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Abstract : 
 
Open ocean and coastal area monitoring requires multispectral satellite images with a middle spatial 
resolution ({\sim !300 {text{m}}}) and a high temporal repeatability ({\sim !1 {text{h}}}) . As no current satellite 
sensors have such features, the aim of this study is to propose a fusion method to merge images delivered by 
a low earth orbit (LEO) sensor with images delivered by a geostationary earth orbit (GEO) sensor. This fusion 
method, called spatial spectral temporal fusion (SSTF), is applied to the future sensors—Ocean and Land 
Color Instrument (OLCI) (on Sentinel-3) and Flexible Combined Imager (FCI) (on Meteosat Third Generation) 
whose images were simulated. The OLCI bands, acquired at t _{0} , are divided by the oversampled 
corresponding FCI band acquired at t _{0} and multiplied by the FCI bands acquired at t _{1} . The fusion 
product is used for the next fusion at t _{1} and so on. The high temporal resolution of FCI allows its signal-to-
noise ratio (SNR) to be enhanced by the means of temporal filtering. The fusion quality indicator ERGAS 
computed between SSTF fusion products and reference images is around 0.75, once the FCI images are 
filtered from the noise and 1.08 before filtering. We also compared the estimation of chlorophyll (Chl), 
suspended particulate matter (SPM), and colored dissolved organic matter (CDOM) maps from the fusion 
products with the input simulation maps. The comparison shows an average relative errors on Chl, SPM, and 
CDOM, respectively, of 64.6%, 6.2%, and 9.5% with the SSTF method. The SSTF method was also 
compared with an existing fusion method called the spatial and temporal adaptive reflectance fusion model 
(STARFM). 
 

Keywords : Fusion, image simulation, meteosat Third Generation (MTG), ocean color, Ocean and Land 
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1. Introduction  

Many problems of natural or anthropogenic origin are present in offshore and coastal waters. 

Remote sensing allows some of these phenomena to be detected or monitored directly or indirectly. 

Water color has been used for a long time to determine the water composition in terms of Chl, SPM 

and CDOM in open water and more recently in coastal areas. New applications have emerged 

thanks to the increase of the number of spectral bands, the radiometric measurement quality and 

the observation frequency [1]. 

For the ocean survey, many sensors have been developed over the past thirty years such as CZCS 

[2], SeaWiFS [3], MODIS [4], MERIS [5], VIIRS [6] and the future Ocean and Land Color 

Instrument (OLCI) [7]. The spatial, spectral and radiometric resolutions of these sensors increased 

over the time (300 m, 21 bands and SNR ~ 1200 for OLCI) but, due to their positioning in LEO 

orbit, their temporal repetitivity remains low with at best one daily revisit (when using 3 to 4 

satellites). 

As one daily revisit is not sufficient, for high temporal dynamics ecosystems like coastal areas, the 

geostationary sensors are becoming increasingly considered for the water color survey [8], [9]. 

Their spatial and spectral resolutions are often limited for the coastal area needs, but they can 

provide almost continuous images over a same area. Meteosat is the only existing geostationary 

satellite covering Europe and Africa. Some studies on coastal waters survey with geostationary 

sensors proved the feasibility of SPM mapping as with the Spinning Enhanced Visible and Infra-

Red Imager (SEVIRI) on Meteosat Second Generation (MSG) but its spatial and spectral 

resolutions were still limited [10], [11]. The Geostationary Ocean Color Imager (GOCI) onboard 

COMS satellite provides images with higher spatial and spectral resolutions (500 m, 8 spectral 

bands in the visible range) every hour but it covers only a limited area around the Korean Peninsula 

[12]. We are thus interested in merging the images provided by a sun-synchronous and a 

geostationary sensor in order to get the required information to detect and monitor marine 

phenomena. 

