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Abstract: For physical activity recognition, smartphone sensors, such as an accelerometer

and a gyroscope, are being utilized in many research studies. So far, particularly, the

accelerometer has been extensively studied. In a few recent studies, a combination of a

gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role)

has been used with the aim to improve the recognition performance. How and when are

various motion sensors, which are available on a smartphone, best used for better recognition

performance, either individually or in combination? This is yet to be explored. In order to

investigate this question, in this paper, we explore how these various motion sensors behave

in different situations in the activity recognition process. For this purpose, we designed a data

collection experiment where ten participants performed seven different activities carrying

smart phones at different positions. Based on the analysis of this data set, we show that these

sensors, except the magnetometer, are each capable of taking the lead roles individually,

depending on the type of activity being recognized, the body position, the used data features

and the classification method employed (personalized or generalized). We also show that

their combination only improves the overall recognition performance when their individual

performances are not very high, so that there is room for performance improvement. We have

made our data set and our data collection application publicly available, thereby making our

experiments reproducible.
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1. Introduction

Physical activity recognition using wearable sensors has enabled the scientific community to develop

novel applications, especially in the area of healthcare and assisted living [1,2]. In recent years,

smartphones have been used for activity recognition, because they are readily equipped with several

sensors useful for activity recognition, such as motion and location sensors. Moreover, they are carried

by almost everyone in their daily lives.

So far, among these smartphone sensors, the accelerometer has received the most attention in

the activity recognition research. However, in recent years, other sensors, like the gyroscope and

magnetometer, have been combined with an accelerometer with the aim of improving activity recognition

performance [3,4]. However, to the best of our knowledge, there is no study investigating the

performance of these sensors in detail considering different feature sets, classifiers, different phone

carrying positions, both individually, as well as in combination. Moreover, using an additional sensor

causes more energy consumption, which can be problematic for an energy-limited device, like a

smartphone [5]. Hence, such a detailed analysis can help in deciding when to best combine these motion

sensors. Therefore, there is a need to study the role of these sensors in detail. In particular, we focus on

this research question: “How and when are various motion sensors, which are available on a smartphone,

best used for better recognition performance, either individually or in combination?”

Some researchers have already investigated the combination of various motion sensors in activity

recognition [3,4]. For example, in [3], the authors use a gyroscope in combination with an accelerometer

and report an increase in the recognition performance (accuracy) by 3.1%–13.4% for some activities.

On the other hand, in [4], the authors claim that the addition of a gyroscope to an accelerometer does

not add any value to the recognition performance (accuracy). These two papers probably report different

results, due to their different experimental setups.

However, these previous studies have explored the combination of various motion sensor only in

some specific scenarios. In order to answer our question, we study the role of these sensors in detail in

different scenarios. We defined three different evaluation scenarios in order to cover the most commonly

used scenarios in the previous studies. These scenarios are:

1. the position-aware evaluation scenario, where these sensors are evaluated on a single position;

2. the position-unaware evaluation scenario, where these sensors are evaluated on multiple positions;

3. the personalized evaluation scenario, where the classification methods are trained and tested for a

specific user with his or her own data.

Moreover, we evaluate the recognition performance with four different sensors: an accelerometer, a

gyroscope, a linear acceleration and a magnetometer. The linear acceleration sensor is a virtual sensor,

derived from the accelerometer by removing the gravity component [6]. These sensors are selected
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because they were used in previous activity recognition studies [3,4,6,7]. The main focus, however, is

on the accelerometer and the gyroscope, since these are the mostly-used sensors in similar studies.

In particular, the goal of this paper is to provide a detailed analysis of whether to fuse data from

multiple sensors. We believe that our effort will assist the readership and this will save time for future

studies by not repeating the same experiments. This study can be used as a basis for making design

decisions about when and how to combine these sensors for better activity recognition. The main

contributions and highlights of this paper are as follows:

• To the best of our knowledge, we are the first to do such an extensive analysis of the role of these

sensors in activity recognition, both when they are used alone, as well as in combination with each

other. We evaluate them for five body positions using nine classifiers. Moreover, we have used

four feature sets in our evaluations, which are all used in the state-of-the-art. They have low or

medium complexity and are suitable for running on smartphones [8]. We recognize seven physical

activities, commonly used in the state-of-the-art.

• We also investigate the recognition performance when the training and testing data is

coming from a single user (personalized classification) or from multiple users (generalized

classification). Moreover, we use both position-aware and position unaware classification for our

evaluation scenarios.

• We make our data set and our data collection application publicly available for future research in

this domain [9].

The rest of the paper is organized as follows. We describe related work in Section 2 and the data

collection process in Section 3. The data preprocessing is described in Section 4 and our evaluation

approach in Section 5. We discuss the performance evaluation in Section 6. Finally, we describe our

conclusions and future work in Section 7.

2. Related Work

While the use of a smartphone accelerometer in activity recognition has been extensively studied [10],

the use of a gyroscope and a magnetometer in activity recognition is yet to be explored in detail.

Some researchers have evaluated the effect of amending accelerometer-based activity recognition with

gyroscope data [3,4]. However, the gyroscope alone has not received much attention for physical activity

recognition, especially in terms of comparing its performance with an accelerometer, a magnetometer

and combinations of all these sensors.

Studies where a gyroscope was either used alone or in combination with an accelerometer exist for

many applications related to activity recognition. For example, for gait analysis [11], fall detection [12]

and gesture recognition [13,14], gyroscopes have been used, either alone or in combination with an

accelerometer. Moreover, an accelerometer and a gyroscope were combined to detect certain dangerous

driving behaviors in [15,16]. In [17], a gyroscope and an accelerometer were combined for estimating

the intensity of physical activity. In [18], the combination of an accelerometer and a gyroscope was used

to recognize different tai chi movements. In [19], the combination is used for the motion monitoring of

patients with disorders, such as Parkinsons Disease, epilepsy and stroke [14].
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For activity recognition, there is earlier work in which motion sensors (accelerometer, gyroscope,

magnetometer and linear acceleration) are used either alone or in different combinations. However, the

merit of the individual sensors is often not evaluated in detail. In [20], the combination is used for

fall detection and activity recognition using an SVM classifier [21]. In [22], the combination is used

to detect step count and also to recognize different modes of motion. In [23], the combination is used

for detecting three transportation modes, such as walking, riding a car and a train, and improvement

in accuracies is reported. In [24], the combination is used to detect postures (laying, sitting and

standing), locomotion (walking) and transitions (sit-to-stand, stand-to-sit). In [25], the combination

is used to recognize different physical activities using three selected classifiers. In [7], the authors

compare different classification methods for recognizing physical activities using data from three sensors

(accelerometer, gyroscope and magnetometer). In [26], the authors combine multiple accelerometers and

gyroscopes (on a sensor board) to recognize different activities and to evaluate the displacement effect on

these sensors. The work in [27,28] shows the potential of a magnetometer sensor in activity recognition

when used alone. A linear acceleration sensor is used in [6] for recognizing activities.

There are few studies [3,4,29,30] that are similar to our study. For example, the authors in [4] used a

combination of an accelerometer and a gyroscope and claimed that the gyroscope adds no value to the

overall recognition performance. They used naive Bayes, decision tree (C.45) and k-nearest neighbor

(KNN) for classification and collected data on multiple body positions. The authors in [3] also used a

combination of an accelerometer and a gyroscope and reported a 3.1%–13.4% increase in recognition

accuracy for some of the evaluated activities. However, they did these experiments only with a KNN

classifier. They considered only the pocket position, except for the jogging activity, for which an arm

position was used. In [29], the authors used an accelerometer, a magnetometer, a gyroscope, linear

acceleration and gravity in combination. Though this combination performed slightly better than the

accelerometer alone, the paper does not discuss the role of the individual sensors. Therefore, it is not

clear which sensors contributed (and how much) to the improvement in the activity recognition. The

authors in [30] evaluated the gyroscope, the accelerometer and magnetometer using a single classifier

(principle component analysis). They used a sensor board, equipped with these sensors. Moreover,

they have only one participant data set for the arm position. They show that the accelerometer and

gyroscope can recognize walking and jogging activities, whereas the magnetometer performs poorer,

without reporting any accuracy results. We further investigate the role of smartphone sensors in detail

using those studies as a starting point.

