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Abstract—n our previous work, we used finite element models and not in any other possible way. Two of the major classes
to determine nonrigid motion parameters and recover unknown of techniques for nonrigid motion analysis include snakes and
local properties of objects given correspondence data recovered finite element models

with snakes or other tracking models. In this paper, we present - .
a novel multiscale approach to recovery of nonrigid motion ~ Snakes, oractive contours (firstintroduced by Ketsdl.[1]),

from sequences of registered intensity and range images. The are energy-minimizing splines which can find and reliably track
main idea of our approach is that a finite element (FEM) model salient image contours. Snakes are guided by both internal and

incorporating material properties of the object can naturally external energies. The internal energy is the part that depends on
handle both registration and deformation modeling using a single ;irinsic properties of the snake, such as its length or curvature,

model-driving strategy. The method includes a multiscale iterative . : .
algorithm based on analysis of the undirected Hausdorff distance and on the image forces that drive the snake toward the desired

to recover correspondences. The method is evaluated with respectimage contours. The external energy depends on factors such as
to speed and accuracy. Noise sensitivity issues are addressedmage structure, and particular constraints the user has imposed.
Advantages of the proposed approach are demonstrated using Snakes have specific properties used for very precise tracking,
man-made elastic materials and human skin motion. Experiments vt ot related to material properties or the internal structure
w!th regular gr}d features are used for performance comparison of the obiect. Snakes continue to be the focus of many recent
with a conventional approach (separate snakes and FEM models). ject. y
It is shown, however, that the new method does not require a Models [2]-[6]. McEachen, Il and Duncan [2] tracked feature
sampling/correspondence template and can adapt the model to points over an entire cardiac cycle. Androutstsl.[4] added
available object features. Usefulness of the method is presentedimage gradient direction to the energy functional and applied it
not only in the context of tracking and motion analysis, but also to flow trace images. Yezat al. [7] unified the curve evolu-
for a burn scar detection application. . e ) .
. . tion approaches for active contours and the established energy
Index Terms—Corresponding points, deformable models, Haus- formulation. Gunn and Nixon [5] used two contours to search
.dorlff dt'JStange'.m”'“Sca'e methods, nonrigid motion analysis, phys- the jmage space from both inside and outside of the target fea-
icafly-based vision. ture. Tagare [6] proposed a formulation that achieves reduction
in the search space by precomputing orthogonal curves to de-
|. INTRODUCTION form the template. Peterfreund [8] modified the active contour

ONRIGID motion analysis is comprised of a large bod odel by applying velocity controlforreal-timet_racking. C?h_an-
of research directions and approaches. This is justifi Gan and Potty [9] developed a strategy to avoid local minimas

considering the variety and complexity of motion. Successfi adyngmm programming solution forsnake energy minimiza-
motion recovery is motivated by important applicationHon' Amini et al. [10] applied coupled B-spline snake grids to
such as stereo processing, gesture and face recognition netic resonance images and validated results with a 3-D car-

human—computer interaction, and medical imaging. Nonrigf2® motion model. Recent developments in deformable model

motion analysis includes establishing point correspondenég hr}!ﬂues alie SL;m_rtwwar;zed "1[113 | Ivinclud terial
necessary for tracking, estimating motion and, finally, under- Nike Snakes, finite element models usually Include materna

standing the reasons why motion occurred in the observed perties of the object and precise understanding of its struc-
ture, but have no inherent way to track objects’ features. Finite

