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Abstract

Since the Microsoft Kinect has been released, the usage
of marker-less body pose estimation has been enormously
eased. Based on 3D skeletal pose information, complex hu-
man gestures and actions can be recognised in real time.
However, due to errors in tracking or occlusions, the ob-
tained information can be noisy. Since the RGB-D data
is available, the 3D or 2D shape of the person can be
used instead. However, depending on the viewpoint and
the action to recognise, it might present a low discrimi-
native value. In this paper, the combination of body pose
estimation and 2D shape, in order to provide additional
characteristic value, is considered so as to improve human
action recognition. Using efficient feature extraction tech-
niques, skeletal and silhouette-based features are obtained
which are low dimensional and can be obtained in real time.
These two features are then combined by means of feature
fusion. The proposed approach is validated using a state-
of-the-art learning method and the MSR Action3D dataset
as benchmark. The obtained results show that the fused fea-
ture achieves to improve the recognition rates, outperform-
ing state-of-the-art results in recognition rate and robust-
ness.

1. Introduction

In recent years, interest has grown on affordable de-
vices (e.g. Microsoft Kinect or ASUS Xtion Pro) that cap-
ture depth quite reliably. Such devices provide a depth im-
age (D), along with an RGB image (thus RGB-D). A depth
image can be further processed to obtain body pose estima-
tion by means of a silhouette, a volume, or a skeleton model

consisting of a series of joint data which, in turn, can be fed
to a machine learning algorithm in order to learn and recog-
nise poses, actions, or complex activities (see Figure 1).

Reliability and accuracy of RGB-D devices have been
studied in several works [1, 14], which show that the ex-
traction of a skeleton from depth information is not straight-
forward. Among several difficulties, lack of precision and
occlusions, caused by body parts or other objects present in
the scene, stand out [10, 17, 22]. Therefore, in order to pro-
vide robustness to human action recognition, possible errors
in skeletal data should be considered, either improving the
tracking and body pose estimation process, or relying on ad-
ditional data as RGB colour, 3D (volume) or 2D (silhouette)
depth-based information.

The silhouette of the human body has been proven to be

Figure 1: Depth image (left), extracted skeleton (centre) and
silhouette (right).



Figure 2: Example of a noisy skeleton (instance from action
Pick-up and throw from the MSR Action3D dataset [ 1 1]

useful for action recognition [16]. Relying on background
subtraction or human body detection techniques, the silhou-
ette can be extracted out of RGB images. Different holistic
features are then extracted based on the points of the silhou-
ette or its boundary; which are afterwards made translation
and scale invariant. Although good results can be obtained
for body motion based action recognition, the silhouette
fails when more fine-grained motion recognition is required
(as for gestures), or when the only available viewpoint has
been recorded from an unfavourable viewing angle. In other
words, whereas a side view of kicking or punching can be
easily recognised based on the shape of the silhouette, this
may be undistinguishable from a front view, not only for a
computer vision algorithm, but even for a human.

In conclusion, depending on scenario-related constraints,
as viewing angles and the type of actions we want to recog-
nise, either the 3D pose information contained in the skele-
ton or the shape of the silhouette may contain the most use-
ful information. Furthermore, even if the 3D skeletal infor-
mation seems to be in a clear advantage, though it may not
always be reliable (see, for instance, Figure 2), the shape
information provided by the silhouette could provide useful
additional characteristic value in order to improve the clas-
sification. For this reason, in this proposal, the appropri-
ate combination of skeletal- and silhouette based features is
studied considering feature fusion techniques and state-of-
the-art feature extraction and learning methods. Note that
using the Microsoft Kinect device, it is possible to obtain in
real time both the body pose estimation in form of skeletal
data, and the silhouette of the user relying on depth-based
segmentation.

2. Related work
2.1. Based on RGB-D data

The use of the different data provided by the RGB-D de-
vices for human action recognition goes from employing
only the depth data, or only the skeleton data extracted from

the depth, to the fusion of both the depth and the skeleton
data.

