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Abstract

In this paper, we investigate what can be inferred from

several silhouette probability maps, in multi-camera envi-

ronments. To this aim, we propose a new framework for

multi-view silhouette cue fusion. This framework uses a

space occupancy grid as a probabilistic 3D representation

of scene contents. Such a representation is of great interest

for various computer vision applications in perception, or

localization for instance. Our main contribution is to intro-

duce the occupancy grid concept, popular in the robotics

community, for multi-camera environments. The idea is to

consider each camera pixel as a statistical occupancy sen-

sor. All pixel observations are then used jointly to infer

where, and how likely, matter is present in the scene. As

our results illustrate, this simple model has various advan-

tages. Most sources of uncertainty are explicitly modeled,

and no premature decisions about pixel labeling occur, thus

preserving pixel knowledge. Consequently, optimal scene

object localization, and robust volume reconstruction, can

be achieved, with no constraint on camera placement and

object visibility. In addition, this representation allows to

improve silhouette extraction in images.

1. Introduction

Silhouette-based methods are popular for use in multi-

camera environments mainly due to their simplicity and

computational efficiency. These methods concern 3D mod-

eling, multi-object localization and motion capture appli-

cations, among others. Often however in such methods,

silhouettes of objects of interest are extracted using a bi-

nary labeling of pixels into foreground or background, for

each view separately, and prior to any 3D operation. Unfor-

tunately, such monocular labeling, called background sub-

traction, is difficult to achieve in a general and uncontrolled

environment. Several reasons account for this, in particular

perturbations due to: camera sensor noise, ambiguities be-

tween objects and background colors, changes in the light-

ing of the scene (including shadows of objects of interest),

etc. In addition, monocular background labeling can dra-

matically alter 3D perception from multiple views in the

presence of camera calibration errors, or if disparities be-

tween image acquisition times exist.

Our goal is therefore to find a representation of multi-

view silhouette cues, where inference about silhouettes is of

greater robustness to the aforementioned uncertainties than

single view silhouette inference. Intuitively, the simultane-

ous knowledge of all images brings more information about

silhouettes than knowledge from only one image. This idea

has lead us to compute silhouette fusion in 3D space, in or-

der to integrate the contribution of all images. The result of

such fusion naturally encodes shape information. As such

it can be used to improve many silhouette-based applica-

tions, from shape modeling to silhouette extraction, as we

will show.

Very often silhouettes are used to infer shapes in a two-

step process: an individual decision about silhouette oc-

cupancy is made on a per-view basis, then shape and po-

sition are inferred geometrically from all available silhou-

ettes using visual hull methods [11]. These methods can

lead to a surface representation of the objects of interest [5],

a voxel representation [16], or image-based representation

[13]. While visual hull estimation can be exact from a set

of silhouettes [5], silhouette extraction methods come gen-

erally with several caveats resulting from the perturbations

mentioned earlier. Our approach allows to delay the occu-

pancy decision to a later stage and, as such, makes a better

use of the available silhouette information.

Several methods have also been proposed to bypass sil-

houette estimation altogether, as many algorithms recon-

struct the scene structure based only on photometric infor-

mation [10]. Others possibly state it as the solution of a

global state optimization problem: using level sets [4], or

graph cuts [7]. Probability grid representations have already

been used by the community, mainly to solve photometric

problems[1]. These methods generally have high complex-

ities and computational costs compared to silhouette meth-

ods, as they must deal with the visibility of points on the

object’s surface. This is why there are still many situations



where silhouette methods are preferred (e.g. VR platforms,

real-time setups), or used to initialize a more elaborate pho-

tometric method [9].