element models include knowledge of forces applied to the ob-
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was proposed by Basu and Pentland [16]. Magtial.[17] em- types of deformable models. Control points used for tracking
ployed finite element computation of analytic modes describirage also a part of a finite element model (that includes an
shape variation of structures within the human brain. Tetagb. available knowledge of material properties). Therefore, not
[18], [19] used nonlinear finite element models to recover menly snake intersection points (as it often occurred), but also ad-
tion, material properties of nonrigid objects and resulting straditional tracked points are included in the model. Furthermore,
distributions, and applied it to burn scar assessment and rep#te method includes a multiscale scheme based on evaluation
tive stress injury analysis. Feature points used in finite elemenftthe undirected Hausdorff distance to speed up the process of
analysis were tracked with snakes. matching features between two frames since large deformations
Therefore, to accomplish defined motion analysis goals, itése considered. This criteria is similar to work by Huttenlocher
necessary to achieve tracking similar or even better in quali§0] and Rucklidge [31]. However, in their approach, a set of
than can be done with snakes, and also examine additionaliasage pixels in next frame formed a new model. We perform
pects not readily obvious from images. These features can add¢tual model transformation that simulates nonrigid motion of
the knowledge of the object (material properties, applied forctee object.
and detailed structure of the object) when using a more natural
(with respect to objects’ properties) physically-based model, overview
;lrjg?eii_a finite element model that can explain the deformatlor]wajpr co_ntrib_utions of this work can be described along the
Most closely related works such as [20], [18], and [21] aggllowmg directions:
complished these goals using two separate models: snakes t¢ combination of physically-based registration and defor-
find tag positions in images and finite element models [18], [20]  Mation modeling;
(or similar physically-based models [21]) to compute deforma- * integration of material, geometry and appearance proper-
tion parameters (such as displacements) and strain distributions. ti€s into a single FEM model;
Although FEM models produced precise solutions in terms of * Multiscale approach to correspondence recovery.
both displacements and strains, they utilized only informatiofhe approach assumes that a sequence of registered intensity
at points where tag lines intersected. and range images of a deforming elastic object with visible sur-
Other related approaches included following works. Bajcdsce features (such as a grid in Figs. 4 and 6 or irregular and
and Kovacic [22] proposed a multiresolution elastic matchintatural features in Section 111-D), and a physically-based model
algorithm for medical applications. Contours of the brain atldEig. 2(b)] are available (Section II-A). The main idea of our ap-
and the CT (Computerized Tomography) image of the bramoach is that a finite element model can naturally handle both
from three different scales were matched in a coarse-to-firggistration and modeling using a single model-driving strategy.
manner. The finest level solution was then used to incremdPreviously, snakes were often used to track intensity features
tally deform the model using elastic constraint equations. Chrigrid lines in Figs. 4 and 6); recovered correspondences (for in-
tenseret al. [23] estimated probabilistic viscous fluid transforstance, intersection points) were then incorporated into finite el-
mations to templates for neuroanatomy registration with inddément models that computed deformation parameters. Both pro-
vidual studies. More recently, Papademaettial.[24] estimated cesses were iterative: snakes by definition, and a nonlinear fi-
soft tissue deformations from sequences of left ventricular Mitte element solution as a number of linear approximating steps
images using a linear elastic model. The main difference in ofifEM iterations). This work combines both stages in a single
approach is having a true-physics-based model, integratingiterative process when the model tracks object features and re-
allowing us to recover true material properties of an object. computes physical parameters at the same time (some initial re-
Recently, a number of hybrid approaches were developedsAlts have previously appeared in [32]).
framework for combining complementary techniques (registra- The second important aspect of the strategy is an efficient
tion and deformable models) was proposed by Montagnat asata utilization. As much available data as necessary is used.
Delingette [25]. Another hybrid solution (2-D) based on modathe model consists of a number of control points. The goal
analysis, employed by Tao and Huang [26], blended finite-a6 defined as a correct matching of control points with grid
ement-computed modes with template matching. Deformalgeints in the next frame. Matching occurs at different resolution
models with parameter functions capable of adequately ddvels—using 9, 49, and 217 control points (Fig. 1). The multi-
dressing local shape variations were proposed by Ba. level (multiscale) strategy is described in detail in Section II-C.
[27] and O’Donnellet al. [28]. A shape modeling approachThe matching task is similar for all scales: given the coordi-
that used multiresilution transformations from local to globalates of control points, find the Hausdorff distance (defined in
models was introduced by Vemuri and Radisavljevic [29Fection II-B) between the model and the image (next frame),
Again, the originality of the proposed combination includeand use it to structure possible correspondences between con-
integration of true elastic properties in the model. trol points and feature points in images (as discussed in Sec-
The approach proposed in this paper encompasses advam |I-B). The selected set of correspondences drives deforma-
tages of both techniques in a single model-driving strategion of the model.
Both detection/tracking and accurate object model estimationSection 11l describes application of the proposed method to
are merged to provide a more comprehensive basis for nonrigidtion analysis of man-made elastic materials, human skin, and
motion analysis. We propose that FEM model can naturalburn scar detection application. Objects with a grid are used for
handle registration and modeling. Our model combines tvemmparison with a traditional technique utilizing active contours



TSAPet al: FUSION OF PHYSICALLY-BASED REGISTRATION AND DEFORMATION MODELING 1661

A on the finite element model itself, a current set of control points
prrrteseeseefeefes (Fig. 1) from now on s referred to as our model. The method
eieefeelnlo Il assumes alignment with the first frame in the sequence and con-
Sl sistency in point inter-relationships so that points do not overlap
© 1. 1 1 (occlude) each other.

B. Undirected Hausdorff Distance as Dissimilarity Measure

Control points (which are also FEM nodes or keypoints) pro-
Fig. 1. Configuration of control points using three different scales.  yjide a natural way to locate corresponding points in the next
frame (model registration) and apply distances between them as
displacements (model deformation). Control points are guided
by the Hausdorff distance [30] between the matie(fitted to
the current frame) and the next frame in the sequénca

-
I

H(M7 Fn-l-l) = lnax(h(f(M, Fn+1))7 h(f(Fn-I-lv M)))

e (1)
W whereh(f(M, F,+1)is the forward distance (the distance from

the model to the image) ard f (I}, +1, M)) is the reverse dis-

(@) (b) (¢ tance.
Fig. 2. (a) Region of interest. (b) Finite element model. (c) ThreshiBld (  To compute the forward distance, differences are identified
calculation. between each control point; in the finite element model/

and the nearest poinf in the next frameF,,;, and then the

and FEM separately. It is also shown (Section IlI-D) that thiargest distance is selected
proposed method does not need a grid and can take advantage
of the available irregular object features or even natural features Mf(M, Froy1)) = max  min ||lm; — a;| (2
(in skin experiments). The last section summarizes the results mi €M 6 € P
of this research.
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where f denotes some transformation that occurred as a result
of the motion or deformation, arjfl]| is the Euclidean distance.
The resulting control pointy; is, therefore, the furthest control