Li et al. [11] sample representative 3D points extracting
the points on the contours of the projections of the 3D depth
map onto the three orthogonal Cartesian planes. In order to
reduce the size of the feature vector, the method selects a
specified number of points at equal distance along the con-
tours of the projections. Ballin et al. [3] estimate the 3D
optical flow related to the tracked people from point cloud
data, summarising it by means of a 3D grid-based descrip-
tor. Wang et al. [22] fuse the skeleton information and a
local occupancy pattern (LOP) based on the 3D point cloud
around each joint. In a different approach, Wang et al. [21]
treat an action sequence as a 4D shape and propose random
occupancy pattern features, which are extracted from ran-
domly sampled 4D sub-volumes with different sizes and at
different locations. These features are robust to noise and
less sensitive to occlusions. Oreifej and Liu [15] describe
the depth sequence using a histogram that captures the dis-
tribution of the surface normal orientation in the 4D space
of time, depth, and spatial coordinates. Yang et al. [26]
project the depth maps onto three orthogonal planes and
accumulate the whole sequence generating a depth motion
map (DMM), similar to the motion history images [4]. His-
tograms of oriented gradients (HOG) are obtained for each
DMM. The concatenation of the three HOG represents an
action.

Miranda et al. [13] describe each pose using a spherical
angular representation of the skeleton joints. This way the
feature vector is invariant to sensor orientation and global
translation of the body, minimising issues with skeleton
variations from different individuals. Yang and Tian [25]
propose a new type of feature, the EigenJoints. They em-
ploy 3D position differences of joints to characterise action
information including posture, motion and offset features.
Xia et al. [24] transform each 3D joint location according
to a a modified spherical coordinate system centred in the
WAIST. This representation achieves view invariance by
aligning the modified spherical coordinates with the per-
son’s specific reference direction. This work reduces the
number of considered joints from 20 to 12, removing some
that are close between them. Azary and Savakis [2] use
sparse representations of spatio-temporal kinematic joint
features and raw depth features, which are invariant to scale
and position.

2.2. Based on human silhouettes

Silhouettes have been used extensively for human action
recognition. Using a low resolution, this bidimensional data
is sometimes employed as it is, for instance, relying on a
volume of silhouettes as spatio-temporal feature. These bi-
nary masks can then be reduced in dimensionality as in [19],
where principal component analysis (PCA) is employed. Lv



and Nevatia [12] propose a log-polar histogram which is
computed choosing the different radii of the bins based on
logarithmic scale. A bag of rectangles has been proposed
in [9], where a histogram of oriented rectangular patches
is extracted over the whole silhouette. Similarly, in [23], a
3D histogram of oriented gradients (3DHOG) is extracted
on densely distributed regions. A very popular feature is
the one from Tran and Sorokin [20]. It combines silhouette
shape and optical flow in the same feature vector. By means
of radial histograms the silhouette shape and the X and Y
axis optical flow are encoded and combined with the con-
text of 15 surrounding frames. In [7], the authors present a
low-dimensional radial feature that is based on the contour
points of the silhouette, and shows suitability for real-time
processing. Since the silhouette can be easily obtained as a
binary mask using the depth data provided by the Microsoft
Kinect device, all these silhouette-based features can also
be applied on RGB-D images.

3. Skeletal and silhouette-based features

As has been previously introduced, our proposal consists
in combining both skeletal and silhouette-based features in
order to improve human action recognition, increasing the
robustness to possible body pose estimation errors and tak-
ing advantage of the additional discriminative data the sil-
houette can provide.

In this section, the chosen characteristic features are de-
tailed. These have been selected due to their outstanding
performance when used for recognition on their own, and
having in mind that they need to be suitable for feature fu-
sion.

3.1. Skeletal feature

Human posture is represented by a skeleton model com-
posed of 20 joints that is provided by the Microsoft Kinect
SDK. Each joint is represented by its 3D position in the real
world. In order to achieve invariance to scale and rotation,
each sequence is normalised following the method in [8]:

1. Determine the normalising length as the distance from
the TORSO to the NECK in the first skeleton of the se-
quence.

2. Determine the y-axis rotation of the first skeleton of
the sequence with respect to the Kinect.

3. Set the average location of the TORSO, the LEFT-
SHOULDER, the RIGHTSHOULDER, the LEFTHIP and
the RIGHTHIP as origin coordinate of each skeleton in
the sequence.