More closely related, Magnor et al. [7] solve a similar

problem with two views using graph-cuts, where stereo dis-

parity and silhouettes are simultaneously estimated. Zeng

et al. propose a multi-view background silhouette extrac-

tion, based on a costly geometric scheme, with the addi-

tional constraint of common object visibility [18]. A simi-

lar idea for silhouette information integration has been pro-

posed, using however a discrete formulation and a coarser

image model [14]. Grauman et al. [8] propose a method

to estimate the most probable multi-view silhouette set us-

ing a learned human silhouette prior, and therefore inte-

grate a higher level of semantics, but with limited gener-

icity. Robotics works from S. Thraun et al. [12] propose

a solution for the closely related problem of object local-

ization from a robot-acquired image sequence. These ap-

proaches solve silhouette-based problems in multi-view se-

quences with, however, limited application domains. Our

approach is at a lower level, and is intended to enrich 2D

silhouettes cues by embedding them into a 3D representa-

tion independently of the application.

We propose a new framework based on the occupancy

grid: a voxel grid of object occupancy probabilities in

space, associated to a sensor model. The occupancy grid

has been extensively used in the robotics community [3],

to represent a robot’s environment for navigation, based on

range sensor observations, with depth and orientation mea-

surements. Our contribution is to extend the occupancy

grid concept to image sensors, and to restate shape-from-

silhouette estimation as a sensor fusion problem. To this

extent, we provide each pixel with a forward sensor formu-

lation which models the pixel observation responses to the

voxel occupancies in the scene. Our formulation accounts

for each pixel’s visibility region, voxel sampling issues,

small camera calibration errors, and sensor reliability. This

model is in turn used to infer the answer to the more diffi-

cult inverse question: given the color observations, where

is the matter located in the scene. We also show that the

resulting occupancy grid can be used to perform multi-view

background subtraction, where silhouette estimation in each

view benefits from the knowledge of other views.

2. Problem Statement

We consider the problem of silhouette cue fusion from

multiple views. We assume we are given a current set of

images, obtained from fully calibrated cameras. We also

assume that a set of background images of the scene, free

from any object of interest, have previously been observed

for each camera. Importantly, no assumption is made about

the existence of a visibility domain common to all cameras.

The problem is formulated as the separate Bayesian es-

timation, for each voxel, of how likely it is occupied by an

object of interest. We formulate the problem using a for-

ward sensor model: we model the relationship from causes

to observations. Namely, in our problem, we will model

how a voxel influences image formation. This enables us,

using Bayesian inference, to solve the more difficult inverse

problem: express the voxel occupancy likelihood using im-

ages as a noisy measurement of scene state.

Solving a Bayesian problem requires computing the joint

probability of all variables of interest (which we define in

§2.1), prior to any inference. This joint probability dis-

tribution must then be decomposed and simplified, based

on the main statistical dependencies we choose to consider

between variables (§3 and §3.1). In particular, parametric

forms must be assigned to the various terms of the decom-

position to explicitly model the uncertain relationship be-

tween variables (§3.2 and §3.3). This simplifies the infer-

ence of voxel occupancy distributions, which are inferred

from the joint probability expression using Bayes’ rule (§4).

2.1. Main problem variables

We label the set of n current images as I. Ii, i = 1 · · ·n
is then the image data of camera i, and Ii

p is the image

data at pixel p in image i, expressed in some color space

(RGB, YUV, etc). Although not studied explicitly in this

paper, additional image cues can be enclosed in the Ii
p

term, such as the image gradient or some other local fea-

ture, without loss of generality. We assume that the image

data of the corresponding m observed background images

can be summarized into a single statistical model image Bi,

i = 1 · · ·n. Both image data sets are produced by n cam-

eras with known projection matrices P
i. τ symbolizes the

prior knowledge we introduce into the model. This includes

what we now about the scene, what we know about sensor

characteristics, our general knowledge about the system.

We define G as our space occupancy grid. For each space

point X in the grid discretization we associate the corre-

sponding binary occupancy variable GX ∈ {0, 1}, respec-

tively free or occupied. As a common occupancy grid as-

sumption [3], we assume statistical independence between

voxel occupancies, and compute each voxel occupancy like-

lihood independently for tractability. Results show that in-

dependent estimation, while not as exhaustive as a global

search over all voxel configurations, still provides very ro-

bust and usable information, at a much lower cost.

