
Fusion of Named Data Networking and Blockchain

for Resilient Internet-of-Battlefield-Things
Ronald Doku, Danda B. Rawat, Moses Garuba

Data Science and Cybersecurity Center (DSC2)

Department of Electrical Engineering and Computer Science

Howard University, Washington DC, 20059, USA

E-mail: danda.rawat@howard.edu

Laurent Njilla

Cyber Assurance Branch

US Air Force Research Laboratory

Rome, NY 13441, USA

E-mail: laurent.njilla@us.af.mil

Abstract—Named Data Network’s (NDN) data-centric ap-
proach makes it a suitable solution in a networking scenario
where there are connectivity issues as a result of the dynamism of
the network. Coupling of this ability with the blockchain’s well-
documented immutable trustworthy-distributed ledger feature,
the union of blockchain and NDN in an Internet-of-Battlefield-
Things (IoBT) setting could prove to be the ideal alliance that
would guarantee data exchanged in an IoBT environment is
trusted and less susceptible to cyber-attacks and packet losses.
Various blockchain technologies, however, require that each node
has a ledger that stores information or transactions in a chain
of blocks. This poses an issue as nodes in an IoBT setting have
varying computing and storage resources. Moreover, most of
the nodes in the IoT/IoBT network are plagued with limited
resources. As such, there needs to be an approach that ensures
that the limited resources of these nodes are efficiently utilized.
In this paper, we investigate an approach that merges blockchain
and NDN to efficiently utilize the resources of these resource-
constrained nodes by only storing relevant information on each
node’s ledger. Furthermore, we propose a sharding technique
called an Interest Group and introduce a novel consensus
mechanism called Proof of Common Interest. Performance of
the proposed approach is evaluated using numerical results.

Index Terms—Internet-of-Battlefield-Things, IoBT, Blockchain
for IoBT, NDN for IoBT.

I. INTRODUCTION

The emergence of Internet-of-Battlefield-Things (IoBT)

draws its inspiration from the work that is being investigated

over in the Internet of Things (IoT) sector. The origins of

IoT can be traced back to government-funded projects in the

late 1970s. These projects were primarily aimed at developing

sensors that could thwart enemy threats on the battlefield.

Most of this research work became the bedrock on which

some key concepts from the current IoT field were obtained.

The direction the research work on IoBT is heading resembles

something out of a Hollywood science fiction movie. For

example, there is ongoing research work that could allow

trees, rocks and other objects to act as data gathering devices

This work is partly supported by the U.S. Air Force Research Lab (AFRL),
U.S. National Science Foundation (NSF) under grants CNS 1650831 and
HRD 1828811, and by the U.S. Department of Homeland Security (DHS)
under grant award number, 2017-ST-062-000003. However, any opinion,
finding, and conclusions or recommendations expressed in this document are
those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the funding agencies.

that collect data on encroaching adversaries. This is however

still far away from reality, but a more realistic way of using

IoBT would be to provide soldiers with smart wearables that

would allow them to collect both personnel and operational

data. IoBT would enable combatants to know what they

need to look out for and what they need to look for while

accomplishing the objectives of an assigned mission. However,

IoBT networks have high network disruptions and as such,

requiring devices to coordinate seamlessly in such a dynamic

network with a relatively high packet loss rate is an issue.

This paper studies the integration of blockchain with NDN

by leveraging their best features (named data, immutable

communications, peer-to-peer decentralized ledger, sharding,

etc.) for a more resilient IoBT network.

II. BACKGROUND AND INTEGRATION OF NDN AND

BLOCKCHAIN FOR IOBT

NDN provides several advantages over IP based protocols

in networks where nodes are continually on the move, such as

an IoBT setting [1]. This can be noticed in NDN’s architecture

as its design makes it a suitable solution for IoBT. A primary

reason why this is so is in the way NDN handles data routing

issues effectively in dynamic and disruptive settings. Data is

propagated on the network through stateful forwarding, which

is achieved without the need for host addresses (source and

destination) [2] because unlike other protocols, NDN names

the data found in the network [3]. The work in [4] studied

NDN’s ability to thrive in a dynamic environment. They point

out how NDN’s data-centric approach to storing data makes

it better suited for conditions where nodes are always mobile.