4. Normalise the size and rotation of all the skeletons of
the sequence according to the normalising length and
rotation obtained in steps 1 and 2.

Figure 3: Sample silhouette on which a radial scheme is ap-
plied centred in the centroid of the contour points. A sum-
mary value is obtained for each radial bin.

3.2. Silhouette-based feature

The shape of the human silhouette is provided by its
boundary. Therefore, an efficient feature extraction can be
processed when relying only on the contour points of the
silhouette. Since low dimensionality is also desired in order
to speed up the classification stage and avoid extremely un-
balanced feature sizes, we chose the radial silhouette-based
feature from Chaaraoui et al. [7]. This feature showed to
provide good results and support real-time recognition. It is
obtained as follows:

1. First, the centroid of the contour points is obtained.

2. Second, a radial scheme is applied using the centroid
as the origin. In this way, the silhouette can be divided
in S radial bins of the same angular size.

3. Third, a summary value is obtained for each radial bin.
This value is defined as the statistical range of the dis-
tances between the points of the bin and the centroid.

4. Fourth, the summary values are concatenated and nor-
malised to unit-sum in order to obtain the feature vec-
tor of size S.

Figure 3 shows how the radial scheme is applied to ob-
tain this feature. Please see [7] for greater detail.



3.3. Feature fusion

As has been mentioned before, we propose to combine
the skeletal and the silhouette-based information at the fea-
ture level. By means of feature fusion, we can retain the
different characteristic data enhancing the discriminative in-
formation so as to improve the classification.

In this sense, feature concatenation has been employed
for feature fusion for two reasons: 1) We want to re-
tain all the characteristic information provided by both fea-
ture types; and 2) since we are dealing with very low-
dimensional features, the resulting increased size of the fi-
nal feature is not critical.

4. Classification method based on bag of key
poses

As has been seen in the last section, once feature fu-
sion has been applied, for each frame, a pose representation
feature is obtained which combines skeletal and silhouette-
based features. This bimodal feature is used for classifica-
tion of human actions.

As learning algorithm we employ a method based on bag
of key poses [5, 6]. Similar to the bag-of-words-model, first,
a codebook — called bag of key poses — is obtained using
the K -means clustering algorithm. In this case, the words
are made up of key poses. Then, instead of relying on his-
tograms of word occurrences, sequences of key poses are
built. For each training sequence, the pose representation
feature of each frame is substituted with its nearest neigh-
bour key pose out of the bag of key poses. In this way, se-
quences of key poses are obtained which model the possible
transitions between key poses.

In the recognition stage, unknown video sequences are
classified based on sequence matching. First, an equiva-
lent sequence of key poses is obtained for the test sequence.
Then, using the dynamic time warping (DTW) algorithm,
the most similar training sequence is found considering a
temporally alignment of the involved key poses.

As has been shown in [5, 6], this learning method han-
dles multiple views successfully. In the present work, the
skeleton and the silhouette could be considered as different
views. Therefore, instead of applying a multi-view fusion of
different viewing angles of the same data type, in this case,
different data types of the same viewing angle are fused.

5. Experimentation

The proposed method has been evaluated with the MSR
Action3D dataset [11]. This dataset contains 20 different
actions, performed by ten different subjects and with up to
three repetitions making a total of 567 sequences. How-
ever, ten sequences are not used because the skeletons were

Dataset
AS1 AS2 AS3
Feature K Rate K Rate K Rate
Joints’ 3D locations | 9 | 88.57% | 38 | 85.71% | 6 | 94.59%
Silhouettes 34 | 71.43% | 41 | 79.46% | 22 | 85.59%
Fusion 9 [92.38% | 50 | 86.61% | 25 | 96.40%

Table 2: Classification rate for each subset of the MSR Ac-
tion3D dataset (cross-subject validation is used).

either missing or wrong, as explained by the authors'. The
authors divided the dataset in three subsets of eight gestures
each, as shown in Table I, and most of the papers work-
ing with this dataset have also used them. This was due to
the high computational cost of dealing with the complete
dataset. The AS1 and AS2 subsets were intended to group
actions with similar movement, while AS3 was intended to
group complex actions together.

