Fusion of Named Data Networking and Blockchain
for Resilient Internet-of-Battlefield-Things

Ronald Doku, Danda B. Rawat, Moses Garuba
Data Science and Cybersecurity Center (DSC2)
Department of Electrical Engineering and Computer Science
Howard University, Washington DC, 20059, USA

E-mail: danda.rawat@howard.edu

Abstract—Named Data Network’s (NDN) data-centric ap-
proach makes it a suitable solution in a networking scenario
where there are connectivity issues as a result of the dynamism of
the network. Coupling of this ability with the blockchain’s well-
documented immutable trustworthy-distributed ledger feature,
the union of blockchain and NDN in an Internet-of-Battlefield-
Things (IoBT) setting could prove to be the ideal alliance that
would guarantee data exchanged in an IoBT environment is
trusted and less susceptible to cyber-attacks and packet losses.
Various blockchain technologies, however, require that each node
has a ledger that stores information or transactions in a chain
of blocks. This poses an issue as nodes in an IoBT setting have
varying computing and storage resources. Moreover, most of
the nodes in the IoT/IoBT network are plagued with limited
resources. As such, there needs to be an approach that ensures
that the limited resources of these nodes are efficiently utilized.
In this paper, we investigate an approach that merges blockchain
and NDN to efficiently utilize the resources of these resource-
constrained nodes by only storing relevant information on each
node’s ledger. Furthermore, we propose a sharding technique
called an Interest Group and introduce a novel consensus
mechanism called Proof of Common Interest. Performance of
the proposed approach is evaluated using numerical results.

Index Terms—Internet-of-Battlefield-Things, IoBT, Blockchain
for IoBT, NDN for IoBT.

I. INTRODUCTION

The emergence of Internet-of-Battlefield-Things (IoBT)
draws its inspiration from the work that is being investigated
over in the Internet of Things (IoT) sector. The origins of
IoT can be traced back to government-funded projects in the
late 1970s. These projects were primarily aimed at developing
sensors that could thwart enemy threats on the battlefield.
Most of this research work became the bedrock on which
some key concepts from the current IoT field were obtained.
The direction the research work on [oBT is heading resembles
something out of a Hollywood science fiction movie. For
example, there is ongoing research work that could allow
trees, rocks and other objects to act as data gathering devices

This work is partly supported by the U.S. Air Force Research Lab (AFRL),
U.S. National Science Foundation (NSF) under grants CNS 1650831 and
HRD 1828811, and by the U.S. Department of Homeland Security (DHS)
under grant award number, 2017-ST-062-000003. However, any opinion,
finding, and conclusions or recommendations expressed in this document are
those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the funding agencies.

Laurent Njilla
Cyber Assurance Branch
US Air Force Research Laboratory
Rome, NY 13441, USA
E-mail: laurent.njilla@us.af.mil

that collect data on encroaching adversaries. This is however
still far away from reality, but a more realistic way of using
IoBT would be to provide soldiers with smart wearables that
would allow them to collect both personnel and operational
data. ToBT would enable combatants to know what they
need to look out for and what they need to look for while
accomplishing the objectives of an assigned mission. However,
IoBT networks have high network disruptions and as such,
requiring devices to coordinate seamlessly in such a dynamic
network with a relatively high packet loss rate is an issue.
This paper studies the integration of blockchain with NDN
by leveraging their best features (named data, immutable
communications, peer-to-peer decentralized ledger, sharding,
etc.) for a more resilient IoBT network.