NDN’s advantage in the IoT has been highlighted by [5],

where NDN’s ability to encrypt the data itself instead of at the

end-hosts offers an advantage [6]. NDN attempts to propagate

relevant data to nodes in the network. We take this approach

a step further by letting nodes compute the relevance of the

data being propagated in the network. A node only adds data

to its ledger if only that specific data is more relevant than any

of the data it currently has stored on its ledger. This ensures

resource-constrained devices only store important data. NDN’s

approach is ideal for IoBT environments because it reduces the

complexity of dealing with TCP/IP connections. Intermittent

connections are the order of the day as IP addresses tend

to change over time because TCP/IP requires both ends to

be connected at the same time. IP based networks have a

dependency on Infrastructure services such as DHCP and

DNS services, which presents the arduous task of ensuring

sustained connectivity in dynamic environments. As such,

TCP connections are beset with high packet losses. The high

packet loss rate is an issue our approach attempts to remedy.

Furthermore, NDN’s design does not require the necessity

to secure end to end channels. The data is the only thing

that is secured. NDN traffic is normally pull-based. There is

no traffic unless a consumer requests explicitly for specific

data. The consumer has to know (or assume) that there are

certain data available somewhere to send an interest packet.

In our approach, the consumer would belong to a group that

shares somewhat similar data, and as such, sends interest

packets to the members in that group. We call such a group

an Interest Group (IG). We delve deeper into the formation

of IGs later on in the paper. In the area of security, NDN

secures data directly at the packet level [7]. Furthermore,

the research done in Name Based Access Control (NAC) [6]

ensures trust by enforcing access control policies based on

data. It supports data confidentiality and access control, which

has become a growing requirement in military communication.

Burke et al. [8] compiles relevant work done in the domain of

applying NDN in battlefield environments. They highlight the

benefits NDN has over TCP/IP in such dynamic and mobile

environments.

Bitcoin [9] was the first platform that opened the eyes of

the world to the potential of the blockchain when it was

used to solve the infamous double-spending problem in digital

currency back in 2009. What Bitcoin brought to the table was

the formation of a distributed peer to peer network where

each node in the network had a copy of every transaction

that had been performed on the network, which was called

the blockchain. It also demanded that each node would have

to solve a cryptographic puzzle that verifies transactions per-

formed on the network. The solving of this puzzle meant there

was some computational work that had to be completed. This

was the underlying concept that made Bitcoin so powerful.

The solving of this cryptographic puzzle is what is now

known as the proof of work (PoW) [9]. The PoW enabled

the extension, immutability, trust, security, and maintenance

of Bitcoin’s public ledger [10]. Data (or transactions) can only

be appended to the blockchain after a node or collection of

nodes has solved a puzzle, a process called mining. Integrity

and validity are assured because of this mining process [11].

There are several blockchain applications and use cases [12],

and the rules governing the transactions differ from each

blockchain application. The rules embedded in its core of

blockchain are used to determine the validity of transactions

that are propagated on the blockchain network. Transactions

are first created by individual nodes and then disseminated to

other nodes, usually to the nearest neighbors of the node that

performed the transaction. Each node gathers the propagated

transactions for a given amount of time. This time frame is

also blockchain technology-specific and thus varies. After the

allotted time has passed, the block is then mined. The mined

block is then appended to the blockchain after a consensus

is reached. For example, in bitcoin, consensus is reached

when the network approves on the mined block as legitimate

and then adds the newly mined block to the blockchain. The

longest blockchain on the network then becomes the de facto

blockchain.

IoT’s vision is to connect things. However, managing trust

in IoT is still an ongoing problem [13]. In our approach, we

introduce the blockchain technology in an attempt to remedy

the trust issues in the IoT space. In doing so, we propose

a network that propagates trusted secure data. Blockchain in

the IoBT field is still in its infancy stage. Most blockchain

technologies require nodes to store a full-size ledger. This

is, however, not feasible in conditions where a node in the

network has limited resources such as the IoBT. In our

approach, we ensure a node in the network only stores relevant

information on its ledger. It does not have to store the full

distributed ledger, but only what it deems as essential/relevant.