A. Data, Modeling, and Assumptions point from any range object point ifi, ;. The reverse distance
L,11, M)) is defined similarly.

e goal is to use the Hausdorff distance as a measure of
Ismatch between the model and the object, and then to re-

Il. DESCRIPTION OF THEMETHOD

Data acquisition, general modeling principles and necess%(
assumptions are discussed first. Data sequences are acquir

using a K2T structured light range scanner. During acquisition), ) , X
registered intensity and range images of stretching elastic ice such differences by applying displacements to the model.

jects are taken (Figs. 4 and 6). Only part of the object (elas is approac_h belongs to the clr_glss Qf reverse problems when
material or human arm) with the region of interest is consijﬁ-e results (displacements) are given instead of the cause (body

ered. In first sets of experiments this region includes the g ﬁ&ads). Every tlme_dlsplacements are applied, a new cpnﬂggra—
which is produced with a simple stamp and aids in produci h of the r_nod.el Is recomputed. AS opposed to tracking W'th.
trackable features. Other sets of images contain irregular or N kes (which is a_separate physmally—based _model), the .ur.1d|-
natural features. Let us assume that grid is separated on the §ified Hausdorff distance can be easily combined with a finite

tensity image (for instance, using thresholding) and the mo fe:jne;nt rgodel.tl)\_lo ?eparau?_n Into a rtn(()juon-geltgctlon-orlentei
is aligned with it. Since the data was collected initially for &"00€! and an object-properties-oriented model IS necessary.

different project which employed snakes, the stamp produc??"&'g.Ie physips—b_ased model is gsed; it incIudgs mater!al infor-
ation and is driven by the multiscale analysis of possible cor-

overlapping lines (which allows us to compare results of both : :

approaches). For the purpose of this method they are not Congﬁi;pondences using the Hausdorff'dlstance. Correspon'dence re-
ered (a conventional method with snakes used original ima ery at .eac.h stepisfollowed by'dlsplacement cailculat'lons gnd
for the performance comparison). Of course, a fully automati eir application to the model. This represents a single iteration
method would require a different stamp. Hence, only the ar8 the method.

bound by outside grid lines is considered [Fig. 2(a)]. Therefore, . )

the finite element model used to describe it is local. It consists Multiscale Approach to Correspondence Analysis and

of 3-D elastic shells with assigned corresponding material prdff.0del Deformation

erties (properties of elastic materials are obtained by their me-Expected range of motion is addressed by the multiscale
chanical testing; average skin properties are found in the recapproach to correspondence analysis and model deformation.
literature). Since the geometry of the stamp is known in advant@rger motion necessitates the use of coarser alignment models
it allows for the advance model construction necessary for thefore finer aspects of object deformation are addressed.
success of the method [Fig. 2(b)]. Since in this research the eldfultiscale strategy discussed in this section is applicable to a
phasis is placed on multiscale use of control points rather thiange object and motion domain; however, the number of scales
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is based on the magnitude of size or motion and, obviously,

Create a finite element model ot the object

may Change for different ObjeCtS. Designate subsets of control points for each scale
Three scales (defined in terms of control points) are adopted ! 5
for the experiments: | Align the model with the object in the first frame |<7
1) ICA (|n|t|al coarse alignment’ n_ine control pOintS_); | Initialize a new or addititnal set of control points : |<—
2) GGD (general global deformation, 49 control points); I .
3) CLD (Complex local deformation! 217 control points). Establish possible matches between control points
Although model deformations start at the ICA scale (using and feature points in the next frame
only nine control points), the initial distance estimation is done ! 5
at the GGD scale. This allows for more precise computation of | Caleulate and sort resulting distances |
the undirected Hausdorff distance (or the partial distance [31] { 6
for noisy sequences) used as a first threshold (an upper threshold [ Eoploy thresholas toselct a et o matches |
T1) employed by the method. The meaning of this threshold is . ‘ _ 7
. . . . . | Apply displacements for this set to the model |
an estimate of the largest allowed motion in a given experiment I
(later app“ed to control pOIntS). FEM computation of new positions of control points * |
The initial analysis used to determine possible correspon-
dences is performed at the ICA scale. Euclidean distances are e all control oS -
matched at this scale (and no possible

calculated (Fig. 3, box 4) between the closest model and image
points (if the forward Hausdorff distance was larger), or between
the closest image and model points (if the reverse Hausdorff
distance was larger). These distances are sorted in decreasing
order (Fig. 3, box 5)17 is then applied (box 6) to weed out er-
roneous matches which are possible at any scale. However, at
coarse scales, displacements greater fHiaare simply infea-
sible (by definition of the Hausdorff distance).

Another threshold (a lower threshadld) is then introduced
to deal with erroneous matches resulting in small displacements

displacements exist)?