II. BACKGROUND AND INTEGRATION OF NDN AND
BLOCKCHAIN FOR IOBT

NDN provides several advantages over IP based protocols
in networks where nodes are continually on the move, such as
an [oBT setting [1]. This can be noticed in NDN’s architecture
as its design makes it a suitable solution for IoBT. A primary
reason why this is so is in the way NDN handles data routing
issues effectively in dynamic and disruptive settings. Data is
propagated on the network through stateful forwarding, which
is achieved without the need for host addresses (source and
destination) [2] because unlike other protocols, NDN names
the data found in the network [3]. The work in [4] studied
NDN’s ability to thrive in a dynamic environment. They point
out how NDN’s data-centric approach to storing data makes
it better suited for conditions where nodes are always mobile.
NDN'’s advantage in the IoT has been highlighted by [5],
where NDN’s ability to encrypt the data itself instead of at the
end-hosts offers an advantage [6]. NDN attempts to propagate
relevant data to nodes in the network. We take this approach
a step further by letting nodes compute the relevance of the
data being propagated in the network. A node only adds data
to its ledger if only that specific data is more relevant than any
of the data it currently has stored on its ledger. This ensures
resource-constrained devices only store important data. NDN’s
approach is ideal for IoBT environments because it reduces the
complexity of dealing with TCP/IP connections. Intermittent
connections are the order of the day as IP addresses tend
to change over time because TCP/IP requires both ends to

be connected at the same time. IP based networks have a
dependency on Infrastructure services such as DHCP and
DNS services, which presents the arduous task of ensuring
sustained connectivity in dynamic environments. As such,
TCP connections are beset with high packet losses. The high
packet loss rate is an issue our approach attempts to remedy.
Furthermore, NDN’s design does not require the necessity
to secure end to end channels. The data is the only thing
that is secured. NDN traffic is normally pull-based. There is
no traffic unless a consumer requests explicitly for specific
data. The consumer has to know (or assume) that there are
certain data available somewhere to send an interest packet.
In our approach, the consumer would belong to a group that
shares somewhat similar data, and as such, sends interest
packets to the members in that group. We call such a group
an Interest Group (IG). We delve deeper into the formation
of IGs later on in the paper. In the area of security, NDN
secures data directly at the packet level [7]. Furthermore,
the research done in Name Based Access Control (NAC) [6]
ensures trust by enforcing access control policies based on
data. It supports data confidentiality and access control, which
has become a growing requirement in military communication.
Burke et al. [8] compiles relevant work done in the domain of
applying NDN in battlefield environments. They highlight the
benefits NDN has over TCP/IP in such dynamic and mobile
environments.

Bitcoin [9] was the first platform that opened the eyes of
the world to the potential of the blockchain when it was
used to solve the infamous double-spending problem in digital
currency back in 2009. What Bitcoin brought to the table was
the formation of a distributed peer to peer network where
each node in the network had a copy of every transaction
that had been performed on the network, which was called
the blockchain. It also demanded that each node would have
to solve a cryptographic puzzle that verifies transactions per-
formed on the network. The solving of this puzzle meant there
was some computational work that had to be completed. This
was the underlying concept that made Bitcoin so powerful.
The solving of this cryptographic puzzle is what is now
known as the proof of work (PoW) [9]. The PoW enabled
the extension, immutability, trust, security, and maintenance
of Bitcoin’s public ledger [10]. Data (or transactions) can only
be appended to the blockchain after a node or collection of
nodes has solved a puzzle, a process called mining. Integrity
and validity are assured because of this mining process [11].
There are several blockchain applications and use cases [12],
and the rules governing the transactions differ from each
blockchain application. The rules embedded in its core of
blockchain are used to determine the validity of transactions
that are propagated on the blockchain network. Transactions
are first created by individual nodes and then disseminated to
other nodes, usually to the nearest neighbors of the node that
performed the transaction. Each node gathers the propagated
transactions for a given amount of time. This time frame is
also blockchain technology-specific and thus varies. After the
allotted time has passed, the block is then mined. The mined

block is then appended to the blockchain after a consensus
is reached. For example, in bitcoin, consensus is reached
when the network approves on the mined block as legitimate
and then adds the newly mined block to the blockchain. The
longest blockchain on the network then becomes the de facto
blockchain.

IoT’s vision is to connect things. However, managing trust
in IoT is still an ongoing problem [13]. In our approach, we
introduce the blockchain technology in an attempt to remedy
the trust issues in the IoT space. In doing so, we propose
a network that propagates trusted secure data. Blockchain in
the IoBT field is still in its infancy stage. Most blockchain
technologies require nodes to store a full-size ledger. This
is, however, not feasible in conditions where a node in the
network has limited resources such as the [oBT. In our
approach, we ensure a node in the network only stores relevant
information on its ledger. It does not have to store the full
distributed ledger, but only what it deems as essential/relevant.
Our Proof of Common Interest (PoCI) approach ensures the
relevance and validity of data. Each data packet in the network
is secured through NDN’s design. While NDN handles the
confidentiality issue through securing the data at the packet
level, the blockchain ensures data integrity and also addresses
packet flooding issues by introducing a cluster-aware interest
forwarding protocol we describe later on. To the best of our
knowledge, the integration of NDN and blockchain for a
resilient JoBT has not been investigated in a state-of-the-art
work. Thus, our work attempts to leverage the best features
of both technologies for improving the overall performance of
the ToBT.