Our Proof of Common Interest (PoCI) approach ensures the

relevance and validity of data. Each data packet in the network

is secured through NDN’s design. While NDN handles the

confidentiality issue through securing the data at the packet

level, the blockchain ensures data integrity and also addresses

packet flooding issues by introducing a cluster-aware interest

forwarding protocol we describe later on. To the best of our

knowledge, the integration of NDN and blockchain for a

resilient IoBT has not been investigated in a state-of-the-art

work. Thus, our work attempts to leverage the best features

of both technologies for improving the overall performance of

the IoBT.

III. PROPOSED APPROACH

The purpose of this research is to introduce an NDN-

blockchain based approach to data propagation in an IoBT

network. In our network, a node adds data to its private ledger

if the incoming data’s similarity score is higher than any of the

data it has stored in its ledger. Our approach is motivated by

the fact that IoBT devices have varying resource capacities,

and as such, some are plagued with limited resources. We

assume such devices must strive to exhaust resources on

data they only consider to be relevant. To achieve this, we

introduce a novel consensus mechanism that requires nodes in

the network to solve a computationally inexpensive calculation

called the Proof of Common Interest (PoCI). The PoCI is

simply a similarity score that determines whether a node adds

a data packet to its ledger. The PoCI seeks to ascertain whether

the data producer’s interest criteria and private ledger contents

align with what the data consumer deems to be relevant. The

steps below describe how this process is achieved:

Step 1: IoBT node Z (with a preset similarity threshold) in

need of data sends interest packets to members of its

IG

Step 2: When a member node of the IG receives the interest

packet, it checks its ledger to find the data with the

highest similarity match

2

Step 3: If the data with the highest similarity match passes

the preset similarity threshold, the data is sent to the

IoBT node Z

Step 4: IoBT node Z then adds the data to its ledger

A key feature of our network is an Interest Group (IG). IGs

are generated as a result of the introduction of clustering to

our network. Devices are segmented into clusters based on

the similarities they share with other nodes. We call these

clusters IGs. The clustering of the network provides unique

advantages we discuss later on in this paper. Fig. 1 depicts an

example of how clustering might occur in the IoBT setting.

An IoBT node can belong to multiple clusters in the network.

This would be a common theme for large nodes (helicopters,

drones, tanks, etc.) who have the required resource needed to

provide a large space for ledger storage. Such large devices

will have interests in many of the data being disseminated in

the network because of their ability to store a large set of

data. On the other hand, some devices have limited storage,

and thus, must only store relevant data in order to utilize its

resource capacity efficiently. IG clustering works by ensuring

two nodes that share the same similarity are placed in the

same cluster to ensure efficient data dissemination.

Fig. 1. A typical system model with clustering in an IoBT.

A. Space Allocation

Proof of Work (PoW) was a method proposed in [14]

to resolve the problem of spam emails. It demanded that

work was executed by any node sending an email. The PoW

became a catalyst that fueled the development of the first-ever

blockchain technology known as Bitcoin. However, PoW was

beset with multiple difficulties, with the chief culprit being

energy consumption issues. Various proof of X mechanisms,

like the proof of stake, proof of burn, etc. are being inves-

tigated to be adopted in place of PoW [15]. Another proof

of X mechanism which has recently gained traction is the

Proof of Space (PoS), also known as the Proof of Capacity.

It stems from the fact that there is a lot of unused storage

in various devices, and as such, researchers have tried to take

advantage of this opportunity and backed by the notion that the

utilization of unused disk spaces as a consensus mechanism is

better off than the energy-demanding PoW approach. This is

because dealing with storage resources instead of computing

resources is cheaper, as is evident in the large amount of it

available in large computing devices [16].

However, PoS would not do comparatively well in an

IoT/IoBT setting as nodes found in such networks do not have

the luxury of having unused disk spaces. Thus, we propose a

variant of the PoS in this work we call Limited Proof of Space

(LPOS). In LPOS, we require that a node in our network

dedicate at least 60% of its storage to the network at the

initialization phase. This allocated space becomes the area

in memory that will be allotted for the storage of the node’s

ledger. For example, consider an IoBT node A in the network.