Similarly to [ 1], who first used this dataset, we perform
a cross-subject validation, where actors 1, 3, 5, 7 and 9 are
used for training, and actors 2, 4, 6, 8 and 10 are used for
testing. We have performed an exhaustive study to select
the number K of clusters that obtains the best result for each
dataset. The parameter S, which determines the number of
radial bins of the silhouette-based feature, has been estab-
lished to a value of 24 bins, resulting in 15° sectors. With
this setup, 25 tests have been executed.

Table 2 shows the best recognition rate obtained using:
1) only the skeleton, 2) only the silhouette, and 3) fusing
both of them. The worst results are always obtained using
only the silhouettes, as most of the actions included in the
dataset do not involve great changes in the 2D projection of
the shape of the body. It can be observed that, while good
results are obtained using only the joints’ 3D locations, the
fusion of both features steadily improves the recognition
rate.

The success rates for each action in AS1 using the three
different alternatives are shown in Figure 4. Despite the
fact that the skeletal feature performs considerably better,
for some specific actions, the silhouette-based feature ob-
tains a slightly higher recognition rate. In the case of AS1,
these actions are high throw (a06) and pick-up and throw
(a20). In both cases, a greater amount of body motion is
involved than in the rest of actions, which explains why the
silhouette performs well. At the same time, these actions
involve a strongly actor-dependant motion as they can be
performed in many ways, and their joint trajectory is cer-
tainly complex to track accurately. This could explain the
poorer performance of the joints” 3D locations, which per-
forms almost perfect at the other action classes.

IMSR Action Recognition Datasets
and Codes, http://research.microsoft.com/en-
us/um/people/zliv/actionrecorsrc/default.htm (last access: 09/09/2013)



AS1 AS2 AS3
Label | Action name Label | Action name Label | Action name
a02 | Horizontal arm wave | a0l | High arm wave a06 | High throw
a03 | Hammer a04 | Hand catch al4 | Forward kick
a05 | Forward punch a07 | Draw cross al5 | Side-kick
a06 | High throw a08 | Draw tick al6 | Jogging
al0 | Hand clap a09 | Draw circle al7 | Tennis swing
al3 | Bend all | Two-hand wave | al8 | Tennis serve
al8 | Tennis serve al4 | Forward kick al9 | Golf swing
a20 | Pick-up and throw al2 | Side-boxing a20 | Pick-up and throw

Table 1: Actions in each of the MSR Action3D subsets.

a02 a03 a05 a06 al10 al3 al8 a20

al2 a03 alb alf a1l alld alg ald

al2 al3 a0t alb

alld al3 alg a0

a02 0.08 =10y 1.00
a03 a3
a0s 0.09 a0s
a0t 0.09 0 0.18 a06
all aln
al3 | a13
al8 alg 033|020 0.07 als
a20 0.14 0.07 029| 0.50 a0 007]014|007|014 az0

(a) Skeleton

(b) Silhouette

(c) Fusion

Figure 4: Confusion matrices obtained using only the skeletal feature (a), the silhouette-based feature (b), or the fusion of

both (¢).

Regarding the confusion matrix obtained for the pro-
posed feature fusion (Figure 4 (c)), it can be observed that
in the case of the high throw (a06) action, the better per-
forming silhouette-based feature does not improve the com-
bined results. But in the case of the pick-up and throw (a20)
action, the combination achieves its goal of improving the
recognition rate. Also for the horizontal arm wave (a02),
the fused feature performs better, showing that we do not re-
quire the silhouette-based feature to outperform the skeletal
feature in order to provide better discrimination. Moreover,
the fusion of features does not lead to a performance loss
in any case. This is a desirable behaviour because we do
not want to improve the classification of some classes at the
cost of obtaining a worse recognition for others.