III. PROPOSED APPROACH

The purpose of this research is to introduce an NDN-
blockchain based approach to data propagation in an [oBT
network. In our network, a node adds data to its private ledger
if the incoming data’s similarity score is higher than any of the
data it has stored in its ledger. Our approach is motivated by
the fact that IoBT devices have varying resource capacities,
and as such, some are plagued with limited resources. We
assume such devices must strive to exhaust resources on
data they only consider to be relevant. To achieve this, we
introduce a novel consensus mechanism that requires nodes in
the network to solve a computationally inexpensive calculation
called the Proof of Common Interest (PoCI). The PoCI is
simply a similarity score that determines whether a node adds
a data packet to its ledger. The PoClI seeks to ascertain whether
the data producer’s interest criteria and private ledger contents
align with what the data consumer deems to be relevant. The
steps below describe how this process is achieved:

Step 1: IoBT node Z (with a preset similarity threshold) in
need of data sends interest packets to members of its
IG

Step 2: When a member node of the IG receives the interest
packet, it checks its ledger to find the data with the
highest similarity match

Step 3: If the data with the highest similarity match passes
the preset similarity threshold, the data is sent to the
IoBT node Z

Step 4: IoBT node Z then adds the data to its ledger

A key feature of our network is an Interest Group (IG). IGs
are generated as a result of the introduction of clustering to
our network. Devices are segmented into clusters based on
the similarities they share with other nodes. We call these
clusters IGs. The clustering of the network provides unique
advantages we discuss later on in this paper. Fig. 1 depicts an
example of how clustering might occur in the IoBT setting.
An IoBT node can belong to multiple clusters in the network.
This would be a common theme for large nodes (helicopters,
drones, tanks, etc.) who have the required resource needed to
provide a large space for ledger storage. Such large devices
will have interests in many of the data being disseminated in
the network because of their ability to store a large set of
data. On the other hand, some devices have limited storage,
and thus, must only store relevant data in order to utilize its
resource capacity efficiently. IG clustering works by ensuring
two nodes that share the same similarity are placed in the
same cluster to ensure efficient data dissemination.

oS
e
o

o

Fig. 1. A typical system model with clustering in an IoBT.

A. Space Allocation

Proof of Work (PoW) was a method proposed in [14]
to resolve the problem of spam emails. It demanded that
work was executed by any node sending an email. The PoW
became a catalyst that fueled the development of the first-ever
blockchain technology known as Bitcoin. However, PoW was
beset with multiple difficulties, with the chief culprit being
energy consumption issues. Various proof of X mechanisms,
like the proof of stake, proof of burn, etc. are being inves-
tigated to be adopted in place of PoW [15]. Another proof
of X mechanism which has recently gained traction is the
Proof of Space (PoS), also known as the Proof of Capacity.
It stems from the fact that there is a lot of unused storage
in various devices, and as such, researchers have tried to take
advantage of this opportunity and backed by the notion that the
utilization of unused disk spaces as a consensus mechanism is
better off than the energy-demanding PoW approach. This is
because dealing with storage resources instead of computing

resources is cheaper, as is evident in the large amount of it
available in large computing devices [16].