Existing work uses the accelerometer as the lead sensor, while attributing only a supporting role to the

gyroscope [3,4,29]. In contrast, we evaluate these sensors individually, as well as in combination with

each other, thereby identifying their individual contributions in the activity recognition. We performed

an initial study [31], where we evaluated three motion sensors (the accelerometer, the gyroscope and

magnetometer) and showed that they have the potential to take lead roles in the activity recognition

process when used alone. However, we evaluated these sensors in only one scenario. In our current study,

we consider multiple evaluation scenarios, as discussed in Section 6. This enables us to demonstrate

where and when a sensor performs better than the others and when they perform better in combination.

Moreover, we evaluate the sensors using nine classifiers. This evaluation is done on five different body

positions with ten participants, where in the previous study, the number of participants was limited to



Sensors 2014, 14 10150

four. This enables us to make more confident claims about our reported results. We also compare the

results of the linear acceleration sensor with the accelerometer and the gyroscope. Additionally, we

show how to improve the performance of a magnetometer in the activity recognition process, if the

correct feature set is used.

3. Data Collection

In the data collection experiments, we collected data for seven physical activities. These are walking,

running, sitting, standing, jogging, biking, walking upstairs and walking downstairs, which are mainly

used in the related studies, and they are the basic motion activities in daily life. There were ten

participants involved in our data collection experiment, who performed each of these activities for

3–4 min. All ten participants were male, between the ages of 25 and 30. The experiments were carried

out indoors in one of the university buildings, except biking. For walking and running, the department

corridor was used. For walking upstairs and downstairs, a 5-floor building with stairs was used. Each of

these participants was equipped with five smartphones on five body positions (as shown in Figure 1):

1. one in their right jeans pocket;

2. one in their left jeans pocket;

3. one on the belt position towards the right leg using a belt clip;

4. one on the right upper arm;

5. one on the right wrist.

Figure 1. Overview of the phone positions on a participant.
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The first three positions are commonly used by people carrying smartphones. The fourth position

is usually used when activities like jogging are performed. However, we used this position for all

activities to see its role on the performance. A smart-watch was simulated with the fifth position, as

smart-watches are coming into the market these days [32]. It is important to note that the positions for

these smartphones on participants’ bodies are fixed. For these experiments, we used a Samsung Galaxy

SII (i9100) smartphones [33].

The orientation of the smartphones was portrait for the upper arm, wrist and two pockets and

landscape for the belt position. The data was recorded for all five positions at the same time for

each activity, and it was collected at a rate of 50 samples per second. This sampling rate (50 samples

per second) is enough to recognize human physical activities, as we show in our previous study [31].

Moreover, in the state-of-the-art, frequencies lower than 50 samples per second have been shown to be

sufficient for activity recognition [3,4].

For data collection, we adapted our own data collection app from our previous study [31] by adding

the linear acceleration sensor. The data was collected for an accelerometer, a gyroscope, a magnetometer

and a linear acceleration sensor.

4. Preprocessing Data

We divided the collected data into small segments for feature extraction using the sliding window

approach. The selection of an appropriate window size is important, and different values can be set

for it. However, we selected a sliding window of two seconds based on previous studies [3,34], since

it was shown that a window size of two seconds was an effective and sufficient value for a reasonable

activity recognition performance. We used the sliding window approach with an overlap of 50% (1 s

overlap here), based on the reporting of previous studies [3,34,35]. Even though different overlap values

can be used, an overlap of 50% has been shown to produce reasonable results [3,34,35]. Based on our

two-second window, we have 180 window segments for each activity for a single user at a single position.

For all ten participants, we have 1800 segments for each activity at a single position. In some scenarios,

we combined data from three positions, in which case, we have 5400 segments for each activity over all

the three positions.

Each of these sensors has three dimensions, that is the x-axis, y-axis and z-axis, and their respective

values are reported along these axes. Most of the existing work assumes a fixed orientation while

evaluating different classification algorithms [3]. However, the recognition performance of these

sensors may be affected by the orientation changes if the classification algorithms were trained only

for a specific orientation [36], leading to a drop in performance. In order to minimize such effects

caused by orientation changes, we added a fourth dimension to the existing three dimensions of each

sensor, called the magnitude of a sensor. This choice was motivated by the work done in [36] about

orientation-independence in activity recognition, because the magnitude feature is less sensitive to

orientation changes. The magnitude for each sensor is calculated using the following formula:

magnitude =
√

x2 + y2 + z2 (1)

Based on this addition, we had four dimensions for each sensor i.e., (x, y, z,magnitude). For each

sliding window with a 50% overlap, we extracted different features, as listed in Table 1. We used four
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feature sets based on the fact that all of them have low or medium complexity and are suitable for running

on smartphones [8]. Three of these feature sets are comprised of time domain features, and one set is

comprised of frequency domain features.

Table 1. Feature Sets.

Feature Set Features in the Feature Set Frequency or Time Domain

FS1 Mean, standard deviation Time domain

FS2 Median, zero crossings, root means square Time domain

FS3 Variance, zero crossings, root means square Time domain

FS4 Sum of first five FFT coefficients, spectral energy Frequency Domain

The main reason for selecting these four feature sets was to validate our results using different types

of features for more confident and generic results. Though time domain features are computationally

cheap compared to frequency domain features, due to the expensive Fourier transformation [4,8], we still

chose one feature set from the frequency domain to validate our results in a generic way. For example,

feature sets FS1, FS2 and FD3 include time domain features, and feature set FS4 includes frequency

domain features. The grouping in Table 1 is motivated by the fact that these features are used in similar

ways in the previous studies, as reported in [8,34]. For example, FS1 is used in [8,31,34]. Moreover, the

combination of zero crossings and the root mean square is used for gesture recognition, as reported in [8].

We selected these two features, because they are less sensitive to orientation changes (in the case of the

accelerometer and the gyroscope) and to direction changes (in the case of a magnetometer). However,

our initial evaluations with this combination did not show encouraging results in recognizing our seven

activities. That is why we added the median feature to FS2, which has been shown to produce reasonable

results for activity recognition [8]. Moreover, variance was added to FS3 to deal with direction changes

in a magnetometer. We combine the two frequency domain features in FS4 for better activity recognition

results. All these features were selected, because they have very low or medium computational and

storage complexity. The low complexity makes these features suitable for running on smartphones, as

shown in Table 2 [8]. For a detailed definition of the complexity levels used in this table, such as ‘low’,

‘very low’ and ‘moderate’, readers can refer to [8], where these are explained in detail.

All of the these features are extracted over a sliding window of 2 seconds with a 50% overlap. All of

these features have been used in different studies, as reported in [8]. They are defined as follows:

• Zero crossings: this is defined as the number of points where a signal crosses through a specific

value corresponding to half of the signal range [8]. In our case, that specific point is the mean of a

window segment.

• Root mean square value: The root mean square (RMS) of a signal, x, that represents a sequence

of n discrete values x1, x2, . . . , xn is obtained using the following formula and can be associated

with meaningful context information [8]: RMS =

√

x
2

1
+x

2

2
+...x

2
n

n
.

• Spectral energy: The energy of the signal can be computed as the squared sum of its spectral

coefficients normalized by the length of the sample window [8].

• Mean: This is the average value of all sample values in the sample window [8].
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• Variance: This is the average of the squared differences of the sample values in a sample window

from its mean [8].

• Standard deviation: This is the square root of variance [8].

• Median: This is defined as the value that divides the higher half of the sample window from the

lower half [8].

• Sum of FFT coefficients: This is defined as the sum of the number of FFT coefficients [8]. In our

case, we take the first five FFT coefficients, as these contain the main frequency components.

