, the mosaic method, the MVF, and the
proposed method, respectively.

(a) (b) (c) (d)

Figure 21. The partially reconstructed results in the third real data experiment. (a–d) The results for
kriging interpolation, the mosaic method, the MVF, and the proposed method, respectively.
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interpolation algorithms and a mosaic method. We conducted two synthetic experiments

to test the performance under simulated conditions. It can be seen that the proposed

method obtained more satisfactory results in these two experiments by both quantitative

and visual evaluation. However, real cases are more complex. In the fusion of the famous

global DEM products and air-borne SAR-derived DEM data, the proposed method proved

its effectiveness and robustness to the significant changes between data from multiple

sources, and even with large resolution gaps.

The main purpose in this paper was to propose a new method to deal with the

integration of DEMs. However, there were still some limitations to the proposed method.

In this paper, the model took the main factors such as the scaling effect, datum differ-

ences, random noise, and horizontal or vertical errors among multi-scale DEM products

into consideration. However, more complex problems such as other unpredictable produc-

tion errors and the effect of cartographic generalization were not included in the proposed

method. In our future work, more possible degradation factors will be taken into account

to improve the accuracy of the fused DEM data. Besides, the accelerated strategies are

desired for large-scale DEM fusion.
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