The network asks the node A for the disk space it is prepared

to set aside at the initialization stage. If the node A has 60

MB of space and decides to dedicate 55 MB, it meets the

requirement of the 60% of disk space utilization needed. This

begins the initialization stage. The LPOS process proceeds

by demanding the node generate random data packets of

different sizes. The upper limit packet size is set to 500

bytes. Data packets that go above this range are split into

multiple packets of that size. The ledger contains data packets

that range from 50 bytes to 500 bytes. Each data packet

is randomly assigned a similarity score at this step. These

similarity scores are set to be of lower values in order to ensure

that the actual data similarity scores surpasses it. Thus, after

the initialization phase, each node’s ledger would hold pseudo-

randomly generated data (ranging from 50 - 500 bytes), each

with varying similarity scores that will be replaced with actual

data later on.

Data within the ledger are sorted in ascending order based

on the similarity score. For actual data to be added, a data

packet with a higher PoCI score must replace the data packet

with the lowest score (top element) in the ledger. After re-

placement, the ledger is re-sorted again. This method ensures

that only the data that a node finds relevant is appended to its

ledger as it replaces data at the top of the ledger. The similarity

score is calculated using the PoCI consensus approach. Fig.

2 depicts the process of replacing the data. In the figure,

when node A performs the PoCI on the incoming data Packet

Z, we observe that the PoCI score is 58%. It then replaces

packet Z with the top element, packet A (which has the lowest

similarity score). After replacement, the ledger gets re-sorted

again. Each data packet is treated as a block in this scenario.

The size of the block is the upper limit packet size (500

bytes). Unlike other blockchain networks where a block must

contain multiple transactions, each transaction/data packet on

this network is treated as a block. The PoCI process validates

the data before it is added to the ledger which ensures data

integrity.

B. Proof of Common Interest

In this section, we introduce the PoCI. The PoCI is a

similarity function that produces a similarity score. Each node

in the network is required to perform the PoCI on incoming

data before it can add the data to its ledger. The PoCI

attempts to find the common interests shared among nodes

in a network. This is achieved by finding the similarity of the

3

Fig. 2. Flowchart showing how ledgers are updated after PoCI is performed.

ledgers and the interest criteria of nodes in the network. Each

node has an interest criterion, which is a list of all the topics

it is interested in. To approach this problem, we find the inter-

section between two sets. To turn this into a set problem, we

employ data mining methods such as shingling, Jaccard Sim-

ilarity, MinHashing, and Locality Sensitive Hashing (LSH).

The shingling of documents involves viewing a document

as a set of short strings. In this manner, documents that

share common sub-strings are perceived as similar. Shingling

approaches this by transforming a document into multiple

substrings of length k that is present within the document.

Documents are represented as a set of k-shingles. The length

k needs to be picked according to the size of the document.

Picking k to be too small would result in a high presence of

sub-strings of length k appearing in most of the documents

being compared. For example, k = 5 is the common k length

usually given to email-like documents with characters usually

around 10,000. On the other hand, k = 9 is given to research

articles with a lot more characters. Jaccard Similarity involves

finding the similarity between sets (documents) by discovering

the relative size of their intersection. When documents are

presented as a set of shingles, we can use Jaccard Index to

measure the similarity. The Jaccard Similarity between ledgers

A and B is defined as:

JS(A,B) =
|A ∩B|

|A ∪B|
(1)

A larger shared number of shingles between ledgers represents

a significant Jaccard Similarity. This applied to our approach

means the ledgers of node A and node B are likely

to be alike if their Jaccard Similarity is higher. Shingling,

however, has a significant issue that needs to be solved.

The document/information matrix that shingling produces

tends to be a sparse matrix that brings along storage issues,

especially in resource-constrained settings such as the IoBT.

To address this, hashing has been introduced. Hashing works

by converting a document of any size into a specific size.

The size that is selected is usually small enough to fit into

any memory. To solve the sparse matrix storage issue, the

document/information matrix is transformed into a hash, and

the Jaccard Indexes of the hashes is what is now calculated.