Many fusion methods have already been developed. Some of these methods such as ARSIS (from 

its French acronym “Amélioration de la Résolution Spatiale par Injection de Structure”) [13] 

enables the spatial resolution to be improved by the structure injection, using a multiresolution 

analysis approach. Methods were also developed to merge several multispectral images such as 

MMT (Multisensor Multiresolution Technique) inspired from Zhukov et al. [14]. Minghelli-

Roman et al. [15], [16] implemented this method to sharpen a MERIS image with the spatial 

information from an ETM (Landsat) image. Most recently, Yokoya et al. [17] developed a method 

called CNMF (Coupled Nonnegative Matrix Factorization) to fuse multispectral and hyperspectral 

images by decomposing the hyperspectral input image into an endmember’s spectra matrix and the 
multispectral image into an abundance matrix. Sylla et al. [18] also merged multispectral images 

(MSI on Sentinel-2 and OLCI on Sentinel-3) using a method adapted from ARSIS [17]. But all 

these methods assume that the landscape does not change between the 2 acquisitions. The temporal 

variations of the landscape between the two image acquisitions is however taken into account by 

very few fusion methods, such as STARFM (Spatial and Temporal Adaptive Reflectance Fusion 

Model) [19]. It was implemented to fuse MODIS and Landsat images over forest areas and showed 

accurate detection of phenology changes. Q. Vanhellemont [20] also developed a method to 

combine data from the single broad red band of the SEVIRI geostationary sensor with the 
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corresponding band of MODIS sun-synchronous sensor. This process enables the high spatial 

information provided by the sun-synchronous sensor (MODIS) to be merged with the high 

temporal information provided by the geostationary sensor (SEVIRI) but it is applied only to one 

band.  

The originality of this paper is the extension of the method developed by Q. Vanhellemont [20] to 

fuse images provided by a multispectral LEO sensor and by a multispectral GEO sensor to obtain 

images having the spatial resolution of the LEO sensor and the spectral and temporal resolution of 

the GEO sensor to finally obtain a reliable water quality indicator. We called this method the Spatial 

Spectral Temporal Fusion method (SSTF). 

The SSTF method is applied to 2 future sensors: the next European ocean color sensor, OLCI on 

Sentinel-3, planned to fulfill a mission in the continuity of ENVISAT/MERIS sensor with 6 more 

spectral bands and an improved SNR. The second sensor belongs to the next generation of 

European meteorological satellites, Meteosat Third Generation (MTG) with the onboard Flexible 

Combined Imager (FCI) which is dedicated mainly to meteorological survey. Planned to follow on 

from MSG/SEVIRI, MTG/FCI will provide images every 10 minutes with a spatial resolution of 1 

km on 5 VIS spectral bands except for the 3rd band that reaches a 0.5 km spatial resolution. 

At the time this paper was being written, the two sensors were under development at Thales Alenia 

Space, we thus describe in this paper the process to provide OLCI and FCI simulated images. In 

order to artificially increase FCI SNR, a noise filtering was applied using its temporal repetitivity 

of 10 min. The fusion process consists in increasing the FCI spatial resolution throughout the day 

thanks to the OLCI image.  

 

In this manuscript, we firstly detail the image simulation process and the temporal filtering (section 

2). Then we present our SSTF fusion method and the STARFM fusion method in order to compare 

their results (section 3). In this section, we also propose a validation methodology. In the following 

section, we present image simulation results and the comparison of the two fusion methods 

performances (section 4). Finally, we discuss the results (section 5). 

 

2. Image simulation and first processing 

As OLCI and FCI have not yet been launched, the images need to be simulated. The reference 

images were also required to be simulated for the purpose of fusion validation with the spatial 

resolutions of OLCI and the spectral and temporal resolutions of FCI. The image simulations are 

performed in four steps.  

First, dynamic maps of Chl and SPM are generated using hydro-biogeochemical and hydro-

sedimentary models. Then the corresponding Inherent Optical Properties (IOPs) are computed and 

used as inputs for a water radiative transfer model to produce remote sensing reflectance images. 

The atmospheric radiative transfer is eventually modeled to produce Top Of Atmosphere radiance. 

The spectral bands, the spatial resolution and the SNR of each sensor are considered for the image 

simulation. Figure 1 presents the flowchart of the image simulation process. 
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[insert Figure 1] 

Some pre-processing, such as temporal noise filtering for the FCI images and the atmospheric 

correction for both images, is also applied to the simulated images before the fusion process. 