However, PoS would not do comparatively well in an
IoT/IoBT setting as nodes found in such networks do not have
the luxury of having unused disk spaces. Thus, we propose a
variant of the PoS in this work we call Limited Proof of Space
(LPOS). In LPOS, we require that a node in our network
dedicate at least 60% of its storage to the network at the
initialization phase. This allocated space becomes the area
in memory that will be allotted for the storage of the node’s
ledger. For example, consider an IoBT node A in the network.
The network asks the node A for the disk space it is prepared
to set aside at the initialization stage. If the node A has 60
MB of space and decides to dedicate 55 MB, it meets the
requirement of the 60% of disk space utilization needed. This
begins the initialization stage. The LPOS process proceeds
by demanding the node generate random data packets of
different sizes. The upper limit packet size is set to 500
bytes. Data packets that go above this range are split into
multiple packets of that size. The ledger contains data packets
that range from 50 bytes to 500 bytes. Each data packet
is randomly assigned a similarity score at this step. These
similarity scores are set to be of lower values in order to ensure
that the actual data similarity scores surpasses it. Thus, after
the initialization phase, each node’s ledger would hold pseudo-
randomly generated data (ranging from 50 - 500 bytes), each
with varying similarity scores that will be replaced with actual
data later on.

Data within the ledger are sorted in ascending order based
on the similarity score. For actual data to be added, a data
packet with a higher PoCI score must replace the data packet
with the lowest score (top element) in the ledger. After re-
placement, the ledger is re-sorted again. This method ensures
that only the data that a node finds relevant is appended to its
ledger as it replaces data at the top of the ledger. The similarity
score is calculated using the PoCI consensus approach. Fig.
2 depicts the process of replacing the data. In the figure,
when node A performs the PoCI on the incoming data Packet
Z, we observe that the PoCI score is 58%. It then replaces
packet Z with the top element, packet A (which has the lowest
similarity score). After replacement, the ledger gets re-sorted
again. Each data packet is treated as a block in this scenario.
The size of the block is the upper limit packet size (500
bytes). Unlike other blockchain networks where a block must
contain multiple transactions, each transaction/data packet on
this network is treated as a block. The PoCI process validates
the data before it is added to the ledger which ensures data
integrity.

B. Proof of Common Interest

In this section, we introduce the PoCI. The PoCI is a
similarity function that produces a similarity score. Each node
in the network is required to perform the PoCI on incoming
data before it can add the data to its ledger. The PoCI
attempts to find the common interests shared among nodes
in a network. This is achieved by finding the similarity of the

Node A's Ledger

A,
e,
3
@
Node A
D y
O

58%

-0

Pre Sort Post Sort

Gl
b
b
b o
(>

Fig. 2. Flowchart showing how ledgers are updated after PoClI is performed.

060006

ledgers and the interest criteria of nodes in the network. Each
node has an interest criterion, which is a list of all the topics
it is interested in. To approach this problem, we find the inter-
section between two sets. To turn this into a set problem, we
employ data mining methods such as shingling, Jaccard Sim-
ilarity, MinHashing, and Locality Sensitive Hashing (LSH).
The shingling of documents involves viewing a document
as a set of short strings. In this manner, documents that
share common sub-strings are perceived as similar. Shingling
approaches this by transforming a document into multiple
substrings of length k that is present within the document.
Documents are represented as a set of k-shingles. The length
k needs to be picked according to the size of the document.
Picking k to be too small would result in a high presence of
sub-strings of length k appearing in most of the documents
being compared. For example, £ = 5 is the common k length
usually given to email-like documents with characters usually
around 10,000. On the other hand, £ = 9 is given to research
articles with a lot more characters. Jaccard Similarity involves
finding the similarity between sets (documents) by discovering
the relative size of their intersection. When documents are
presented as a set of shingles, we can use Jaccard Index to
measure the similarity. The Jaccard Similarity between ledgers
A and B is defined as:

_|AnB|
- JAUB]

A larger shared number of shingles between ledgers represents
a significant Jaccard Similarity. This applied to our approach
means the ledgers of node A and node B are likely
to be alike if their Jaccard Similarity is higher. Shingling,
however, has a significant issue that needs to be solved.
The document/information matrix that shingling produces
tends to be a sparse matrix that brings along storage issues,
especially in resource-constrained settings such as the IoBT.
To address this, hashing has been introduced. Hashing works
by converting a document of any size into a specific size.
The size that is selected is usually small enough to fit into
any memory. To solve the sparse matrix storage issue, the
document/information matrix is transformed into a hash, and

JS(A, B) (1

the Jaccard Indexes of the hashes is what is now calculated.
To use the Jaccard index to find the similarity of two hashes,
a special hash function named MinHashing is employed. A
MinHash is a fixed-size numeric signature for each docu-
ment. Consequently, utilizing MinHashing resolves the space
complexity when having to compare two relatively huge
ledgers for their similarity. We ideally only have to compare
their signatures. MinHashing uses randomized algorithms to
estimate the Jaccard Similarity between large documents. The
steps below show the MinHashing process:

Step 1: Break down the ledger into a set of shingles.