(results of noise and incorrect matches). At each point we find | Start a new sequence ————
the slope of the tangent to the curiEspl = f(i), where i is
the index of the correspondences sorted in decreasing order with Fig. 3. Algorithm of the multiscale approach.

respect to resulting 3-D displacemetitg'dz? + dy? + dz?).
When an absolute value of this slope (or function derivative . . . .
at a point) at least triples [see Fig. 2(c)], the correspondirt? x 9). Therefore, increase in model scale at this point produces

3-D displacement value is chosen automatically as threshfgSSiPility for improving tracking quality. _
T, (usually it increases 4-4.5 times). This threshold can alsoGGD (49 control points) and CLD (217 control points) scale
be computed by using a second derivative or analysis of cdfocessing are S|m|!ar to _the coarse scale iterations, except that
secutive differences between (sorted) displacemdataliows 11 iS not needed. Since finer aspects of object motion are ana-
for separation of displacements representing another grouph@€d, concern for filtering out abnormally large displacements
erroneous correspondences, namely, those with small displd&elot justified.
ments, also addressing noise sensitivity issues. This group conThe GGD scale addresses effects of elastic motion (stretching)
tains a number of wrong matches, especially during the first fedf the object. It results in a better alignment and accounts for
method iterations [Fig. 2(c)]. most nonrigid deformations. The CLD scale does not improve
Therefore, a sparse model is employed to selectonly 1: 1 ng_cking_ signif_icantly if the force is distributed along some real
respondences and discard the rest. Of course, a number of omaginary line/surface rather than represented by a concen-
tentially useful correspondences are rejected during this stited loading. In the latter case GCD processing alone cannot
This does not matter since at this stage alignment that accot#f§ount for more complex deformations of grid lines. The steps
mostly for translation is more important. Finer model scaléPPlicable to all scales are shown in Fig. 3.
process more data that explains nonrigid deformation of the ob-' "€ modelis displacement-driven; when correspondences are
ject. Ifthresholdl; cannot be found, then the forward HausdorfeStablished, displacements are calculated and applied to control
distance (at the coarse scale only) is used to align the model [RfiNts of the model (box 7). The process is repeated during each
formly with the next frame data. It is a good approximation dferation. Again, in these experiments, the motion of the object

translation between the frames for the considered subset of nigrastic deformation. Atany scale, the process can be summa-
rigid motion. rized as follows:

A change in scale occurs when a current scale no longer im- « Hausdorff distance is computed;
proves the alignment. This means that all control points have ¢ for each control point, possible displacements are found
been assigned correspondences and there is no mismatch be- and applied;
tween them and the area of interest in the next frame (Fig. 3, * model is incremented accordingly;
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* process iterates until the difference between the model ar
the object is minimal (for each frame).

I1l. EXPERIMENTAL RESULTS

This section presents an application of the proposed methou
to motion analysis of man-made elastic materials and human

. - . Fig. 4. Range and intensity images of skin motion.
skin. Usefulness of the method is evaluated not only for tracking

and motion analysis, but also for a specific application to strain TABLE |
analysis in the burn scar detection procedure. SUMMARY OF ITERATIOSS (BETWEEN TwoO FRAMES IN FIG. 4)
The model used in experiments described below is local; AT DIFFERENT SCALES
it covers only a part of the object with the region of interesScale ICA scale GGD scale | CLD scale
(the grid in Sections Ill-A—III-C and irregular features ini=rition number 12 3 4 18 |6 1.7
g ) g Average distance, millimeters | 7.191 | 3.388 | 0.812 [ 0.523 [ 0.192 | 0.110 | 0.097
Section 1lI-D). Second, the model is nonlinear, although aZAverage error, % 70.17 | 33.04 | 7.92 | 5.10 | 1.87 | 1.07 | 0.95

iterative nature of the approach (multiple method iterations for

every deformation) allowed us to reach solutions in a Singﬂﬁoposed method does not need a grid and can take advantage
FEM iteration every time. Thus, registration and deformatiogy the natural features (such as birthmarks).

anal)_/sis iterat_ions are combined in a singlg process. The modehne range and two intensity images of a region of skin being
consists of thin elastic shell elements defined in a 3-D spaggetched containing a burn scar are shown in Fig. 4. The range
(a total of 324 elements and 361 nodes). The same mesh gndqe in Fig. 4(a) corresponds to the intensity image before
solut_lon are used in gll e>_<per|me.nts descrllbed in §h|s Sec“%retching [Fig. 4(b)]. The accuracy of range images allows esti-
Nonlinearity of materials is considered using multiple mod%aﬂng true 3-D deformations. The presence of a burn scar con-
iterations (steps) for every deformation. For more details gfpytes to nonuniformity of elastic motion.

quel—buﬂdmg, finite element caIcuI.at|on, |mpIementat|9n Control points of the generic grid model are manually aligned
using ANSYS [33] package and skin parameter selectiQfih the first frame using both intensity and range data. Then the
(material properties and thickness), please see [18]. HaviR@ihod proceeds automatically using the available data, model
corre_ctmaterlal properties in the mod_el is a necessary conanHd the strategy described in Section II-C. All three defined
for this method to succeed; however, if precise values of certaig|es are used. Thresholds are determined using the undirected
materials or tissues are notimmediately available, they can ajsg,,sqorff distanceT) and the jump in distances computed

be recovered with the same model as dgscrlbed in [19]. Fk%tween corresponding point&] similarly to Fig. 2(c). The
example, for the scar assessment application (Section I1-C)cHange in scales occurs when all such distances are equal to
is not currently feasible to obtain person-specific skin elasticitgr The solution required a total of seven method iterations.
and thickness precisely, and average properties are sufficigifyirol points of the model are determined automatically and
for the strain map cpmputatlon._Add|t|onaI experiments shogoyed as follows (although the grid is slightly rotated clock-
that, varying Young’s modulus in the range specified by thgise for the simplicity of explanation we will refer to control