We have defined our input and output variables. We now

introduce an important hidden variable set per image, the

silhouette detection maps F i, i = 1 · · ·n. These maps de-

fine, for each pixel p in image i, a binary silhouette detec-

tion variable F i
p. F i

p = 1 if the pixel sensor p in image i

reports the presence of an object of interest anywhere along

its viewing line. We insist on this definition, since there is a



possibility that an object is indeed present along the viewing

line of pixel p, but that the pixel sensor itself fails to detect

and report this information for internal or external causes

(modeling sensor failures will be discussed in §3.2). These

detection maps represent the silhouette information in our

model, over which we wish to marginalize.

3. Joint Probability Decomposition

Our goal is to infer the occupancy GX of a voxel at po-

sition X , given I, B, and τ . Thus, we must first model the

impact of GX on the observations. Modeling the relation-

ships between the variables involved requires computing the

joint probability of these variables, p(GX , I,B,F , τ). We

propose the following decomposition, based on the statisti-

cal dependencies expressed in Fig. 1:

p(GX , I,B,F , τ) = p(τ) p(B |τ) p(GX |τ)

p(F |GX , τ) p(I |F ,B, τ)

• p(τ), p(B | τ) are the prior probabilities of our param-

eter set, and of background image parameters. Since

we have no a priori reason to favor any parameter val-

ues, or background image configurations, we set these

terms to a uniform distribution. They thus disappear

from any subsequent inference.

• p(GX | τ) is the prior likelihood for occupancy, which

could vary with X for example. We consider the oc-

cupancy to be at the top of the causality chain, thus

the independence with all other variables except τ . We

choose not to favor any voxel location and set this term

to uniform, being mainly interested in the regulariza-

tion of voxels induced by observations in this paper.

• p(F | GX , τ) is the silhouette likelihood term. The

dependencies considered reflect that voxel occupancy

in the scene explains object detection in images.

• p(I |F ,B, τ) is the image likelihood term. Image col-

ors are conditioned by object detections in images, and

the knowledge of the background color model.

τ GX

B F

I

Figure 1. Variables of our system and their dependency

graph. τ : prior knowledge we introduce in the model. GX :

occupancy at voxel X. B: background model maps. F :

silhouette detection maps. I: observed images.

3.1. Sensor fusion simplifications

Pixel colors in input images are treated as noisy observa-

tions of the model. We consider that the noise is indepen-

dently and identically distributed. Each pixel’s color obser-

vation can be considered independent of all others, given

the observation’s main cause, the background data and sil-

houette detection state of the pixel: the image likelihood

term can thus be simplified to a product of per pixel terms,

p(I |F ,B, τ) =
∏

i,p p(Ii
p |F

i
p,B

i
p, τ).

All pixel detections can also be considered independent,

given the knowledge of their main cause, namely the voxel

occupancy. The silhouette likelihood is therefore similarly

simplified: p(F | GX , τ) =
∏

i,p p(F i
p | GX , τ). Thus, the

joint probability distribution of variables of interest reduces

to the following product of per pixel terms:

p(GX, I,B,F, τ)=
∏

i,p

p(F i
p |GX , τ)p(Ii

p |F
i
p,B

i
p, τ) (1)

We have therefore reduced the evaluation of the joint

probability of all variables to two much friendlier subprob-

lems. First, expressing the likelihood of silhouette detection

at a single pixel, given the knowledge of our voxel’s occu-

pancy (§3.2). Second, expressing the likelihood of the color

observation at a single pixel, given the silhouette detection

state, and background color information at this pixel (§3.3).

We now focus on these two terms.

3.2. Silhouette Formation Term

The silhouette detection likelihood p(F i
p | GX , τ) mod-

els the silhouette detection response of a single pixel sensor

(i, p) to the occupancy state of our voxel of interest GX .