To use the Jaccard index to find the similarity of two hashes,

a special hash function named MinHashing is employed. A

MinHash is a fixed-size numeric signature for each docu-

ment. Consequently, utilizing MinHashing resolves the space

complexity when having to compare two relatively huge

ledgers for their similarity. We ideally only have to compare

their signatures. MinHashing uses randomized algorithms to

estimate the Jaccard Similarity between large documents. The

steps below show the MinHashing process:

Step 1: Break down the ledger into a set of shingles.

Step 2: Calculate the hash value for every shingle.

Step 3: Store the minimum hash value found in step 2.

Step 4: Repeat steps 2 and 3 with different hash algorithms

199 more times to get a total of 200 min hash values

(MinHash signature).

Using the steps above, we can compute the MinHash signature

for a given ledger. This is accomplished by generating random

hash functions of a certain quantity. For experimentation pur-

poses, we chose 200 as the number of random hash functions

to be generated. The initial hash function is applied to all

of the shingle values in the ledger. We locate the minimum

hash value produced and use it as the first component of

the MinHash signature. We proceed to take the second hash

function, and again find the minimum resulting hash value

and use this as the second component. Because we have 200

random hash functions, we get a MinHash signature with 200

values (components). We use the same 200 hash functions for

every ledger in the network and generate their signatures as

well. 200 hashes are chosen arbitrarily and can be adjusted

to lessen the work done by a node in order to reduce the

computational work of the network, which is proportional

to the energy consumption of the network. To compute the

PoCI, we need to find the similarities between the ledgers

and the interest criteria. The similarity score for the interest

criteria can be computed by finding the Jaccard Similarity

of the consumer node and the producer node. To find the

similarity between two ledgers, we compare the ledgers by

counting the number of signature components in which they

match. That gives the similarity score for the comparison of

any two ledgers. Nodes are required to calculate the MinHash

signature anytime new information is added. The formula for

calculating the MinHash of documents is expressed as:

hπ(C) = min
π

π(C) (2)

where C represents a document.

To compute PoCI similarity function, we let PoCI be the

similarity score found by comparing the MinHashes of the

ledgers and Jaccard Similarity of the Interest Criteria of node

A and node B in the network. The following equation is used

for the calculation:

PoCI = α(JS[A,B]) + β(MH[A,B])) (3)

where α and β are trust weights assigned to the result of

the Jaccard Similarity between the two interest criteria of the

4

nodes A and B, and the MinHash similarity between nodes A

and B respectively. The network uses a reputation-based trust

model to ensure an extra level of security. α represents the

weight assigned to the node A and β represents the weight

assigned to the node B. These weights are a reflection of

the amount of trust a node has garnered in the network.

To calculate these weights, we take into consideration these

factors: the number of transactions a node has in the network,

the number of PoCIs it has successfully passed, and the

credibility of the nodes that ascertained the passing of the

PoCI. To calculate α and β weights, we design a metric. We

let U(k) be all the transactions a node u has, P(k,i) be the

number of passed PoCIs during an ith transaction, and C(k,i)

be the credibility of the nodes that confirmed it. This can be

calculated as a weighted average of the amount of relevant

data a node has disseminated:

T (k) =

∑U(k)
i=1 P (k, i) ∗ C(k, i)

U(k)
(4)