Table 2. Feature Complexities.

Feature Set Associated Features
Computation

Complexity

Storage

Complexity

Suitability for

Mobile Devices

FS1 Mean very low very low yes

FS1 Standard Deviation very low very low yes

FS2 Median medium very low yes

FS2 Variance very low very low yes

FS2, FS3 Zero crossings very low very low yes

FS2, FS3 Root mean square value very low very low yes

FS4 Sum off FFT coefficients medium low moderate

FS4 Signal energy medium low moderate

We started from the simplest possible situation. That is why we did not normalize our features. We

defer the evaluation of the effect of normalization to future work. Furthermore, we did not explicitly

calibrate our sensors. We briefly evaluated the calibration of the accelerometer, and we found that it was

factory-calibrated with a reasonable accuracy.

5. Evaluation Approach

In order to analyze the preprocessed data, we used the WEKA machine learning tool (Waikato

Environment for Knowledge Analysis) [37,38]. There are different classification and preprocessing

algorithms available in this tool. These algorithms use the data in the ARFF (attribute-relation file

format) file as the input. Therefore, the preprocessed data (extracted features) were converted to ARFF

file format, which is a WEKA file format. This is an ASCII text file format, and it defines a data set in

terms of a relation (table) made up of attributes (columns of data) [37]. Information about the structure

of the relation is stored in the ARFF header, while the actual data is represented in the body of the ARFF

file as lines with comma-separated attribute values.

Then, we applied different classifiers on these data to evaluate their performance. We used the

10-fold stratified cross-validation technique to evaluate different classifiers. In stratified cross-validation,

each fold or part of data contains all classes in equal proportion to ensure fairness [38]. In 10-fold

cross-validation, the data set is divided into 10 bins. Out of these ten bins, nine (90%) are used for

training and one (10%) for testing. This process is repeated ten times, each time with a different

bin for testing, thereby using all data, both for training and testing. We selected nine classifiers from
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different types of classification algorithms, as listed in Table 3. We use the short notations in Table 3

for these classifiers in the next sections. We selected these classifiers, as they have been used in the

state-of-the-art for activity recognition [3,10,39]. Some of these classifiers have been implemented on

smartphones for activity recognition. For example, KNN and naive Bayes are used in [40] for online

activity recognition on smartphones. The decision tree classifiers are implemented on smartphones

in [4,41]. The SVM classifier is implemented on smartphones in [20,42]. The NNGEand PARTclassifiers

are notable exceptions, which are not used mainly for physical activity recognition. NNGE and PART

are rule-based classifiers, which create certain decision rules in the training phase, and then, test data

is classified based on these rules. This behavior makes these classifiers faster for the testing phase, and

we believe they will be suitable for running on smartphones, especially where the training is a onetime

task and testing is a continuous process after that. NNGE is a rule-based classifier based on K-nearest

neighbor, whereas PART is based on decision trees. The details on the implementation of these classifiers

can be found in WEKA documentation [38].

Table 3. Classification Methods.

Type of Classifier WEKA-Version Notation

Bayesian networks Bayesian networks BN

Naive Bayes Naive Bayes NB

Support vector machines LibSVM LSM

Logistic regression Logistic regression LR

K nearest neighbor IB1 (KNN with K = 1) IB

Rule-based classifiers PART PART

Rule-based classifiers NNGE NNGE

Decision trees J48 J48

Decision trees Random forest RF

We used all these classifiers in their default settings in WEKA 3.7.10. We did not perform any

optimizations, because we are more interested in the relative roles of our three sensors in the classification

process. This also means that our reported absolute accuracies may not be the best possible and may be

improved further. We omitted optimization to make these experiments easily reproducible.

6. Performance Analysis and Discussion

In this section, we discuss the role of the smartphone sensors in terms of recognition performance.

We use accuracy, also known as the true positive rate (TP rate or TPR), as our performance metric. The

TPR of a classifier is the proportion of correctly classified examples (window segments) of a specific

class out of all its examples [43]. In Section 6.1, we discuss the role of an accelerometer and a gyroscope

in different situations. In comparing these sensors, we consider a performance difference of anything

less than 2% as equal, and any difference beyond this margin is considered relatively better. This is only

done to present the results in a simpler way and to ignore insignificant performance differences. This

rule is followed for presenting the results in all of the following sections.
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The role of the linear acceleration sensor and the magnetometer is discussed in Section 6.2 and 6.3,

respectively. In Section 6.4, we discuss the lessons learned based on all of our evaluations and the

limitations of this study.

6.1. The Role of an Accelerometer and a Gyroscope

In order to understand the performance of an accelerometer, a gyroscope and their combination,

we evaluated them using nine classification methods on five different body positions. We performed

these evaluations for them individually, as well as for their combination. In order to cover different

evaluation scenarios, as used in the previous studies [3,4,44], and to understand their results, we create

three evaluation scenarios as shown in Table 4. For example, the authors in [3] use data from a single

position (jeans pocket) for their evaluation. In Scenario A, we use data from a single position for training

and testing classifiers. Three feature sets (FS1, FS2, FS4) are used for evaluation in this scenario. The

authors in [4] combine data from multiple positions (pants pocket, shirt pocket, hand, hang bag) for

training and testing the classification methods. In Scenario B, we combine data from multiple positions

(upper arm, wrist and pockets) to train and test different classification methods. We used FS1, FS2 and

FS4 for this scenario. In [44], the authors use data from a single user for training and testing a classifier,

making it a personalized classifier. Therefore, in Scenario C, we train and test our selected classifiers

with data from a specific single user, making it personalized. With these three scenarios, we cover the

commonly used situations in which an accelerometer and a gyroscope are used for activity recognition

in the literature study.

Table 4. Evaluation scenarios for the accelerometer and the gyroscope.

Scenarios Feature Sets Positions

(Individual/Combined)

Classification

(Personalized/Generalized)

A FS1, FS2, FS4 Individual Generalized

B FS1, FS2, FS4 Combined

(multiple positions)

Generalized

C FS1 Individual Personalized

Scenario A We evaluated the accelerometer and the gyroscope for seven physical activities using nine

classifiers and three feature sets. This was performed for all five positions individually. Next, we discuss

these evaluation results for each of the seven activities. We discuss the activities in the following order:

walking downstairs, walking upstairs, walking, jogging, biking, sitting and standing.

We summarize the evaluation results for both the walking downstairs and walking upstairs activities

in Tables 5 and 6. These tables show which sensor is in the leading role for recognizing a specific

activity at a specific position, while using a specific classifier and feature set. In these tables, A stands

for an accelerometer and G stands for a gyroscope. Each cell in this table shows which sensor performed

better for which feature sets for a specific classification method at a specific body position. For example,

the first cell in Tables 5 is G(FS2)/A(FS4)/E(FS1). This means that for the J48 classifier on the upper

arm position, the accelerometer performed better than the gyroscope using FS4, whereas the gyroscope
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performed better than the accelerometer using FS2. The E means equal within the 2% difference margin,

and it shows that both these sensors performed equally on FS1. This format is followed in Tables 7 and 8.

In Table 8, LA stands for the linear acceleration sensor. For clarification purposes, we highlighted the

G symbol as italic and A as regular bold. We did not include the LSMresults in these tables for feature

set FS4, because the resulting performance is unusably low. Moreover, it is important to note that the

performance trends were similar for the right and left pocket positions, so we just show the right jeans

pocket in all of the next tables and graphs for simplicity. The performance for walking downstairs and

walking upstairs activities is also shown in Figures 2 and 3.

Table 5. Leading role: Accelerometer vs. gyroscope for the walking downstairs activity.