2.1. Period and area of simulation  

OLCI and FCI images are simulated on the eastern gulf of Lion located on the Mediterranean coast 

of France. This area is highly representative of the applications of interest because it houses the 

Rhone River mouth and the urban outfall (Cortiou) of the second most populous town in France 

(Marseille). The images are simulated for May 18th and 19th 2008 because these 2 days correspond 

to different dynamics. The first one is a high dynamic day, due to the rainfall, compared to the 

second one.  

 

2.2. Temporal seascape modelling 

The temporal variability of the water composition (here Chl and SPM) is obtained by models. The 

hydrodynamic ocean model MARS3D (3D hydrodynamic Model for Application at Regional 

Scale, IFREMER) [21]. The input data of this model are: the water river contribution, the liquid 

input from the Waste water Treatment Plant contributions, meteorological parameters (pressure, 

wind speed and direction, air temperature, rainfall, heat fluxes). 

MARS3D was also coupled with a numerical Hydro-Sedimentary model (hereafter called MS 

model) described in [22] in order to model the sediment dynamics in the Gulf of Lion, taking into 

account the liquid and solid outflow from the Rhone River, the coastal rivers and the Cortiou 

outfall. All details concerning the model processes, input and output can be found in the 

bibliography [22]–[24]. This model provides hourly Suspended Particle Matter (SPM) maps at each 

model grid cell, with 400 m spatial resolution and 30 vertical levels (3D model). 

MARS3D was also coupled with the ECO3M model (Ecological Modular Mechanistic Model) 

[25], designed to model the biogeochemical carbon, nitrogen and phosphorus cycles of aquatic 

ecosystems and validated for the years 2007 and 2008 [24], [26]. The input data of this model are, 

in addition to those for hydrodynamics: the rivers and Waste water Treatment Plant biogeochemical 

contributions (nutrients, organic matter), the nutrient inputs from the atmosphere, and 

biogeochemical conditions on the Gulf of Lion [26]. This model provides Chl and Particulate 

Organic Carbon (POC) maps every 10 minutes with 400 m spatial resolution in 3 dimensions (with 

30 vertical levels).  

The 3D water compositions maps of Chl, POC and inorganic SPMnorg  were converted into 2D 

maps by integration of concentration along a vertical profile, [27]–[29] show that the influence of 

the vertical profile of the water compositions on the water surface reflectance can be described by 

a decreasing exponential function depending on depth. The slope of this exponential function 

depends on the light attenuation coefficient Kd. The influence of the vertical profile decreases with 

the turbidity at the surface level. 
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Because the next step requires SPM maps, we needed to obtain Suspended Organic Matter (SPMorg) 

maps that can be deduced from POC maps [30]: 

 SPMorg = 2.6POC (1) 

The SPMnorg is directly obtained from the MARS3D Sediment-Transport model and the SPM is 

then obtained by the sum of organic and non-organic SPM: 

 SPM = 𝑆𝑃𝑀𝑜𝑟𝑔+𝑆𝑃𝑀𝑛𝑜𝑟𝑔 (2) 

Because no available model provides the CDOM 3D maps, we deduced these maps from the SPM 

maps with the relation ay(442) / SPM = 0.0633 found between MERIS products and confirmed by 

[31].  

Because the original seascape maps (Chl, SPM and CDOM) have a 400 m resolution and we need 

to simulate at best 300 m resolution images. The maps were then over-sampled in order to reach 

the best resolution of the 2 sensors (300 m) using the cubic convolution technics. These 300 m 

resolution maps were then used as inputs of the image simulation chain.  

 

2.3. Sea surface reflectance modeling 

The Inherent Optical Properties (IOPs) were computed using the Chl, SPM and CDOM input maps 

considering the total absorption coefficient a, the total scattering coefficient b and the 

backscattering coefficient bb as the sum of the different water components IOP. The water 

components are given from [28], [30]–[34]. 

Hydrolight [32] is a water radiative transfer model that enables the remote sensing reflectance 

images at surface level to be computed according to the IOPs. As computing Hydrolight for each 

pixel is too time consuming, look-up tables (LUTs) of remote sensing reflectance Rrs are generated 

using Hydrolight version 5 [33]. These LUTs are generated according to the IOPs such as the 

absorption coefficient a, particle scattering coefficients bp, the direct surface reflectance Rrefl and 

also according to the wind speed Wspd and the angular geometry (t the sensor zenith angle, Δ the 

relative azimuth angle and s the sun zenithal angle).  