Iiteraturek (seed (18] for arl]iteraturﬁ revilevy), n;l_metI)y from 1 hoints as leftmost and rightmost as if grid lines were vertical):
to 100 Pa oes not ¢ ange the re at|0n§ P etween_ €. iteration 1—three leftmost control points moving toward
scar elasticity and the elasticity of surrounding areas, which the left side of the grid (ICA scale);

gaﬁzgg'ﬂgg é?f?erséﬁlT/;Lségbgftlggu?]n?;yzz dzlou;e\?vtitthr;;s,tr\\l;f * iteration 2—three rightmost control points moving toward
9 the right side of the grid (ICA scale);

:zgg:c(tlifv zu\l(t(l)%ls ?;eiso\gslrjs'ng()l\;ecé’ot:setg:\t'e ;nnlgt'ggﬁdet:gg q° iteration 3—correspondences and motion for the re-
P 9 y ) maining model points (ICA scale);

up with exactly the same strain maps [Fig. 9 was tested fo-r « iteration 4—motion of new topmost control points (GGD
both approaches in (a) and (b)]. Therefore, we compute elastic scale):

i;)ropertf[f?si OI:tbilrJ]rdr: Si?r;’ ril:’;lélve to the surfr(:run(:lr:gna:nreas. i'rl'hés. iteration 5—remaining correspondences responsible for
S a sutlicie cation orthe success of treatment require general deformation aspects (GGD scale);

b_y the medical community. P0|s_son s ratio is set equal to 0.49 iteration 6—better approximation of the leftmost line
since most papers agree about it. (CLD scale);

« iteration 7—other local deformation aspects (CLD scale).

Results are shown in Table I. Both iterations and scales are in-
cluded. The average real motion between feature points in two

This section presents application of the method to skin motidrames is 10.253 mm. Of course, the motion is not uniform, it
analysis. The experiment presented in this section addressesi®greater for the areas closer to the place where the force is ap-
current burn scar assessment research described in [18]. plied. The average distance between control points in the model
proposed method substitutes the two previously used sepagatd corresponding points of the grid is calculated for valida-
models such as snakes and FEM. In this section we use imati@s purposes. It is used to compute the average error (a ratio
with the grid so that the new method can be compared with ahrecovered and real motion of feature points). Performance of
old approach. However, later in Section IlI-D itis shown that thine new method was compared to the traditional approach that

A. Application of the Method to Skin Motion Analysis:
A Closer Look at Scales and Iterations
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Fig. 5. Results of the skin motion experiment. (a) Magnitude based vect
representing motion of control points. (b) Results in terms of grid motio
between two frames.
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Fig. 7. Magnitude based vectors representing motion of control points.

ANE

Fig. 6. Range and intensity images of the elastic material during stretchin|

uses a separate snake model to recover a sparse set of corres

dences (grid intersections) and a dense set using FEM moc ___

The new approach produced not only a lower final average er lﬁ‘l’!

(0.95% vs. 1.54%) with a smaller standard deviation (0.05 ]

versus 0.11%), but also a better execution time on a SunUlt H,!HH!’

SPARC 300 MHz/512K cache/128 MB RAM (24 s versus 1 mi |}~ {1

7 s). Increase in efficiency is achieved by replacing two iterati

processes (snakes and nonlinear FEM solution both requir

multiple iterations in two separate loops) with a merged iterati

process when the model tracks object features and recompt

physical parameters (every step is a single FEM iteration for all

experiments described) at the same time. Fig. 8. Results in terms of grid motion between consecutive pairs of frames.
The error is reduced because CLD scale better accounts for

a nonuniform grid line curvature near the stretching force. -”Ptechanges from 1 newton (N) in the second frame to 3.5 N in
total motion of control points is shown in Fig. 5(a) using magnine [ast frame in 0.5 N increments. This sequence allows us to
tude based vectors (CLD scale, last iteration). We can visualigGestigate elastic motion in the intervals of material behavior
gnd motion between _frames by connecting control points at th&are it can be explained by an elastic model with some geo-
finest (CLD) scale [Fig. 5(b)]- metric nonlinearities (solved in single FEM iterations per model
) ] iterations in most cases since model iterations approximate a
B. Results of Motion and Structure Recovery of Elastic  geformation step incrementally). Material properties are com-
Objects: Performance Analysis for Longer Sequences puted experimentally (using a conventional mechanical engi-
Sequences of intensity and range images depicting theering technique [19]) and included in the model. Magnitude
stretching of an elastic material are utilized for experimentahsed vectors representing motion of control points are shown
performance assessment of the method. A sequence contaiimingig. 7. Recovered grid motion for corresponding iterations is
seven intensity images and range images represents input todiselayed in Fig. 8.
algorithm (only one range image is shown in Fig. 6) along with Summary of results for all frames are displayed in Table II.
a generic grid model fitted to the initial frame (Fig. 1). Results are shown per frame, for final method iterations only.
The deformation is produced by incrementally increasing tHehe proposed approach performs better than the conventional
force causing it. The force is introduced in the second fram@nake computation as a part of the traditional technique for this
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TABLE I " WAL BULUTIDH