Classifiers Upper Arm Wrist Belt Right Pocket

J48 G(FS2)/A(FS4)/E(FS1) G(FS2,4)/E(FS1) G(FS2,4)/A(FS1) G(FS1,2,4)

RF G(FS1,2)/A(FS4) G(FS1,2,4) G(FS2,4)/A(FS1) G(FS1,2,4)

NNGE G(FS2)/A(FS4)/E(FS1) G(FS2,4)/E(FS1) G(FS2,4)/A(FS1) G(FS1,2)/E(FS4)

PART G(FS1,2)/A(FS4) G(FS2,4)/E(FS1) G(FS2,4)/A(FS1) G(FS1,2)/E(FS4)

IB G(FS1,2)/A(FS4) G(FS2,4)/E(FS1) G(FS2,4)/A(FS1) G(FS1,2,4)

BN G(FS1,2)/E(FS4) A(FS1,2,4) G(FS2)/A(FS1,4) G(FS1,2)/E(FS4)

NB G(FS2,4)/E(FS1) G(FS4)/A(FS1,2) G(FS2)/A(FS4)/E(FS1) G(FS1,2)/A(FS4)

LSM E(FS1,2) E(FS1,2) A(FS1,2) G(FS2)/A(FS1)

LR G(FS4)/E(FS1,2) G(FS4)/A(FS2)/E(FS1) G(FS4)/A(FS1)/E(FS2) G(FS2)/A(FS4)/E(FS1)

Table 6. Leading role: Accelerometer vs. gyroscope for the walking upstairs activity.

Classifiers Upper arm Wrist Belt Right pocket

J48 A(FS4)/E(FS1,2) G(FS4)/E(FS1,2) G(FS2,4)/A(FS1) G(FS1,2,4)

RF A(FS2,4)/E(FS1) G(FS2,4)/A(FS1) G(FS4)/A(FS1)/E(FS2) G(FS1,2,4)

NNGE A(FS4)/E(FS1,2) G(FS4)/E(FS1,2) G(FS2,4)/A(FS1) G(FS1,2)/E(FS4)

PART G(FS1,2)/E(FS4) G(FS4)/E(FS1,2) G(FS2,4)/A(FS1) G(FS1,2,4)

IB E(FS1,2,4) G(FS2,4)/A(FS1) G(FS2,4)/E(FS1) G(FS1,2,4)

BN A(FS1,2,4) G(FS2)/A(FS1, 4) G(FS2,4)/A(FS1) G(FS2)/A(FS1,4)

NB A(FS1,2,4) A(FS2,4)/E(FS1) A(FS1,2,4) G(FS2)/A(FS1,4)

LSM A(FS1,2) A(FS1,2) A(FS1,2) G(FS2)/A(FS1)

LR A(FS2,4)/E(FS1) A(FS1,2)/E(FS4) G(FS2,4)/A(FS1) G(FS2)/A(FS1,4)

Table 7. Leading role: Accelerometer vs. gyroscope for the walking activity.

Classifiers Upper Arm Wrist Belt Right Pocket

J48 G(FS4)/A(FS1,2) A(FS1)/E(FS2,4) G(FS4)/A(FS1)/E(FS2) A(FS1)/E(FS2,4)

RF G(FS4)/A(FS1)/E(FS2) A(FS1)/E(FS2,4) G(FS4)/A(FS1)/E(FS2) A(FS1)/E(FS2,4)

NNGE A(FS1)/E(FS2,4) A(FS1,2,4) G(FS2,4)/E(FS1) G(FS4)/A(FS1,2)

PART A(FS1)/E(FS2,4) G(FS4)/A(FS1)/E(FS2) G(FS4)/A(FS1)/E(FS2) G(FS4)/A(FS1)/E(FS2)

IB A(FS1)/E(FS2,4) A(FS1,2,4) G(FS4)/A(FS1)/E(FS2) E(FS1,2,4)

BN A(FS1,2,4) G(FS4)/A(FS1)/E(FS2) G(FS1.4)/E(FS2) A(FS1,2,4)

NB A(FS1,2,4) G(FS2,4)/E(FS1) G(FS1,2,4) A(FS1,2,4)

LSM A(FS1,2) A(FS1)/E(FS2) A(FS1,2) A(FS1,2))

LR G(FS4)/A(FS1)/E(FS2) G(FS2,4)/A(FS1) G(FS1,2,4) A(FS2,4)/E(FS1)
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Table 8. Leading role: Linear acceleration sensor vs. accelerometer using nine classifiers.

Activities Upper Arm Wrist Belt Right Pocket

Walking LA(FS2,4)/E(FS1) E(FS1,2,4) A(FS2,4)/LA(FS1) A(FS1,2,4)

Standing A(FS1,2,4) A(FS1,2,4) A(FS1,2,4) A(FS1,2,4)

Jogging E(FS1,2,4) E(FS1,2,4) E(FS1,2,4) E(FS1,2,4)

Sitting A(FS1,2,4) A(FS1,2,4) A(FS1,2,4) A(FS1,2,4)

Biking A(FS1)/LA(FS2,4) A(FS1)/E(FS2,4) A(FS1)/E(FS2,4) A(FS1,2,4)

Walking upstairs LA(FS1,2,4) A(FS1,2)/LA(FS4) A(FS1,2,4) A(FS1,2,4)

Walking downstairs LA(FS1,2,4) A(FS1,2)/LA(FS4) A(FS1,2,4) A(FS1,2,4)

Figure 2. Recognition performance for the walking downstairs activity using FS2.
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Figure 3. Recognition performance for the walking upstairs activity using FS2.
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Though it is hard to make one generic statement based on these results, they do show some trends:

• For the walking downstairs activity, the gyroscope performs better than the accelerometer in most

cases at all positions, especially using FS2 and FS4. The gyroscope performs better by different
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margins at different positions using different feature sets. For example, at the right pocket position,

on average, the gyroscope performs better than the accelerometer by 10.2% using FS2. This

average is 7.2% for FS1 and 4.6% for FS4. We only take the average for those classifiers where

a sensor performs at least 2% better than the other sensor. These margins for the gyroscope at the

belt position are 4% for FS2 and 8% for FS4. For FS1, the accelerometer performs better than the

gyroscope by an average of 12.4% at the belt position. In a few situations, they perform equally.

For the walking downstairs activity, the detailed analysis on the performance differences of these

sensors at different positions with different classifiers and feature sets is given in Table A.1 in

the Appendix.

• For the walking upstairs activity, the gyroscope performs better than the accelerometer in most

cases at all positions, except at the upper arm position, especially using FS2 and FS4. The

gyroscope performs better by different margins at different positions using different feature sets.

For example, at the right pocket position, on average, the gyroscope performs better than the

accelerometer by 10.8% using FS2. These averages at the right pocket are 4% and 3.8% using

FS1 and FS4, respectively. At the belt position, these averages for the gyroscope are 4.9% for FS2

and 7.6% for FS4. For FS1, the accelerometer performs better than the gyroscope by an average

of 11.9% at the belt position. In a few situations, they perform equally. For the walking upstairs

activity, the detailed analysis on the performance differences of these sensors at different positions

with different classifiers and feature sets is given in Table A.2 in the Appendix.

• In terms of different classifiers, the gyroscope performs better than the accelerometer in most

cases with decision tree-based classifiers (RF, PART, J48) or k-nearest neighbor-based classifiers

(IB, NNGE), especially at the pocket and belt positions using FS2 and FS4.

• In terms of body positions, the gyroscope mostly takes the leading role in recognizing walking

downstairs activity at the upper arm using FS1 and FS2, at the right pocket using FS1 and FS2,

at the belt using FS2 and FS4 and at the wrist using FS2 and FS4. On the other hand, the

accelerometer mostly takes the leading role at the upper arm using FS4 and at the belt position

using FS1. For recognizing the walking upstairs activity, the gyroscope mostly takes the leading

role at the right pocket using FS1 and FS2 and at the belt using FS2 and FS4, whereas the

accelerometer takes the reading role at the upper arm using FS2 and FS4 and at the belt using FS1.

• The results show that the performance of the accelerometer and the gyroscope for recognizing

the walking upstairs and walking downstairs activities depend on the body positions, the data

features and the classification methods being used. Overall, the gyroscope performs better than

the accelerometer in most of the situations.