We need to introduce two local hidden process variables S
and R to balance the influence of this voxel. Fig. 2 intro-

duces the variables and statistical dependencies of this sub-

problem. In an ideal and noiseless setup, the two variables

F i
p and GX would be self-sufficient and the relationship be-

tween them expressed as simple logic: if our voxel X is oc-

cupied, and if it projects to pixel p, then silhouette detection

occurs at pixel p, F i
p = 1. This is the implicit formulation

used by all classical visual hull methods.

However, there are sources of uncertainty which perturb

this intuitive reasoning. First, the assumption that a voxel

lies on the viewing line of a pixel is itself uncertain. This

can be due to many external causes: potential camera cali-

bration errors, camera mis-synchronization, which both in-

troduce misalignment in the scene. Voxel sampling is also

an issue, since no voxel perfectly projects to a pixel, and

its projected surface can cover several. Second, there can

be causes for sensor detection other than the voxel itself:

an object occupancy other than the one related by GX , or a

change in background scene appearance (an internal sensor

failure due to the nature of the sensor model).



τ

GX R

F i
p

S

Figure 2. Variables and dependency graph of the per-

pixel silhouette detection subproblem. τ : prior knowledge.

GX : voxel occupancy. S : sampling variable. R: external

detection cause. F i
p: silhouette detection at pixel (i, p).

Modeling these hidden causes is possible using two

boolean random variables, the sampling variable S and ex-

ternal detection cause variable R. This leads to two expres-

sions for the silhouette detection prior p(F i
p | GX , τ). First,

let us consider the case where our voxel X is known to be

occupied (GX = 1):

p(F i
p | [GX =1], τ) = p(S=0 |τ) U(F i

p) (2)

+ p(S=1 |τ) Pd(F
i
p)

By definition, S=1 if voxel X is on the viewing line of pixel

(i, p). When this is not the case (S=0), the knowledge of

our voxel’s occupancy is irrelevant to sensor detections at

this pixel, thus the uniform distribution U(F i
p) for silhou-

ette detection in (2). If the voxel is on the viewing line of p

(S=1), then detection at the pixel is ruled by the probabil-

ity distribution Pd(F i
p). In practice we set this distribution

using a constant PD ∈ [0, 1], which is a parameter of our

system: Pd([F
i
p = 1]) = PD is the detection rate of a pixel

sensor, and Pd([F i
p = 0]) = 1 − PD is its detection failure

rate. Detection failure occurs when the pixel sensor relates

that there is no matter on the viewing line, when in fact

there is. This is useful to our problem: sometimes silhou-

ette extraction fails locally. Accounting for this uncertainty

gives our model a chance to still recover the correct voxel

information thanks to contributions of other images.

Let us now consider the case where our voxel is known

to be empty (GX = 0):

p(F i
p | [GX=0], τ) = p(S=0 |τ) U(F i

p) (3)

+ p(S=1 |τ)
[

p(R=1 |τ) Pd(F
i
p)

+ p(R=0 |τ) Pf (F i
p)

]

Still, no knowledge can be inferred about detection when

the voxel is not on the viewing line of p (S =0). Yet in

the case where voxel X is on p’s viewing line (S=1), we

cannot yet draw conclusions about its detection state. By

definition, R=1 accounts for the possibility that some other

object lies on the same viewing line as the voxel: in this case

detection is again ruled by the distribution Pd(F i
p). How-

ever, in the case no other object obstructs the viewing line

(R=0), detection is ruled by distribution Pf (F i
p). We set

this distribution using a constant PFA ∈ [0, 1], a parameter

of our system: Pf ([F i
p = 1]) = PFA is the false alarm rate

of a pixel sensor. False alarms occur when the sensor falsely

relates the presence of matter on its viewing line, when in

fact there is none. Pf([F i
p = 0]) = 1−PFA is the rate with

which we expect this pixel to correctly report non-detection.