PERFORMANCE COMPARISON (PER FRAME, FOR FINAL ITERATIONS ONLY). Lol

METHOD (1) Is A CONVENTIONAL APPROACH(SEPARATE SNAKE AND FINITE
ELEMENT MODELS) AND (2) DENOTES THEPROPOSEDMULTISCALE

SINGLE-MODEL METHOD =, @13 E I
Frame number 2 3 4 5 6 7
Applied force, N 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50

Real average distance, millimeters | 7.553 | 8.440 | 5.199 | 7.646 | 7.465 | 4.803
Average error, % - method (1) 0.78 | 072 [ 0.73 | 0.75 | 0.84 | 0.87
Average error, % - method (2) 0.77 1 078 [ 074 ] 0.70 ] 0.79 [ 0.84

TTTTTNERN 353

TABLE I
PERFORMANCE COMPARISON FOR ANUMBER OF DIFFERENT EXPERIMENTS
INVOLVING ELASTIC STRETCHING

Experiment 1 2 3 4 5
Average error, % - method (1) | 1.54 | 0.87 [ 2.17 [ 1.53 [ 0.64 [m}
Average error, % - method (2) [ 0.95]0.84 [1.30 [ 1.19 | 1.72
Std. dev., % - method (1) 0.11 [ 0.06 [ 0.15 | 0.10 | 0.09 B - AR
Std. dev., % - method (2) 0.05 | 0.04 [ 0.07 | 0.07 | 0.08 sEM - BAsi
L0 = LF4S
LSS
"-l;.. ; = ]
iy - | ey
comparison used a fast greedy algorithm by Williams and Sh Aol E atine?
[34]) for frames with more complex local deformations wher }? Lot 1500
. e . : —_— 4110
CLD scale or even finer scales are beneficial. Performance ca - . -

parison for a number of different experiments (each uses a ¢
ferent sequence of intensity and range images) involving elas
stretching is shown in Table IIl (experiments #1 and #2 are on
presented in details in the previous and current subsections,
spectively). Standard deviation is also reported. It seems tl
the proposed method has a lower standard deviation than a ¢
ventional approach even for an experiment where is underp
formed (however, it performed better than conventional in the
other four experiments). In some experiments, the new methﬁ&. 9. Resulting strain distribution for the skin motion experiment computed
slightly increased the number of local errors (due to minor missing (a) conventional approach and (b) proposed method. Nine levels of strain
matches), but it more than compensated for this by reductiotg displayed in the grid area from the lowest (white) to the highest (black).
in their magnitude.

The number of method iterations per frame differs; howevés; Applicational Effectiveness of the Method for Strain
it is on average between 5 and 8. Each method iteration taldalysis
between 3 and 4 seconds on a UltraSPARC (300 MHz/512KThis section demonstrates applicational value of the outlined
cache/128 MB RAM). Therefore, solution requires less time (afiethod for strain analysis. The application addressed here is
average 23 seconds) than the old approach (more than 1 mingaer computation of human skin response to applied load that
frame). reveals differences in underlying properties. For instance, it al-

The reason why the number of method iterations varies, espmws for the detection of burn scars and estimation of their rel-
cially during the ICA step, can be explained with the followingtive properties [18] which are very useful to physicians for
observations. The motion seems more or less uniform acrassnparing and evaluating treatment options. Of course, accu-
all frames; however, analysis of displacements reveals thatracy of the structure and correspondence recovery is very im-
the first two frames the grid predominantly translates (since tpertant in such an application because it greatly influences re-
grid contains only a part of the stretching material), while th&ulting strain distributions that pinpoint differences in proper-
remainder of frames contain mostly elastic motion (stretchindjes. Strainis recovered after the last method iteration since these
Quantitatively it can be described as a ratio of displacememti§ferences are detected better using the entire range of motion.
between opposite grid points along the force direction. Rati®esulting displacements are computed as the differences in po-
close to 1 denote translation, ratios from 3 to 5 in our expesitions of control points between the first and the last iterations:
ments indicate stretching. AZpin = Tn—21 MY pin = Yn—Y1; DZfin = 2n—z1. Strainis

That is why if the next frame is the frame where the bandagfeen recovered throughout the surface of the model [18]. Scars
mostly translates (for instance, first frame), then the ICA parstrict the motion, and, therefore, the method is identifying
of the method proceeds faster. This reduction in the numberloiv strain areas (denoted as darker areas in Fig. 9). The legend
iterations facilitates the finding of almost all coarse scale correelumn on the right of strain distributions shows (top to bottom):
spondences during the first iteration as opposed to 3—4 iterationgximum displacement, minimum and maximum strain, and
otherwise. strain gradation from the lowest to the highest. These results

ABNORMAL RRER

(b)
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5]

Fig. 11. Magnitude based vectors representing motion of (a) all model points
and (b) feature points only.

i

TABLE IV
MOTION ERROR FORVALIDATION POINTS

| Validation point 1 2 3 4 5 6 7 |Avg
Real distance, millimeters | 3.40 | 3.72 | 7.21 | 7.67 | 8.03 | 12.91 | 15.85 | 8.40
—-H 1 t | Error, % 2.81 1283260266271 257 | 249 | 2.67