• Moreover, in almost all of these cases, the combination of these sensors perform better than

the maximum of their individual performances in recognizing the walking upstairs and walking

downstairs activities. For the walking downstairs activity, the average improvement at all positions

for all classification methods is 13.2%, 7.5% and 10% using FS1, FS2 and FS4, respectively. For

recognizing the walking upstairs activity, these values are 9.1%, 6% and 7.2% using FS1, FS2 and

FS4, respectively. The performance differences for these two activities at different positions with

different classification methods and feature sets are shown in detail in Table A.5 and Table A.6 in

the Appendix.
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The margin between the gyroscope and the accelerometer performance varies in different situations.

This performance variation is not clear from Tables 5 and 6. Therefore, in order to show a concrete

example of the performance differences between these two sensors and their absolute TPR values, we

present two example graphs for FS2. The performance for the walking downstairs and walking upstairs

activities is shown in Figures 2 and 3, respectively. In these graphs, A stands for accelerometer, G for

gyroscope and AG stands for their combination. The performance graphs in the rest of the paper follow

the same order and labeling, unless otherwise specified. It is clear from these graphs that these two

sensors take lead roles with different margins depending on the body position and classification method.

The improvement of their combination is also visible in these two graphs. The amount of improvement

is also different depending on the body position and classification method used. However, the trend

of improvement is consistent for all positions and classification methods. The exact values for these

performance differences are given in Tables A.1, A.2, A.5 and A.6 in the Appendix.

For the walking activity, it is mainly the accelerometer that takes the leading role. For example,

it performs better than the gyroscope at all positions by an average of 6.3% and 3.7% using FS1 and

FS2, respectively. However, the gyroscope also performs reasonably well in recognizing the walking

activity, and in some cases, it even takes the leading role. For example, it takes the lead role at the belt

position using FS4 and performs better than the accelerometer by an average of 14.2% for all classifiers.

Moreover, in some cases, they perform equally, as shown in Table 7. Their relative ranking in terms of

leading role is shown in Table 7. The percentage difference between these two sensors for the walking

activity with different classification methods and feature sets is given in Table A.3 in the Appendix.

Moreover, in order to show the difference between their performances, we present one graph as an

example, as shown in Figure A.1 in the Appendix. It shows the classification performance for the walking

activity on all positions using feature set FS2.

In most cases, the combination of the two sensors did not bring significant improvement to the overall

performance. This improvement ranged from 2% to 24% in different situations, but the overall average

for all classification methods at all positions was 3.7%, 3.3% and 3.8% using FS1, FS2 and FS4,

respectively. As we pointed out earlier, that when one of the sensors performs with higher accuracy,

then there is less room for improving that accuracy by combining another sensor to it. In this case, both

the sensors performed with higher accuracy individually. In situations where they performed with low

accuracies, their combination improved the overall performance. For the walking activity with different

classification methods and feature sets, the performance differences of the combination of these sensors

are shown in Table A.7.

For the jogging and biking activities, the accelerometer performs almost always slightly better than the

gyroscope irrespective of the body position, the feature set and the classification method. However, the

gyroscope also performs reasonably well for these two activities. The performance graphs for the jogging

and biking activities using FS2 are shown in Figures A.2 and A.3, respectively, in the Appendix. The

same trends were observed for the other feature sets, too. We calculated the average performance for all

classification methods at all positions for these two activities. For the jogging activity, the accelerometer

performed better than the gyroscope by an average of 5%, 3.2% and 4.9% using FS1, FS2 and FS4,

respectively. For the biking activity, these averages are 6.4%, 5% and 6.7% using FS1, FS2 and FS4,

respectively. The combination of a gyroscope and an accelerometer follows the same rule for bringing
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improvement in the overall performance, such that if there is room for improvement, it brings more

significant improvement. In this case, both of these sensors performed with higher accuracy, so there is

no significant improvement in the overall accuracy when they are combined.

The accelerometer always performs better than the gyroscope for recognizing the sitting and standing

activities irrespective of the body position, the classification method and the feature set. Even though

the difference between their performances varies in different situations, the accelerometer always takes

a lead role here. For the standing activity, the accelerometer performs better than the gyroscope at

all positions by an average of 41%, 30.4% and 32.8% using FS1, FS2 and FS4, respectively. For the

sitting activity, these averages are 14.7%, 20.4% and 17.3% using FS1, FS2 and FS4, respectively.

The performance of these two sensors and their combination for FS2 is shown Figures A.4 and A.5,

respectively, in the Appendix. The reason that the gyroscope has a low performance is that it is

unable to differentiate between the sitting and standing activity. The same was shown in our previous

study [31]. The low performance for the gyroscope could be possible due to the lack of gravity.

The gravity component makes it easier for the accelerometer to differentiate between the sitting

and standing activities. We observe a performance drop for these two activities when we removed

the gravity component from the accelerometer to get the linear acceleration values, as discussed

in Section 6.2, which shows that the gravity plays an important role in differentiating these two

activities. The combination of the two sensors does not bring significant improvement here, because

the accelerometer recognizes these two activities with high accuracy, thereby leaving less room for any

further improvement. However, from the gyroscope perspective, its combination with an accelerometer

does bring significant improvement to the overall recognition performance and covers its weakness of

confusing these two activities.

In order to see the relative performance of different sensors at different positions, we plot the

performance of these sensors on four body positions using three feature sets. Figures A.6 and A.7 in

the Appendix show the relative performance of the gyroscope and the accelerometer across different

positions, respectively. These graphs only show the classification accuracies for the walking upstairs

activity. It is clear from these graphs that the change in performance for the gyroscope on different

body positions is more visible than that of the accelerometer. The gyroscope performance is better at the

pocket positions compared to other positions and usually lower at the upper arm and wrist positions. In

general, the performance of the gyroscope gets better as we successively move from the upper arm to the

wrist to the belt to the pocket positions. However, for the biking and jogging activities, the gyroscope

performance remained almost the same at all positions. For the accelerometer, this change was lower

compared to the gyroscope. Moreover, we observe this change only for the walking, walking upstairs

and walking downstairs activities. For the rest of the activities, its performance remained almost the

same at all positions. In general, it performed well at the pocket positions, like the gyroscope.

In terms of feature sets, there are different trends. In general, both of the sensors performed better

with feature sets FS1 and FS2 compared to FS4. As far as FS1 and FS2 are concerned, the gyroscope

performed better in some situations with feature set FS2 compared to FS1, especially for recognizing the

walking downstairs and upstairs activities at all positions. For other activities, there were mixed results.

On the other hand, the accelerometer performed almost the same for both feature FS1 and FS2 with a
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few exceptions. Overall, the performance of the accelerometer was more consistent compared to that of

the gyroscope with changing body positions and feature sets.

In order to see the effect of the extra magnitude dimension for these two sensors (as explained in

Section 4), we modified this scenario by removing the fourth magnitude dimension from the features.

After that, we evaluated these two sensors with the original three dimensions on all five positions using

FS1 and FS2. However, we observed almost the same trends, although absolute values of the recognition

performance varied in different situations. We do not show their performance graphs in this scenario,

because of no significant changes in the comparative analysis of the two sensors. Moreover, we compared

the results from both cases, such that with and without extra magnitude dimension, they were, in most

cases, almost the same. In a few cases, the classification accuracies for sensors with extra magnitude

were slightly higher or lower than that of without extra magnitude. However, the average difference

for all classification methods at all positions was less than 1% in almost all situations for FS1 and FS2,

except for the walking downstairs and the walking upstairs activities. For these two activities, on average,

the extra magnitude performed better by a 3%–4% margin.

Scenario B First, we combined data from three positions, upper arm, wrist and right pocket, for

training and testing classifiers, and then, we added the left pocket to it. We did not select the belt position,

because it has a different orientation than the other positions, and we wanted to keep the orientation fixed.