We must assign a parametric form to p(R|τ). There can

be detection causes anywhere along the viewing line of p.

We make no assumption about these causes and consider

that detection is equally likely to be triggered by the voxel

occupancy or by these causes. We therefore set this term to

uniform. By doing this, we consider that accounting for the

possibility itself is what is important, without necessarily

giving an elaborate form to this term.

Parametric form for Sampling Term p(S | τ). This

term is dependent on i, p and X . We use uniform sampling,

with p(S | τ) = Uk×k(x − p). This gives equal weight

to all voxels that fall within a k × k window around pixel

p. A smoother, normal-based sampling could also be used

but requires a higher computational cost to integrate infor-

mation. Generally, the shape of this sampling function can

easily be modified for specific needs. Both uniform and nor-

mal sampling forms enable some control over calibration,

mis-synchronization, and some classification errors: several

pixels will be able to contribute to a single voxel’s decision

upon inference. Thanks to the introduction of these two hid-

den processes and the given parametric forms, our method

unifies broad silhouette uncertainty management and sim-

ple image sampling methods used in some visual hull al-

gorithms such as [2]. It also enables to embed sub-voxel

information about the underlying shape in the probability

grid, as opposed to purely discrete approaches such as [14].

3.3. Image Formation Term

The image pixel likelihood term p(Ii
p | F i

p,B
i
p, τ)

explains the color information of a pixel (i, p), given the

knowledge of the background color and silhouette detection

state at this pixel. We give two parametric forms to this

term. If an object detection occurred at pixel (i, p), the

knowledge about background images is irrelevant to the

pixel’s expected color: the background is known to be

occluded by an object of interest, whose color the pixel

observes. With no further assumption about colors of

objects of interest, we consider them uniformly distributed:

p(Ii
p | [F

i
p = 1],Bi

p, τ) = U(Ii
p). Reciprocally, if no object

detection occurred at this pixel, then the pixel’s observed

color should look similar to the pixel’s background color.

Such an expectancy can easily be formulated using a

classical background model [17]:

p(Ii
p | [F i

p=0], [Bi
p=(µi

p, σ
i
p)], τ) = N (Ii

p | µi
p, σ

i
p), where

(µi
p, σ

i
p) are the parameters of a Gaussian. The method

could easily use any other background model, such as a



mixture of Gaussians [15], for sub-pixel noise robustness.

Nevertheless, some problems persist whatever the back-

ground model: color ambiguities between foreground and

background objects, lighting, or scene geometry change. It

is the goal of our integrated multi-view approach to com-

pensate for these weaknesses of single-view estimation.

4. Voxel Occupancy Inference

Once the joint probability distribution has been fully de-

termined, it is possible to use Bayes’ rule to infer the proba-

bility distributions of our searched variable GX , given the

value of our known variables I,B, τ , and marginalizing

over unknown variables F :

p(GX |I,B, τ) =

∑

F
p(GX , I,B,F , τ)

∑

GX ,F p(GX , I,B,F , τ)

=

∏

i,p

∑

Fi
p
p(F i

p |GX , τ)p(Ii
p |F

i
p,B

i
p, τ)

∑

GX

∏

i,p

∑

Fi
p
p(F i

p |GX , τ)p(Ii
p |F

i
p,B

i
p, τ)

(4)

after substitution of (1), and factorization. More details

can be found in [6].

Note that the final inference expression (4) deceptively

relates our voxel occupancy to all pixel observations. As

we compute this inference per voxel, this is of course in-

tractable. In practice, detection probabilities of pixels too

far from the voxel’s projection degenerate to uniform, as

expressed in equations (2) and (3). Their contribution there-

fore factors out of the inference expression (4). The infer-

ence product can then be computed over a k× k window of

pixels centered at the image projection of X , in each image.

With a voxel grid size of N3, the complexity of inferring all

voxels of the grid is then O(n k2N3).