Step 2: Calculate the hash value for every shingle.

Step 3: Store the minimum hash value found in step 2.

Step 4: Repeat steps 2 and 3 with different hash algorithms
199 more times to get a total of 200 min hash values
(MinHash signature).

Using the steps above, we can compute the MinHash signature
for a given ledger. This is accomplished by generating random
hash functions of a certain quantity. For experimentation pur-
poses, we chose 200 as the number of random hash functions
to be generated. The initial hash function is applied to all
of the shingle values in the ledger. We locate the minimum
hash value produced and use it as the first component of
the MinHash signature. We proceed to take the second hash
function, and again find the minimum resulting hash value
and use this as the second component. Because we have 200
random hash functions, we get a MinHash signature with 200
values (components). We use the same 200 hash functions for
every ledger in the network and generate their signatures as
well. 200 hashes are chosen arbitrarily and can be adjusted
to lessen the work done by a node in order to reduce the
computational work of the network, which is proportional
to the energy consumption of the network. To compute the
PoCI, we need to find the similarities between the ledgers
and the interest criteria. The similarity score for the interest
criteria can be computed by finding the Jaccard Similarity
of the consumer node and the producer node. To find the
similarity between two ledgers, we compare the ledgers by
counting the number of signature components in which they
match. That gives the similarity score for the comparison of
any two ledgers. Nodes are required to calculate the MinHash
signature anytime new information is added. The formula for
calculating the MinHash of documents is expressed as:

h=(C) = mgnw(C) (2)

where C represents a document.

To compute PoClI similarity function, we let PoC'I be the
similarity score found by comparing the MinHashes of the
ledgers and Jaccard Similarity of the Interest Criteria of node
A and node B in the network. The following equation is used
for the calculation:

PoCI = a(JS[A, B]) + B(MH|A, B))) 3)

where « and [are trust weights assigned to the result of
the Jaccard Similarity between the two interest criteria of the

nodes A and B, and the MinHash similarity between nodes A
and B respectively. The network uses a reputation-based trust
model to ensure an extra level of security. o represents the
weight assigned to the node A and [represents the weight
assigned to the node B. These weights are a reflection of
the amount of trust a node has garnered in the network.
To calculate these weights, we take into consideration these
factors: the number of transactions a node has in the network,
the number of PoClIs it has successfully passed, and the
credibility of the nodes that ascertained the passing of the
PoCI. To calculate o and 3 weights, we design a metric. We
let U(k) be all the transactions a node u has, P(k,i) be the
number of passed PoCls during an it" transaction, and C(k,i)
be the credibility of the nodes that confirmed it. This can be
calculated as a weighted average of the amount of relevant
data a node has disseminated:

S VR Pk, i) * C(k, 1)
U(k)

T(k) = @)

C. Interest Groups

The blockchain is facing scalability issues [17]. One of
the techniques that has been employed to help to resolve the
scalability issue is sharding. Sharding is simply segmenting
a blockchain network into multiple groups called shards
[18]. A shard has its ledger and can validate transactions
[19]. By splitting the network in this manner, the network’s
efficiency is improved. These teams work together in parallel
to maximize the performance of the network [20]. Various
sharding techniques have been proposed. In our work, we
present a new sharding technique we call an IG. The idea
behind this approach is to place nodes with close similarity
scores in the same shard. An advantage this offers is that it can
curb unnecessary interest packet flooding as it consumes a lot
of bandwidth and CPU processing power as nodes primarily
send interest packets to members of its shard. We employ
a self-learning technique to find packet delivery paths. Self-
learning ensures producer nodes observe the paths to the
consumer nodes that utilize the data and vice versa. In this
paper, we introduce a self-learning cluster-aware forwarding
protocol which ensures nodes multicast data packets to shards
they know are more likely to have the data they require. This
is useful as the usual routing announcements consume energy
and time. The shards are created using the LSH algorithm
[21]. LSH hashing operates by grouping similar documents
in the same buckets, while documents that are not similar are
likely to be placed in different buckets. We choose hierarchical
clustering as our clustering algorithm of choice. LSH produces
a set of candidate documents; we calculate the similarity of
those candidates to determine the two most similar ledgers in
the network at a time. This leads to immediate hierarchical
clustering. At each level, we get the two most similar ledgers
and merge them. We stop when we get to the desired number
of clusters. We use the banding technique of LSH to determine
efficiently the most probable nodes that can be grouped. LSH
can be formally written as:

o U = Universe of objects

e S:U xU — [0,1] = Similarity function

An LSH for a similarity S is a probability distribution over a
set H of hash functions such that:

Pracs[h(4) = h(B)] = PoCI(A, B) 5)

for each A, B € U. We are trying to find if the probability
of collision between A and B given a random hash function
is equal to the similarity function PoCI (A,B). The Algorithm
1 employs the agglomerative clustering method. During this
process, each device d is assigned to its own cluster. The next
step is to calculate the similarity between the clusters that has
been assigned to each node. After this is done, the two clusters
that are most similar are joined. We repeat this until we reach
the desired number of clusters we want in the network. The
related algorithm is shown below.

Algorithm 1 Hierarchical Cluster Shard Formation Algorithm

Given a set of nodes with ledgers {d1,...,d,}
A similarity function sim(cq, ¢2)
fori=1 to n do
Ci= (dz)
C= {Clv ey Cn}
size=n + 1
while C.size > numberOfClusters do
(Crnint, Cmin2) =min sim(cq, ¢2) for all ¢;, ¢; in C
IeEMOVe Cpnpin1 and ¢,,ine from C
add Cminl, Cmin2 to C
size = size + 1

R A o

—_—
- O

IV. PERFORMANCE EVALUATION

The network has two data packets. A producer data
packet and an interest data packet. The producer data
packet has a unique naming convention. A producer data
packet from a node with the name GreyArrow follows
this naming convention. For example, this node will have
a producer data packet with this naming convention:
SquadronFall/Surveillance/Grey Arrow /124744774 /. In
this naming convention, SquadronFall represents the name
of the network. Surveillance is the name of the clus-
ter the node belongs. GreyArrow is the device name
and 124744774 is the MinHash signature (length 200
in our network) for GreyArrow’s ledger. GreyArrow’s in-
terest packet also follows a similar naming convention:
SquadronFall/Surveillance/GreyArrow/. The obvious
difference is that the MinHash signature is missing from the
name for the interest packet but can however be found in its
contents. The data packet also contains the similarity threshold
which is the similarity score of the top element of the node’s
ledger. The data packet also contains the interest criteria of the
node. The PoCI can be performed using the Interest Criteria
and the MinHash signature found in the Interest Packet.

To evaluate our proposed approach, we modeled an IoBT
network and generated a set of 30 random nodes (drones,
tanks, watches, etc) with varying memory capacity using

Packet Loss Rate with Clustering Vs Without

= With Clustering
mEm Without Clustering

Packet Received

10 20 30 40 50 60
Packet Sent

Fig. 3. Plots showing packet loss rate with and without clustering.

Number of shards vs Interest Packet Flooding

mmm \Without Cluster
Bl Cluster

Interest Packet Flooding)

6 7 8 92 10 11 12 13
Number of Shards/Clusters in the Network

Fig. 4. Plots showing Interest packet flooding with and without clustering

PyNDN. We compared our approach against a normal NDN
network. These experiments tested the packet retention fea-
tures of both approaches. Since we focused on an IoBT
network, we deemed packet retention as an important feature
of such a network. From the plots, we can see from Fig. 3
the formation of clusters showed that there was a surge in
data packet retention in the network compared to when there
was no cluster formation (regular network). This showed that
our approach (consequence of the introduction of IGs) helped
reduce the packet loss rate. This is because the creation of
self-learning clusters that accommodate nodes with similar
interests ensures that nodes can effectively and efficiently
transfer data among themselves which in turn leads to fewer
packet losses. Fig. 4 shows that there is less packet flooding in
the network as most of the data packets produced are multicast
to clusters that share the same similar interests with the data
producer’s cluster.