First, we selected three different types of positions, so that is why we did not include the left pocket.

We evaluate the combination of the three positions first. For this combination, the accelerometer

performs better than the gyroscope by high margins for all activities, except the walking, walking

downstairs and walking upstairs. The average of these performance margins is within the range of

6%–10%, 10%–17%, 15%–21% and 33%–47% for the jogging, biking, sitting and standing activities,

respectively. For the walking activity, these two sensors perform slightly better than each other in

different situations, within an average performance difference of 1%–4%. The gyroscope performs

slightly better than the accelerometer for the walking downstairs activity and, in some case,s for the

walking upstairs activity, as shown in Figures 4 and 5. For example, using FS2, the gyroscope performs

better than the accelerometer by an average value of 6.9% for recognizing the walking downstairs

activity and by an average value of 4.9% for recognizing the walking upstairs activity. The gyroscope

performs very poorly with the sitting and standing activities, like in Scenario A. For the walking, walking

upstairs and walking downstairs activities, the performance differences of these sensors with different

classification methods and feature sets are shown in Table A.4 in the Appendix.

Their combination did not improve the overall performance for all activities, but walking, walking

upstairs and walking downstairs. For these three activities, the combination of these sensors brings

significant improvement. For example, using FS1, their combination improved the overall recognition

performance for the walking, walking upstairs and walking downstairs activities by an average value

of 5.1%, 9.8% and 14.1%, respectively. This result partially confirms the results in [4]. In [4], the

authors combine data from four different body positions and report that the addition of a gyroscope

to the accelerometer yields no performance increase. However, that statement does not hold for the

walking, walking upstairs and walking downstairs activities, since we observe improvement for these

activities. These different conclusions can result from the fact that we use different body positions
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than the ones used in [4]. For the walking, walking upstairs and walking downstairs activities, the

performance differences of the combination of these sensors with different classification methods and

feature sets are shown in Table A.8 in the Appendix. Moreover, we evaluated the data combination of the

four positions, such as the upper arm, the wrist, the left and the right pocket. Though the absolute value

of performance differences were slightly different in this case, we observed similar trends in comparing

these sensors for activity recognition as in the combination of three positions.

Figure 4. The recognition performance for the walking downstairs activity in Scenario B.
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Figure 5. The recognition performance for the walking upstairs activity in Scenario B.
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As we did for Scenario A, we modified this scenario by removing the extra magnitude dimension

from the two sensors and evaluated them for FS1 and FS2. We observe almost the same trends without

this magnitude dimension as we observe with the extra magnitude dimension.

Scenario C We evaluated the gyroscope and the accelerometer for individual participants only at the

right pocket position while using personalized classification using FS1. We observe similar trends in this

scenario as Scenario A, in terms of comparing the gyroscope and the accelerometer. The gyroscope

performed slightly better than the accelerometer for the walking upstairs and walking downstairs
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activities. For walking, jogging and biking activities, they performed almost the same. For sitting

and standing activities, the accelerometer performed better than the gyroscope. The difference between

accelerometer and gyroscope TPR varied between different participants. This variation was visible for

the sitting, standing, walking upstairs and downstairs activities and negligible for all other activities. For

the walking downstairs activity, the gyroscope performed better than the accelerometer with an average

of 7.2% ranging from zero to 17% for different participants. For the walking upstairs activity, this

average was 3.4% ranging from zero to 11% for different participants. On the other hand, for the sitting

activity, the accelerometer performed better than the gyroscope by an average of 25% ranging from 5% to

36% for different participants. For the standing activity, this average was 10%, ranging from 2% to 24%

for different participants. In most situations, the gyroscope and the accelerometer performed relatively

better than their performances in Scenarios A and B, because of the personalized data set. Due to this

effect, their combination did not improve the overall performance, except with slight improvements for

the walking upstairs and walking downstairs activities. The combination of these two sensors improved

the overall recognition performance by an average value of 2% and 2.7% for the walking upstairs and

the walking downstairs activities, respectively. These values are very low compared to those in the

Scenario A and B. Though we evaluated all participants, for simplicity, we show the results only for four

participants, as an example. The results are for recognizing the walking downstairs and walking upstairs

activities are shown in Figures A.8 and A.9, respectively, in the Appendix.

6.2. The Role of a Linear Acceleration Sensor

In this section, we discuss the role of the linear acceleration sensor. This sensor has been recently

used in activity recognition, because it is less sensitive to the orientation effects [6]. We wanted to see

how it behaves in comparison with the accelerometer and the gyroscope. For this purpose, we evaluated

this sensor in the following two scenarios, as shown in Table 9.

Table 9. Evaluation scenarios for the linear acceleration sensor.

Scenarios Feature Sets Positions

(Individual/Combined)

Classification

(Personalized/Generalized)

D FS1, FS2, FS4 Individual Generalized

E FS1, FS2, FS4 Combined

(multiple positions)

Generalized

Scenario D We observe performance trends similar to the accelerometer in Scenario A, with a few

exceptions. It takes the leading role where the accelerometer was in the leading role compared to the

gyroscope. Table 8 shows its position in terms of performance in comparison with the accelerometer at

different body positions using different feature sets. This table shows the generic trends of all classifiers

based on their average performance difference for these sensors for all seven activities at four body

positions. The linear acceleration sensor performs better than the accelerometer for the walking, walking

upstairs and walking downstairs activities at the upper arm position. In all other situations, mostly the

accelerometer performs better or they have equal performance.
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Scenario E We found that the linear acceleration sensor performs almost the same or poorer than the

accelerometer for all of the activities. The accelerometer performed better than the linear acceleration

by an average value of 28%, 12%, 8%, 6% and 5% for the standing, sitting, biking, walking upstairs and

walking downstairs activities, respectively. The average was taken for all classification methods using

FS1, FS2 and FS4. The possible cause for the linear acceleration sensor to perform poorly with the

sitting and standing activities could be the lack of a gravity component, which plays an important role in

differentiating the two stationary postures of sitting and standing for the accelerometer. For the walking

and jogging activities, on average, these two sensor performed almost equally. As far as its comparison

with the gyroscope is concerned, the trends remained very similar to those for the accelerometer in

Scenario B.

Figure 6. The magnetometer performance for the walking activity.
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6.3. The Role of a Magnetometer

We showed in our previous work [31] that the magnetometer performed poorly compared to the

gyroscope and the accelerometer. We observed similar results here for our data set using FS1 only. We

argued in our previous work that the magnetometer performance may improve if direction-insensitive

features are used. In our earlier work, we evaluated the magnetometer using feature set FS1, where the

‘mean’ feature changes much if the direction changes. In this new study, we evaluate it using another

feature set, FS3, comprised of variance, zero crossings and root mean square values. All these three

features are less sensitive to the direction dependence in magnetometer. We show the performance

for all classifiers, except LSM and NNGE, as they performed poorly with FS3. After evaluations, we

see performance improvement for the walking and jogging activities, as shown in Figures 6 and 7,

respectively. The average performance improvement for the walking and jogging activities using FS3

was 13% and 24%, respectively. For the biking, walking downstairs, sitting and standing activities,

the performance remained almost the same. For walking upstairs, it was lower than that of FS1 by an

average of 8%. We did these evaluations for the magnetometer, both with and without an extra magnitude

dimension. The performance trends were similar in both cases, except for the walking downstairs

activity, where we observe 5% improvement using FS3 with the extra magnitude dimension. Therefore,



Sensors 2014, 14 10165

we only show the performance with extra magnitude. These results show that the magnetometer can

be used in the activity recognition process if we select the correct feature set for it. Our current goal

is not to improve the performance of the individual sensors; we leave it as future work to explore this

sensor further.