5. Results and Applications

We have implemented the proposed fusion approach, us-

ing uniform voxel sampling for experiments. Compared to

normal sampling it is a good trade-off between computa-

tional cost and power of information integration. Notably

the method has only three parameters {PD,PFA,k}, respec-

tively the detection and false alarm rates, and the sampling

window size, all of which can often be fixed for a given

application. PD and PFA ponderate the confidence given

to the observations. If PFA =0 and PD =1, then we trust

observations blindly. If PFA and PD are close to 0.5 then

observations are not trustworthy: it takes many more ob-

servations to conclude about the occupancy. k decides how

broadly each image is sampled. We have tested the algo-

rithm under various conditions, as it can be applied to many

application fields. An associated video of results is avail-

able1.

1http://movi.inrialpes.fr/Publications/2005/FB05/SilhouetteCueFusion.avi

Figure 3. Inputs. (a) Four of the eight input images of the

walking sequence (8 cameras, 15Hz acquisition) (b). Result

given by monocular subtraction (semi-transparent render-

ing pondered by silhouette probability). Difficulties: cam-

era 2 misses the subject’s left forearm. Holes and noise

appear in various silhouettes.

Modeling from Images. The grid itself is an estimate of

shape. We illustrate this using the walking sequence. This

sequence was acquired using 8 cameras of different charac-

teristics (640 × 480, 780 × 580) at 15Hz. As Fig. 3 illus-

trates, the silhouette information that can be retrieved using

monocular background subtraction is noisy. Also note that

some cameras may not see the entire object during the se-

quence. These single-view subtractions also use a Gaussian

background model, and reflect what input is available to our

algorithm. Fig. 4 shows our method’s results on a frame of

the walking sequence, using a 1203 grid. Cross-sections

show how the shape information is embedded in the grid.

See the associated video1 for a dynamic view. As shown

in Fig. 4(c), good surface modeling results can be achieved

by extracting an isosurface from the probability grid. Fine,

sub-voxel detail of the surface is recovered, and holes occur-

ring in monocular subtractions are often filled. Additional

modeling results are shown in Fig. 5.

Figure 5. Isosurface of probability 0.80 at different time

instants of the walking sequence. See video1.



Figure 4. Walking sequence, acquired at 15Hz, using 8 cameras, with a 1203 voxel grid. Computation time: approximately 13s on

a 2.4 GHz PC. Parameters used: PD = 0.9, PF A = 0.1, k = 5 (a) Horizontal (chest) cross-section of the grid. Upper-left greenish

regions are not seen by any camera (probability 0.5). (b) vertical grid cross-section. (c) Isosurface of probability 0.80 obtained

from the grid. (d) Two classical visual hull reconstruction schemes: in light color, assuming common visibility of the object by all

cameras. The forearm is lost. In dark, assuming that what is outside the visibility domain of a camera can be part of the visual

hull. The latter recovers the left forearm, but ghost objects appear, in regions located in the visibility domain of a small number of

cameras. Ghost objects appear when such regions project inside all silhouettes of views where they are seen.

The classical voxel-based visual hull approach has been

implemented for comparison, with results in Fig. 4(d),

where each voxel is carved if it projects outside silhouettes.

We use the background subtractions of Fig. 3 for this ex-

periment, and manually choose the best threshold in each

image to provide binary silhouettes to the algorithm. Some

holes are left unfilled by this method. Note that our method

recovers valid occupancies from views that don’t see the ob-

ject entirely. This is transparent to the algorithm, because it

only integrates information from sensors which see the vox-

els. This is unlike all classical, surface or volumetric visual

hull approaches, where explicit assumptions are made about

regions that project outside the visibility domain of an im-

age, with various implications (see Fig. 4(d)).