V. CONCLUSION

In this paper, we devised an approach that merges the
strengths of the blockchain and NDN in an IoBT network
to get nodes to store the most relevant data that is being
disseminated in the network. In our approach, we come up
with a novel network sharding technique called the Interest
Groups. With this, nodes with a closer similarity in terms of
the data they store are assigned to the same Interest Group.

Segmenting the network this way ensures that the network is
not flooded with unnecessary Interest Packets. Nodes direct
their Interest packets to their Interest Groups or other Interest
Groups that are similar. Our paper also introduces a consensus
mechanism we call the Proof of Common Interest. The PoCI
is computed by finding the similarity between the interest
of a data packet and the nodes in the IoBT network. The
data packet is added to the ledger if the similarity meets a
specified threshold. From the results of our evaluation, we
can see that the segmentation of the network ensures effective
packet transmissions and less packet flooding.

REFERENCES

[1] B. Etefia, M. Gerla, and L. Zhang, “Supporting military communications
with Named Data Networking: An emulation analysis,” in MILCOM
2012-2012 IEEE Military Communications Conference, pp. 1-6, 2012.

[2] C.Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A case for stateful forwarding plane,” Computer Communications,
vol. 36, no. 7, pp. 779-791, 2013.

[3] L.Zhang et al., “Named Data Networking,” ACM SIGCOMM Computer
Comm. Review, vol. 44, no. 3, pp. 66-73, 2014.

[4] A. Afanasyev et al., “A brief introduction to Named Data Networking,”
in 2018 IEEE Military Comm Conference (MILCOM), pp. 1-6, 2018.

[5S] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev,
J. Thompson, J. Burke, B. Zhang, and L. Zhang, “Named data network-
ing of things,” in 2016 IEEE first Intl conference on internet-of-things
design and implementation (loTDI), pp. 117-128, 2016.

[6] Y. Yu, A. Afanasyev, and L. Zhang, “Name-based access control,”

Named Data Networking Project, Tech Report NDN-0034, 2015.

Z. Zhang, H. Zhang, E. Newberry, S. Mastorakis, Y. Li, A. Afanasyeyv,

and L. Zhang, “Security support in named data networking,” tech. rep.,

Tech Report. Available online: https://named-data. net/wp-content, 2018.

J. Burke, A. Afanasyev, T. Refaei, and L. Zhang, “NDN Impact

on Tactical Application Development,” in MILCOM 2018-2018 IEEE

Military Communications Conference (MILCOM), pp. 640-646, 2018.

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.

[10] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When Mobile
Blockchain Meets Edge Computing,” IEEE Communications Magazine,
vol. 56, no. 8, pp. 33-39, 2018.

[11] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Pro. of the ACM
Symposium on Principles of Dist. Computing, pp. 315-324, 2017.

[12] D. B. Rawat, V. Chaudhary, and R. Doku, “Blockchain: Emerg-
ing Applications and Use Cases,” arXiv.org, arXiv:1904.12247, 2019.
https://arxiv.org/abs/1904.12247.

[13] L. Belli, S. Cirani, L. Davoli, A. Gorrieri, M. Mancin, M. Picone,
and G. Ferrari, “Design and deployment of an IoT application-oriented
testbed,” Computer, vol. 48, no. 9, pp. 32-40, 2015.

[14] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Annual Intl Cryptology Conf, pp. 139-147, Springer, 1992.

[15] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084-2123, 2016.

[16] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
Space,” in Annual Cryptology Conference, pp. 585-605, Springer, 2015.

[17] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction pro-
cessing,” Fast Money Grows on Trees, Not Chains, 2013.

[18] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Com-
puter Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[19] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 17-30, ACM, 2016.

[20] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: A Fast
Blockchain Protocol via Full Sharding,”

[21] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proceed-
ings of the twentieth annual symposium on Computational geometry,
pp. 253-262, ACM, 2004.

[7

[8

[t