Figure 7. Magnetometer performance for the jogging activity.
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6.4. Lessons Learned

We observe that the classification accuracy with the evaluated sensors depends on factors like the

activities being recognized, the classification method, the body position and the feature set. Therefore,

it is hard to make a generic statement on how these sensors would behave. However, their performance

can be predicted in specific scenarios if we fix these other factors. Based on these evaluation results, we

observe the following:

• For recognizing the walking downstairs and walking upstairs activities, the gyroscope performs

better than accelerometer at the pocket and belt positions in most cases.

• For recognizing the sitting and standing activities, the accelerometer always performs better than

the gyroscope at all five positions, and the gyroscope performs very poorly.

• For recognizing the biking, jogging and walking activity, the accelerometer performs

slightly better than the gyroscope. However, the gyroscope also recognizes these activities with

reasonable accuracy.

• The gyroscope and the accelerometer generally complement each other when used in combination

if there is room for improvement in the overall performance. If one of these two sensors get

high accuracy individually, then adding another sensor will not bring any improvement in the

overall performance.

• The linear acceleration sensor follows the same trends as the accelerometer with very few

exceptions. However, its performance is better than the accelerometer at the upper arm position

and poorer at the belt and pocket position. Moreover, it performs poorly in differentiating between

the sitting and standing activities, as the effect of gravity was removed.
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• The magnetometer has the potential to be a candidate in the activity recognition process if we select

the correct features for it, which are less sensitive to its direction dependence. Blindly combining

different sensors should be avoided. Each sensor involved in the fusion should be individually

evaluated offline for its contribution in the whole process.

• Making generic statements about the role of these sensors should be avoided when they are

evaluated in a very specific scenario. Unlike the existing perception about the gyroscope, it can

take the lead roles and perform reasonably well for recognizing some activities when used alone.

We showed these results for some specific, but commonly used, scenarios in the state-of-the-art

studies. The results may differ if different classification methods, different features sets or body positions

are used. Moreover, we kept the classification algorithm parameters at their default values. Changing

these parameters may also lead to different results. We did not play with the optimizations of these

algorithms, because then, there can be too many evaluation scenarios to handle. This can be explored as

a future work. Moreover, we kept the orientation of the smartphone fixed, and it is yet to be investigated

how the results will vary with orientation changes. Particularly, it is unknown to what extent the relative

performance trends will change with varying phone orientation.

7. Conclusions and Future Work

We evaluated the activity recognition performance with four motion sensors using nine classifiers on

five body positions with four feature sets. In the data collection experiments, seven physical activities

were targeted. Our data set is publicly available with our data collection tool, which can be used for

further studies based on this work.

Based on our evaluations, we show that both the accelerometer and the gyroscope are capable

of taking the lead roles in the activity recognition process, depending on the type of activity being

recognized, the body position, the classification method and the feature set being used. These two

sensors take the lead in different situations. For example, the walking upstairs and walking downstairs

activities are better recognized by the gyroscope in most of the situations. On the other hand, the standing

and sitting activities are better recognized by the accelerometer. For the walking, biking and jogging

activities, the accelerometer performs slightly better than the gyroscope. Moreover, their combination

improves the overall TPR or at least keeps it equal to the maximum of their individual performances in

almost all situations with very few exceptions. We evaluated the linear acceleration sensor, which should

be less sensitive to the orientation changes. This sensor performed very similar to the accelerometer

in comparison with the gyroscope. We also evaluate the magnetometer’s role and show that it can

recognize different activities in a better way if the correct features are extracted for it. Based on our

evaluations, we conclude that it is difficult to make an exact generic statement about the role of these

sensors in the activity recognition process for all situations. However, we can make statements about

their roles in particular situations. These results can be used as the basis for implementing real-time

activity recognition applications on smartphones and will help in making design decisions for when to

combine these sensors.

This work can be further extended. For example, these results can be validated with more activities.

It can also be validated on a different set of features. We used all the classification methods in their
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default settings, and therefore, the effect of different parameter settings can be explored. We kept the

orientation for the smartphone fixed, so it will be interesting to see which of the evaluated sensors are

more sensitive to orientation changes. Moreover, the feasibility of a magnetometer in activity recognition

can be studied further.
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Appendix

In this Appendix, we show some of the performance graphs and tables. Each cell in

Tables A.1–A.4 are represented by the following equation:

cell value = G− A (2)

If the value in a table’s cell is positive, this means that the gyroscope (G) performed better than the

accelerometer (A) by that value and vice versa.

The values in Tables A.5–A.8 are represented by the following equation:

cell value = AG−max(A,G) (3)
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If the value in a table’s cell is positive, this means that the combination of the gyroscope and

the accelerometer (AG) performed better than the maximum of the individual performances of the

accelerometer (A) and the gyroscope (G) by that value and vice versa.

Table A.1. Performance difference (gyroscope (G)—accelerometer (A)) for the walking

downstairs activity in Scenario A.

% Difference at % Difference at % Difference at % Difference at

Upper arm Wrist Belt Right Pocket

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 −0.4 3.1 −4.0 −0.6 2.1 2.2 −8.2 4.4 4.2 5.0 8.3 4.2

RF 4.0 5.8 −2.0 2.2 3.4 6.4 −7.4 4.9 8.5 5.3 11.4 4.8

NNGe −0.8 3.9 −5.6 −0.3 3.6 2.9 −10.0 2.9 2.8 6.7 10.5 1.0

PART 4.4 5.2 −3.6 1.8 4.1 4.2 −9.0 2.7 8.7 4.4 9.8 0.9

IB 3.0 5.0 −5.0 1.6 5.1 7.9 −6.1 3.0 5.5 7.6 8.7 4.9

BN 14.3 10.2 −1.6 −6.9 −6.2 −5.1 −16.2 4.9 −7.7 16.4 12.8 1.2

NB 1.7 10.4 16.7 −10.2 −12.2 5.4 −0.6 5.4 −6.4 4.9 13.5 −15.3

LSM −0.2 −1.9 NA 1.0 0.1 NA −30.6 −7.7 NA −9.7 5.3 NA

LR 1.5 0.1 2.3 −0.4 −2.1 10.3 −11.9 1.7 18.6 0.8 11.5 −14.3

Table A.2. Performance difference (gyroscope (G)—accelerometer (A)) for the walking

upstairs activity in Scenario A.

% Difference at % Difference at % Difference at % Difference at

Upper arm Wrist Belt Right Pocket

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 1.9 0.9 −3.2 0.6 3.5 3.5 −3.5 2.3 8.6 3.0 12.1 3.3

RF −1.0 −2.6 −2.5 −2.5 0.3 3.6 −4.5 1.0 8.3 2.0 6.1 2.8

NNGe −1.2 −1.3 −3.7 −1.2 5.1 3.6 −3.4 9.0 8.9 6.1 14.2 1.9

PART 3.2 2.0 1.0 0.3 0.5 3.2 −5.5 4.2 10.4 3.0 10.1 4.6

IB 0.4 1.7 −1.0 −2.6 1.4 5.2 −1.5 3.6 7.7 6.6 8.8 4.4

BN −13.6 −13.8 −20.5 −5.6 8.5 −11.0 −15.8 5.7 3.2 −8.1 13.9 −15.9

NB −17.5 −18.1 −23.6 1.9 −6.1 −40.5 −30.6 −6.8 −31.1 −18.1 6.6 −22.0

LSM −8.7 −9.5 NA −8.5 −4.1 NA −20.0 −5.1 NA −8.7 11.4 NA

LR 1.2 −7.6 −7.6 −2.6 −2.2 −0.7 −12.0 4.3 6.0 −11.1 13.7 −2.2

Table A.3. Performance difference (gyroscope—accelerometer) for the walking activity in

Scenario A.