Table 3 shows a comparison with other methods. Our
proposal improves state-of-the-art results for subsets AS2
and AS3, as well as for the overall average. Our results are
quite stable in the sense that other methods seem to obtain
good results only for specific subsets.

We have repeated similar tests using leave-one-actor-out
cross validation (LOAOQ). In this cross validation test, actor-
invariance is specifically tested by training with all but one
actor, and testing the method with the unseen one. This
is repeated for all actors, averaging the returned accuracy
scores. Naturally, these rates are normally lower than train
and test set validations, as the cross-subject validation, and
they provide a more confident result. Furthermore, overfit-

Dataset
AS1 AS2 AS3
Feature K Rate K Rate K Rate
Joints’ 3D locations | 6 | 88.83% | 7 | 85.01% | 9 | 95.22%
Silhouettes 36 | 69.46% | 35 | 76.49% | 15 | 81.05%
Fusion 16 | 90.65% | 14 | 85.15% | 21 | 95.93%

Table 4: Classification rate for each subset of the MSR Ac-
tion3D dataset (LOAO cross validation is used).

ting can be avoided, since multiple train and tests sets are
evaluated. Results are presented in Figure 4.

6. Conclusion

In this paper, a proposal for the combination of body
pose estimation in form of a skeletal feature and 2D shape
based on the silhouette has been presented for human action
recognition. Relying on efficient skeletal and silhouette-
based features, feature fusion is applied in order to obtain
a visual feature with a higher discriminative value and im-
prove human action recognition. A state-of-the-art learn-
ing method has been used to validate the proposal. During
the experimentation, outstanding results have been obtained
both for the cross-subject and the more challenging LOAO
cross validation tests. In view of the fact that in every test
the fused feature has achieved to improve the recognition



Dataset
Method AS1 AS2 AS3 Average
DMM-HOG [26] 96.2% | 84.1% | 94.6% | 91.63%
EigenJoints [25] 74.5% 76.1% 96.4% 82.33%
OESGP [18] 80.6% | 749% | 87.1% | 80.87%
Sparse Repr. (L1-norm) [2] 77.66% | 73.17% | 91.58% | 80.80%
Sparse Repr. (L2-norm) [2] 76.60% | 75.61% | 89.47% | 80.56%
Key poses and Decision Forests [13] | 93.5% 52% 95.4% | 80.30%
Histograms of 3D Joints [24] 87.98% | 85.48% | 63.46% | 78.97%
Bag of 3D Points [11] 72.9% 71.9% 792% | 74.67%
Joints” 3D locations 88.57% | 85.71% | 94.59% | 89.62%
Fusion 92.38% | 86.61% | 96.40% | 91.80%

Table 3: Comparison with other state-of-the-art methods (bold indicates highest rate).

rate with respect to the unimodal features, we can confirm
that the initial hypothesis has been validated. The highest
results so far have been obtained for two of the three subsets
of the MSR Action3D dataset, which leads to the best aver-
age recognition rate. In this sense, it can be concluded that
the shape information contained in the silhouette can pro-
vide useful discriminative data, especially when the body
pose estimation fails.

This work opens several future lines: On the one hand, in
order to validate our proposal, we have employed state-of-
the-art visual feature extraction and action learning meth-
ods. These could be improved in order to explicitly con-
sider different feature types. More complex skeletal fea-
tures can be employed based on joint distances, quater-
nions, etc. Similary, instead of the silhouette, 3D vol-
ume information could be considered. On the other hand,
the proposed method might benefit from further feature
types. Both the employed skeletal and silhouette-based fea-
ture contain frame-wise pose or shape information. How-
ever, recent works suggest that spatio-temporal features, as
shape-motion cues at pixel-level [15], can be very valuable
in human action recognition. The addition of further fea-
ture types will also lead to reconsider suitable feature fusion
techniques.

Last but not least, as it has been seen in the experi-
mentation, the obtained improvement depends on the action
classes. Therefore, a selective approach, which decides for
each action whether or not different feature types have to be
considered, could provide further improvement.
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