C. Interest Groups

The blockchain is facing scalability issues [17]. One of

the techniques that has been employed to help to resolve the

scalability issue is sharding. Sharding is simply segmenting

a blockchain network into multiple groups called shards

[18]. A shard has its ledger and can validate transactions

[19]. By splitting the network in this manner, the network’s

efficiency is improved. These teams work together in parallel

to maximize the performance of the network [20]. Various

sharding techniques have been proposed. In our work, we

present a new sharding technique we call an IG. The idea

behind this approach is to place nodes with close similarity

scores in the same shard. An advantage this offers is that it can

curb unnecessary interest packet flooding as it consumes a lot

of bandwidth and CPU processing power as nodes primarily

send interest packets to members of its shard. We employ

a self-learning technique to find packet delivery paths. Self-

learning ensures producer nodes observe the paths to the

consumer nodes that utilize the data and vice versa. In this

paper, we introduce a self-learning cluster-aware forwarding

protocol which ensures nodes multicast data packets to shards

they know are more likely to have the data they require. This

is useful as the usual routing announcements consume energy

and time. The shards are created using the LSH algorithm

[21]. LSH hashing operates by grouping similar documents

in the same buckets, while documents that are not similar are

likely to be placed in different buckets. We choose hierarchical

clustering as our clustering algorithm of choice. LSH produces

a set of candidate documents; we calculate the similarity of

those candidates to determine the two most similar ledgers in

the network at a time. This leads to immediate hierarchical

clustering. At each level, we get the two most similar ledgers

and merge them. We stop when we get to the desired number

of clusters. We use the banding technique of LSH to determine

efficiently the most probable nodes that can be grouped. LSH

can be formally written as:

• U = Universe of objects

• S : U × U → [0,1] = Similarity function

An LSH for a similarity S is a probability distribution over a

set H of hash functions such that:

Prh∈H [h(A) = h(B)] = PoCI(A,B) (5)

for each A,B ∈ U . We are trying to find if the probability

of collision between A and B given a random hash function

is equal to the similarity function PoCI (A,B). The Algorithm

1 employs the agglomerative clustering method. During this

process, each device d is assigned to its own cluster. The next

step is to calculate the similarity between the clusters that has

been assigned to each node. After this is done, the two clusters

that are most similar are joined. We repeat this until we reach

the desired number of clusters we want in the network. The

related algorithm is shown below.

Algorithm 1 Hierarchical Cluster Shard Formation Algorithm

1: Given a set of nodes with ledgers {d1, ..., dn}
2: A similarity function sim(c1, c2)
3: for i = 1 to n do

4: ci= (di)

5: C = {C1, ..., Cn}
6: size = n + 1

7: while C.size ≥ numberOfClusters do

8: (Cmin1, Cmin2) =min sim(c1, c2) for all ci, cj in C

9: remove cmin1 and cmin2 from C

10: add cmin1, cmin2 to C

11: size = size + 1

IV. PERFORMANCE EVALUATION

The network has two data packets. A producer data

packet and an interest data packet. The producer data

packet has a unique naming convention. A producer data

packet from a node with the name GreyArrow follows

this naming convention. For example, this node will have

a producer data packet with this naming convention:

SquadronFall/Surveillance/GreyArrow/124744774/. In

this naming convention, SquadronFall represents the name

of the network. Surveillance is the name of the clus-

ter the node belongs. GreyArrow is the device name

and 124744774 is the MinHash signature (length 200

in our network) for GreyArrow’s ledger. GreyArrow’s in-

terest packet also follows a similar naming convention:

SquadronFall/Surveillance/GreyArrow/. The obvious

difference is that the MinHash signature is missing from the

name for the interest packet but can however be found in its

contents. The data packet also contains the similarity threshold

which is the similarity score of the top element of the node’s

ledger. The data packet also contains the interest criteria of the

node. The PoCI can be performed using the Interest Criteria

and the MinHash signature found in the Interest Packet.

To evaluate our proposed approach, we modeled an IoBT

network and generated a set of 30 random nodes (drones,

tanks, watches, etc) with varying memory capacity using

5

Fig. 3. Plots showing packet loss rate with and without clustering.

Fig. 4. Plots showing Interest packet flooding with and without clustering

PyNDN. We compared our approach against a normal NDN

network. These experiments tested the packet retention fea-

tures of both approaches. Since we focused on an IoBT

network, we deemed packet retention as an important feature

of such a network. From the plots, we can see from Fig. 3

the formation of clusters showed that there was a surge in

data packet retention in the network compared to when there

was no cluster formation (regular network). This showed that

our approach (consequence of the introduction of IGs) helped

reduce the packet loss rate. This is because the creation of

self-learning clusters that accommodate nodes with similar

interests ensures that nodes can effectively and efficiently

transfer data among themselves which in turn leads to fewer

packet losses. Fig. 4 shows that there is less packet flooding in

the network as most of the data packets produced are multicast

to clusters that share the same similar interests with the data

producer’s cluster.