=]
!
I
L

| i

Fig. 10. (a) and (b) Intensity images of the elastic material before and afte
deformation. Feature points are marked as small black circles, validation
points—as crosses; (c) range image (before motion); and (d) finite elemen
model (in terms of elements) fitted to the data. Feature points are identified.

correspond to the skin motion experiment (Fig. 4). Fig. 9(a) is
obtained with a conventional approach (using separate sna . -
and finite element models, also applied to the available 3-D dat: o
[18]). Strain recovered using the proposed method is shown i
Fig. 9(b). The resulting strain map is precise enough to iden
tify abnormal areas such as scars (ground truth in the form o
scar outlines was provided by physicians). A conventional ap
proach identified correctly 93.83% of the burn scar area; the
new method identified correctly 95.68% of the burn scar area.
Methods were compared using five burn scar image sequence k HI

The strain can also be used as an additional criteria to restrict

impossible modes of motion. Fig. 12. (a) a_nd (b) Intensny_ and (c) range images of skin stretching.
(d) Motion tracking of feature points.

D. Motion Recovery From Irregular and Natural Features A similar experiments are conducted using natural features

This section extends the use of the proposed method to Hb?tea‘_’ of marl;eclj(_ points. hFig. I{IZ(a)_rfC) PS]hOW intensity_fgr_ldl
forming objects with irregular surface features. These featurdd'd€ Images of skin stretching. Note that there are no artificia

cannot be easily considered with a conventional approach. Fip&prkmgs on the skin. In this case birthmarks are chosen as fea-

another piece of an elastic material (considered initially in sefresto include into the mode (similarly to feature points in the

tion IlI-B) is stretched (Fig. 10). Stretching is nonuniform afprevious experiment) and to use for motion analysis [resulting

fecting the upper side of the bandage much more than the |ov\;g§‘placement fields for them are displayed in Fig. 10(d)]. Six

. " . &)qlnts are used for validation (the average error is 4.72%). The
In this case model fitting procedure adapts the generic mo e?ror remains relatively small since physical model restricts im-
so that it fits the range data and identifies feature points (shown Y phy

. S . ssible motions. The motion of internal nodes is constrained
as small circles). Validation points (shown as crosses) are o

used during the computation, the difference in their positionﬁjé,(ﬂ(t:;f[e delﬁ:\tr:;:ilct:y'c:r?t?r;uti?erifirse'srgj(;\?vilcttr:c;rtlsthzt rtr:]eeti?) dn?;gis
before and after the motion is compared to model’s estima y Y-

eg extended to other applications and domains, and simplify
after the process completes. There is no single solution to mo el o pplica o simp
a acquisition and processing for many existing applications

fitting. The model is acceptable as long as it contains featU( as a burn scar assessment aoolication briefly described
points, uses adequate resolution to represent sensed data"%%(aeqqion lI-C) PP y

avoids abrupt changes in the element sizes from very fine'th
coarse (which can lead to ill-conditioning problems). Resolu-
tion scales and threshold selection techniques are the same as in
previous experiments. Results (shown in Fig. 11) include mag-In this paper we presented a novel multiscale approach to re-
nitude based vectors representing motion of all model points atzmery of nonrigid motion from sequences of registered inten-
feature points only. The validation error is less than 3% for alty and range images. The mainidea of our approach is that a fi-
validation points (Table IV). nite element (FEM) model can naturally handle both registration

IV. DISCUSSION ANDCONCLUSIONS



TSAPet al: FUSION OF PHYSICALLY-BASED REGISTRATION AND DEFORMATION MODELING 1667

and deformation modeling using a single model-driving strategggrated into the model. Also, such errors are local; they affect
The method includes a multiscale iterative algorithm based somewhat only the node of origin and even to a lesser extent
analysis of the undirected Hausdorff distance to recover corredes next to it (usually, nine out of 361 nodes), but have no ef-
spondences. Our model can handle what previously was accdett on resulting strain distributions (Fig. 9). The difference in
plished using two types of deformable models (snakes and finfte= burn scar area identification due to such local errors is less
element models). Increase in efficiency is achieved by replacitigan 5% for all experiments.
two separate iterative processes (snakes and nonlinear FEM sold-he method was evaluated with respect to speed and accu-
tion both requiring multiple iterations in two independent loopshacy. Noise sensitivity issues were addressed. Advantages of the
with amerged iterative process when the model tracks object fpasposed approach were demonstrated using man-made elastic
tures and recomputes physical parameters (every step is a simgggerials and human skin motion. Experiments with regular
FEM iteration for all experiments described) at the same timgrid features were used for performance comparison with a con-
Efficiency of the method can be further improved by pre-conventional approach (separate snakes and FEM models). It was
puting the response of the model to all imposed displacemest®own, however, that the new method does not require a sam-
[35]. Control points used for tracking are also a part of the fpling/correspondence template and can adapt the model to avail-
nite element model containing knowledge of an object’'s matable object features. Usefulness of the method was presented
rial properties that can lead to better analysis of the deformatinat only in the context of tracking and motion analysis, but also
process. Therefore, not only intersection points, but also adftir specific applications such as burn scar detection. This work
tional tracked points are included in the model. presents a significant step toward development of models that
Such a model can explain observed motion effects (suchn inherently handle multiple processing functions, currently
as displacements) as well as nonobservable aspects (suchegistration and deformation, and appearance in the near future.
strains). Strain distributions reveal differences in material
properties which can account for motion abnormalities. A good APPENDIX
model incorporating available values of material properties is NONLINEAR FINITE ELEMENT COMPUTATION

a necessary condition for this approach to succeed. HoweverThe central concept of the FEM [38] is decomposition of a

it is possible to start with an approximate material informatiogommex object into simpler components called finite elements.