% Difference at % Difference at % Difference at % Difference at

Upper Arm Wrist Belt Right Pocket

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 −3.2 −2.1 2.3 −8.6 0.7 1.1 −3.5 0.9 3.9 −2.9 0.1 1.7

RF −2.8 −1.0 2.1 −6.9 −0.3 0.8 −3.3 −1.1 3.5 −2.3 −1.7 0.6

NNGe −4.6 −1.8 −0.1 −13.2 −4.6 −3.2 −1.5 3.4 3.2 −2.7 −2.5 2.3

PART −5.1 1.1 −0.4 −8.3 0.9 5.5 −3.3 0.0 5.4 −2.2 −1.1 2.2

IB −2.0 −1.1 0.2 −6.3 −2.1 −3.1 −3.2 −0.4 2.0 −0.5 −0.1 1.4

BN −15.0 −9.6 −16.6 −3.5 −0.4 2.3 2.4 0.8 2.4 −7.1 −5.8 −3.9

NB −8.4 −4.5 −38.2 −0.2 7.6 39.4 44.5 26.3 56.7 −7.3 −9.4 −9.0

LSM −8.3 −2.9 NA −16.1 0.9 NA −12 −5.0 NA −3.6 −5.0 NA

LR −6.8 −0.9 10.4 −11.6 5.0 17.9 14.4 7.6 37.1 −0.6 −2.9 −23.5
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Table A.4. Performance difference (gyroscope—accelerometer) for the walking, walking

downstairs and walking upstairs activities in Scenario B.

% Difference for % Difference for % Difference for

Walking Walking Downstairs Walking Dpstairs

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 −7.4 −2.1 1.2 2.0 5.3 3.0 1.7 2.8 −0.6

RF −5.6 −2.3 −0.2 3.8 5.8 5.1 −2.9 1.3 1.6

PART −11.6 −2.7 1.2 1.1 5.0 3.0 −6.4 3.7 0.1

IB −4.6 −2.2 −1.8 3.2 5.3 0.3 −0.1 2.1 2.1

BN −9.0 1.3 0.2 3.2 6.8 10.0 −2.8 5.5 −20.5

NB 38.0 10.8 19.4 −12.3 7.3 −6.2 −23.2 3.4 −41.5

LSM −19.2 −5.9 NA −1.4 1.1 NA −17.1 −2.5 NA

LR 7.9 27.2 −2.7 1.1 18.7 4.0 −12.8 22.7 −12.2

Table A.5. Performance difference (AG—max(A,G)) for the walking downstairs activity in

Scenario A.

% Difference at % Difference at % Difference at % Difference at

Upper arm Wrist Belt Right Pocket

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 14 5.9 11.9 9.2 6.1 11.1 7.4 4.6 8.0 9.2 7.6 8.1

RF 10.9 5.4 12.5 8.4 5.2 9.9 8.8 5.6 7.6 7.6 4.5 7.8

NNGe 14.3 6.8 12.4 10.6 7.3 12.2 10.3 7.8 9.6 12.4 7.2 11.6

PART 11.3 5.1 11.8 9.0 7.0 9.7 7.6 5.6 6.2 8.9 4.5 9.0

IB 13.0 7.4 12.2 9.6 6.3 10.3 8.6 7.9 11.1 5.3 3.3 9.4

BN 10.6 9.1 12.8 20.4 9.7 11.7 18.3 10.9 19.1 16.0 10.0 22.0

NB 21.3 10.5 −4.5 19.3 9.2 6.7 13.6 13.8 8.0 32.5 11.0 27

LSM 18.2 7.2 NA 12.8 5.5 NA 12.9 2.2 NA 9.4 2.3 NA

LR 15.9 11.8 17.5 12.7 12.0 16.9 23.3 12.4 13.1 20.8 10.5 9.8

Table A.6. Performance difference (AG − max(A,G)) for the walking upstairs activity in

Scenario A.

% Difference at % Difference at % Difference at % Difference at

Upper arm Wrist Belt Right Pocket

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 12.5 8.0 12.0 10.0 6.3 9.8 6.5 5.4 5.1 7.4 2.0 8.1

RF 10.4 7.9 16.5 7.8 8.2 12.3 4.3 4.1 4.2 5.3 1.2 7.8

NNGe 10.8 11.0 10.8 8.0 3.8 2.9 4.8 0.8 4.5 4.4 −0.7 11.6

PART 13.1 7.0 17.6 11.7 8.0 11.1 7.0 5.4 3.9 7.8 2.3 9.0

IB 15.2 12.6 19.7 12.4 11.8 16.4 6.8 5.4 7.8 4.3 1.9 9.4

BN 10.7 9.4 11.4 15.6 5.5 7.9 6.9 5.6 13.9 15.7 3.9 22.0

NB 6.7 9.2 12.5 18.4 10.0 −13.3 −7.5 5.4 −2.5 11.9 6.2 27.0

LSM 10.5 6.6 NA 7.1 6.8 NA 3.2 −0.2 NA 7.1 −3.1 NA

LR 12.9 7.9 6.8 14.3 13 12.1 11.8 8.7 7.7 12.5 3.3 9.8



Sensors 2014, 14 10173

Table A.7. Performance difference (AG—max(A,G)) for the walking activity in Scenario A.

% Difference at % Difference at % Difference at % Difference at

Upper arm Wrist Belt Right Pocket

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 4.1 7.4 9.0 1.7 3.8 4.1 3.7 2.3 3.6 1.7 2.9 1.3

RF 3.9 4.6 7.4 1.4 2.5 4.0 1.4 1.4 2.3 0.8 0.3 1.5

NNGe 3.9 4.5 9.8 −3.6 −2.3 4.7 0.8 −1.7 2.2 −0.2 −0.2 0.9

PART 6.0 7.4 7.3 2.0 4.6 3.9 3.6 3.6 2.5 2.9 1.4 2.4

IB 6.3 5.5 12.6 1.4 2.9 6.0 2.3 1.9 3.4 0.9 1.2 2.4

BN 3.6 4.1 5.2 7.5 4.2 11.4 7.7 4.4 9.0 1.7 2.5 2.0

NB 7.0 5.0 −1.7 12.3 9.4 3.7 −7.3 −5.1 −15.4 3.5 0.9 −4.6

LSM 2.0 5.2 NA 1.6 4.8 NA 2.5 0.9 NA 0.7 −1.9 NA

LR 4.6 10.8 6.3 8.7 10.6 3.2 24.7 7.2 9.5 7.9 2.3 2.2

Table A.8. Performance difference (AG—max(A,G)) for the walking, walking downstairs

and walking upstairs activities in Scenario B.

% Difference for % Difference for % Difference for

Walking Walking Downstairs Walking Upstairs

Classifiers FS1 FS2 FS4 FS1 FS2 FS4 FS1 FS2 FS4

J48 2.0 3.7 6.1 10.9 6.0 10.6 12.4 7.2 12.0

RF 1.7 2.0 5.5 10.9 6.8 12.0 9.7 7.9 12.8

PART −1.1 4.8 7.3 11.4 5.9 11.2 6.2 7.3 12.3

IB 2.5 3.3 8.5 11.4 6.8 16.1 13.4 11.4 17.2

BN 10.1 5.7 14.7 19.2 12.3 5.5 20.9 11.3 11.2

NB 10.1 −8.2 16.0 16.0 15.2 −5.0 −6.8 14.3 −22.2

LSM 1.2 3.5 NA 16.2 5.7 NA 10.0 7.4 NA

LR 14.2 −7.5 13.8 16.7 1.0 14.4 12.6 −1.5 3.0

Figure A.1. Recognition performance for the walking activity at all four positions using FS2.
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Figure A.2. Recognition performance for the jogging activity on all four positions

using FS2.
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Figure A.3. Recognition performance for the biking activity at all four positions using FS2.
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Figure A.4. Recognition performance for the standing activity at all four positions

using FS2.
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Figure A.5. Recognition performance for the sitting activity at all four positions using FS2.
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Figure A.6. Gyroscope TPR for the walking upstairs activity for all four positions and three

feature sets.
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Figure A.7. Accelerometer true positive rate (TPR) for the walking upstairs activity for all

four positions and three feature sets.
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Figure A.8. Recognition performance for the walking downstairs activity in Scenario C.
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Figure A.9. Recognition performance for the walking upstairs activity in Scenario C.
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