V. CONCLUSION

In this paper, we devised an approach that merges the

strengths of the blockchain and NDN in an IoBT network

to get nodes to store the most relevant data that is being

disseminated in the network. In our approach, we come up

with a novel network sharding technique called the Interest

Groups. With this, nodes with a closer similarity in terms of

the data they store are assigned to the same Interest Group.

Segmenting the network this way ensures that the network is

not flooded with unnecessary Interest Packets. Nodes direct

their Interest packets to their Interest Groups or other Interest

Groups that are similar. Our paper also introduces a consensus

mechanism we call the Proof of Common Interest. The PoCI

is computed by finding the similarity between the interest

of a data packet and the nodes in the IoBT network. The

data packet is added to the ledger if the similarity meets a

specified threshold. From the results of our evaluation, we

can see that the segmentation of the network ensures effective

packet transmissions and less packet flooding.

REFERENCES

[1] B. Etefia, M. Gerla, and L. Zhang, “Supporting military communications
with Named Data Networking: An emulation analysis,” in MILCOM

2012-2012 IEEE Military Communications Conference, pp. 1–6, 2012.
[2] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,

“A case for stateful forwarding plane,” Computer Communications,
vol. 36, no. 7, pp. 779–791, 2013.

[3] L. Zhang et al., “Named Data Networking,” ACM SIGCOMM Computer

Comm. Review, vol. 44, no. 3, pp. 66–73, 2014.
[4] A. Afanasyev et al., “A brief introduction to Named Data Networking,”

in 2018 IEEE Military Comm Conference (MILCOM), pp. 1–6, 2018.
[5] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev,

J. Thompson, J. Burke, B. Zhang, and L. Zhang, “Named data network-
ing of things,” in 2016 IEEE first Intl conference on internet-of-things

design and implementation (IoTDI), pp. 117–128, 2016.
[6] Y. Yu, A. Afanasyev, and L. Zhang, “Name-based access control,”

Named Data Networking Project, Tech Report NDN-0034, 2015.
[7] Z. Zhang, H. Zhang, E. Newberry, S. Mastorakis, Y. Li, A. Afanasyev,

and L. Zhang, “Security support in named data networking,” tech. rep.,
Tech Report. Available online: https://named-data. net/wp-content, 2018.

[8] J. Burke, A. Afanasyev, T. Refaei, and L. Zhang, “NDN Impact
on Tactical Application Development,” in MILCOM 2018-2018 IEEE

Military Communications Conference (MILCOM), pp. 640–646, 2018.
[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.

[10] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When Mobile
Blockchain Meets Edge Computing,” IEEE Communications Magazine,
vol. 56, no. 8, pp. 33–39, 2018.

[11] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Pro. of the ACM

Symposium on Principles of Dist. Computing, pp. 315–324, 2017.
[12] D. B. Rawat, V. Chaudhary, and R. Doku, “Blockchain: Emerg-

ing Applications and Use Cases,” arXiv.org, arXiv:1904.12247, 2019.
https://arxiv.org/abs/1904.12247.

[13] L. Belli, S. Cirani, L. Davoli, A. Gorrieri, M. Mancin, M. Picone,
and G. Ferrari, “Design and deployment of an IoT application-oriented
testbed,” Computer, vol. 48, no. 9, pp. 32–40, 2015.

[14] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Annual Intl Cryptology Conf, pp. 139–147, Springer, 1992.

[15] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-

veys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.
[16] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of

Space,” in Annual Cryptology Conference, pp. 585–605, Springer, 2015.
[17] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction pro-

cessing,” Fast Money Grows on Trees, Not Chains, 2013.
[18] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,

S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Com-

puter Systems (TOCS), vol. 31, no. 3, p. 8, 2013.
[19] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,

“A secure sharding protocol for open blockchains,” in Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, pp. 17–30, ACM, 2016.
[20] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: A Fast

Blockchain Protocol via Full Sharding,”
[21] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-

sensitive hashing scheme based on p-stable distributions,” in Proceed-

ings of the twentieth annual symposium on Computational geometry,
pp. 253–262, ACM, 2004.

6