Multi-View Background Subtraction. Our method

computes a fusion of silhouette cues. This information can

be used to compute consistent silhouettes in our input im-

ages, by re-projecting and rendering the occupancy grid

from our input views, using a maximum intensity projec-

tion approach (MIP): for each pixel in an image, we collect

the maximum probability in the grid along its viewing line.

The goal is to express where silhouette detection is more

likely in images. It would be possible to use the proposed

statistical model to infer silhouette probability maps, given

all image observations. This is however very expensive as

it requires marginalization over voxel states, thus the pro-

posed heuristic for multi-view background subtraction. All

silhouettes can be extracted using a single threshold for all

images. The advantage over monocular silhouette extrac-

tion is that each view benefits from the knowledge of sil-

houette information in the other views: resulting silhouettes

show improvement, with fine details preserved (see Fig. 6).

Small aliasing artifacts may appear depending on grid reso-

lution and scene configuration.

Figure 6. Multi-view silhouette extraction. (a) Monocu-

lar subtraction. Note the various artifacts and holes in such

silhouettes (waist, head, feet). (b) MIP rendering of occu-

pancy grid (1203) probabilities from original viewpoints.

Darker regions are more likely to be silhouette regions. (c)

Thresholded version of (b), using a common threshold. Sil-

houettes show improvement. Unwanted dilatation only ap-

pears in concave regions, seen empty by a small number of

cameras (crotch): the method outperforms most low-level

monocular silhouette repairing schemes, such as morpho-

logical operations, for such large artifacts.

Object detection. The method can be used in much

harder conditions to infer scene information. In the pres-

ence of high levels of noise, the size of the sampling win-

dow can be increased for additional robustness, with how-

ever a negative impact on precision (this tends to dilate the

probability volume). Such noisy conditions limit the use

of the method for 3D modeling and precise surface extrac-

tion; however the method can still be used reliably to locate

objects in the scene. We illustrate this potential for object



Figure 7. Multi-object sequence, with 8 cameras. (a) Dif-

ficult conditions yield very noisy single-view silhouette ex-

tractions. (b) Coarse grid (50×50×18) of the scene recon-

structed with our method (computation time 7s), sufficient

to localize objects (using k = 25). A horizontal cross-

section of the grid, as well as the 0.67-probability isosur-

face, are shown (see the associated video). This is sufficient

to localize the people.

localization, in an experiment with loose camera configura-

tions and poor contrast images (see Fig. 7). 8 cameras are

placed such that a relatively large area (25m2) can be moni-

tored in the room. Most cameras see the center of the room,

but peripheral regions of this area are seen by 3 or 4 cam-

eras at most. Two people walk randomly in the scene and

are successfully localized, when seen by at least 3 cameras.

6. Discussion

We have presented a novel approach for silhouette cue

fusion from multiple views. We use a rigorous sensor fu-

sion framework, to relate scene information directly to ob-

servations. This has various advantages: the entire causality

chain is modeled and all assumptions made explicit. It also

avoids making hard decisions about silhouette labeling in

images, which would have required tedious per-image pa-

rameter settings. Thus the underlying silhouette informa-

tion in images can be smoothly integrated, using only three

global parameters of a pixel sensor model. These parame-

ters intuitively express the reliability of observations. This

approach has been validated with several applications, and

many new ideas can be experimented and plugged-in with-

out changing the core of the method.

Arguably, more dependencies could be considered in the

model. Namely, we notice that the reliability of pixel de-

cision can be related to the colors observed at this pixel:

many times we observe the case where black foreground ob-

jects are observed in front of a black background and mis-

classified, a case which could be explicitly modeled. The

local nature of grid evaluations opens the possibility for a

real-time, hardware-accelerated solution. More generally,

our model estimates static grids at one time instant. It would

greatly benefit from temporal consistency, where passed ob-

servations are used to infer current occupancy states. Hap-

pily, occupancy grids provide a good framework for tempo-

ral accumulation of information, being one of its main uses

in the robotics community [3]. We will investigate these

possibilities to extend the capabilities of our system.
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