(seg Section I for discuss_ion of such cases) and to improve,:'gr each object, a mapping between the initial and deformed
during tracking (as shown in [19]). states can be computed. Availability of material properties aids

~ The method includes a multiscale strategy based on evaldgzh mapping resulting in a precise nonrigid motion tracking of
tion of the undirected Hausdorff distance which represents a {f;g object. Thenodulus of elasticitypr Young’s modulusE,

liable error function. Wrong matches occur by mapping contrd yefined as\o/Ae, whereAo is the stress change amk
points to nearby features, but they are corrected during subseme strain change [39]. The stress,can be viewed as force
quent iterations. This possible (yet insignificant) failure mOdﬁer unit area and the strain, as changes of lengths per unit
still results in acceptable (in terms of accuracy) motion fielb gt Strain measures how much a material has deformed. The

estimates (as shown during experiments). In a general casgofison's Ratioy, is defined as the ratio of the magnitude of the
number of scales is object- and motion-dependent, similarly 40, ,<verse strain to the magnitude of the axial strain.

other physically-based models. Choosing the number of controlg enerainonlinear deformation theory defines the displace-
points at the finest scale is a trade-off between the efficiency 9font field as a combination of rigid-body motions and pure

structure representation and effects of noise. (It has been foyadormations. Former include translations and rotations. Their
experimentally that for our setup the scanning error is betwegyyin property is that the distance between any pair of mate-
0.5 mm and 1 m””f') o ~ rial points remains unchanged. Any quantity that measures the

Even with today’s range acquisition technology, many impOgnangein length between the neighboring points is a measure

tant applications (for instance, burn scar assessment) can k§nsyre deformation. Static nonlinear FEM problem can be ex-
efit from the presented ideas. Recent availability of less eXP&llessed as

sive, faster range data makes it a feasible source of information
for tracking. Triclops [36] color stereo vision system (manufac- [K (u)]u = F(u) 3)

tured by Point Grey Research, Vancouver, BC, Canada) is used ) _ . »
Were both a matrix of stiffness coefficierifs ()] and a force

to capture color and range sequences at a rate of several fra Tl d q he dicol S _
per second. If some prior information is available (for instanc¥€ctor £'(w) depend on the displacement vectorGeometric
onlinearities refer to the nonlinearities in the structure or com-

if one is looking for human features or for material of certaifl

colors), then “selective” range processing increases the rat®fient due to the changing geometry as it deflects. The stiffness
16 frames/s [37]. changes because the shape changes and/or the material rotates.

uTehe material behaves elastically when the force exerted depends

The registration part is based on an interpolation techniq | h hth terial has b def d. Inthi K
point correspondences are considered as imposed displacem%rﬁ%on ow much the matériaihas been detormed. In this wor

on the finite element model. This approach can be affected B c_onsidt_ar elastic.st_retching. we accouqt for small geometric
increased noise (which is not an issue in our experiments, linearities and finite strains. The applied loads on a body

could be a problem in new faster range scanners). The propog_éacl(: It mo‘{ﬁ ((();_ d(leform) fr(:m tfle p_osmaﬁ to the position
model is flexible so that a different correspondence finding afi2- ence, the displacement vector 1s
proach (possibly based on an approximation scheme) can be in- =Tz — Up- (4)
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The deformation gradient can be defined as

oo
Gl=—
[ ] oy

®)

9]

(10]

where deformation gradient includes the volume change, the ro-
tation and the shape change. The volume change at a point is

(11]

dva

v = det[G]

(6)

[12]

wheredet denotes determinant of the matrix. The deformation
gradient can be separated into a rotation and a shape change

using the right polar decomposition theorem

where [R] is the rotation matrix andl/;] is the right stretch

[G] = [E][U] )

(23]

(14]

(shape change) matrix. Once a stretch matrix is known, a loga-

rithmic or Hencky strain measure is defined as
[e] = In[U] ®)
or, equivalently, through the spectral decompositiofl.af
3
[(:] = Z 111()\7‘,)67‘,67‘,T (9)
=1

where ); are eigenvalues diU;] (principal stretches) and;

are eigenvectors dt/;] (principal directions). Hence, from (7)
the average rotation at a point can be calculated. ComputatioH—g]
ally, incremental approximation (defined in [40]) is used by
the ANSYS [33] program utilized in this research for nonlinear[20]
FEM calculation. Computationally, incremental approximation
is used [33] and increment of the deformation gradient at thep1)
current time step is defined using the previous time step- 1

[AGn] = [Gn][Gn—l]il- (10)

(15]

[16]

(17]

(18]

(22]

For more details about the FE solution and implementation23]
please refer to [18], [40].
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