 

2.4 Atmospheric transfer modeling 

Because the sensor SNR are given for a specific Top Of Atmosphere radiance (TOA), the 

atmospheric transfer needs to be simulated. The atmosphere is simulated using the atmospheric 

model MODTRAN (MODerate resolution TRANsmittance and radiance code) which is one of the 

most used models for atmospheric radiative transfer by the remote sensing community [35], [36]. 

The TOA radiance was computed according to the four-stream radiative transfer theory. It results 

from 3 contributions: the atmospheric reflection, the direct target reflection and the surface 
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environmental reflection. The radiance is given by the relationship (3), depending on the surface 

reflectance and variables described below. 

 𝐿𝑇𝑂𝐴 = 𝐸𝑠𝜇𝑠𝜋 [𝜌𝑎𝑡𝑚 + 𝑡𝑠1 − 𝜌𝑒𝑆 (𝑡𝑑𝑖𝑟𝜌 + 𝑡𝑑𝑖𝑓𝜌𝑒)] (3) 

where 𝐸𝑆 is the extraterrestrial solar radiance, 𝜌𝐴𝑡𝑚 the atmosphere intrinsic reflectance (molecular 

and aerosol), ρ the target surface reflectance, ρ𝑒 the environmental surface reflectance, 𝑡𝑆 the total 

downwelling transmittance from the sun target, 𝑡𝑑𝑖𝑓 the diffuse upwelling transmittance, t𝑑𝑖𝑟 the 

direct upwelling transmittance, 𝜇𝑠 the sun zenith angle cosine and S the atmosphere spherical 

reflectance. Es, 𝜌𝐴𝑡𝑚, S, ts, tdir, tdif are spectrally dependent and are given by the MODTRAN model. 

In this study, we chose the maritime aerosol profile proposed by MODTRAN because the visibility 

and relative humidity of this model are the closest to the local atmospheric conditions. 

 

 

2.5 Sensor simulation 

Regarding the spectral resolution, the remote sensing reflectance is integrated over the spectral 

bands corresponding to each sensor. Because the water color signal can be neglected after 780 nm 

[34] we simulated only the first 12 spectral bands of OLCI and the first 3 spectral bands of FCI 

(Table 1). The spectral response is given for the 2 sensors Figure 2(a) and Figure 2(b).  

[insert Table 1] 

[insert Figure 2] 

Regarding the spatial resolution, the OLCI TOA image already has the right resolution (300 m) but 

the FCI TOA image needs to be down-sampled in order to reach the right FCI resolution (1 km). 

The down-sampling is applied to the radiance images with the pixel aggregate method (filtering 

and subsampling). 

Regarding the temporal resolution, FCI images are simulated every 10 minutes while OLCI images 

are simulated once a day at 10:00 am. For the latitude of Marseille (43.3°), OLCI revisit period 

will be around 1 day once Sentinel 3A and 3B will be launched [38]. 

Concerning the SNR, the main sources of noise for the sensor are divided into 3 main categories: 

the photonic noise, the read noise and the quantization noise. The two last noises can be neglected 

thanks to the high quality of the electronic components and to the high quantization resolution of 

OLCI and FCI (12 bits). The photonic noise is the most significant. It is proportional to the number 

of photons captured. The flux of photons received is subject to a Poisson process, and therefore the 

noise is proportional to the signal square root (4). This noise is considered to be Gaussian, with a 

standard deviation (ph). 
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 ph= √𝛼𝑝ℎ × 𝐿𝑇𝑂𝐴 (4) 

 

The Signal to Noise Ratio (SNR) represents the magnitude of all the noises regarding the signal. 

This ratio depends on the amplitude of the signal and can also vary with the wavelength. The total 

noise can be considered as a white Gaussian noise with a standard deviation b (5). 

 
b= √𝛼𝑝ℎ × 𝐿TOA = √𝐿𝑇𝑂𝐴×𝐿ref𝑆𝑁𝑅  (5) 

 

Lref and SNR were given by Thales Alenia Space, depending on the spectral bands. This noise is 

added on the Top Of Atmosphere radiance images. 

For a given channel, the noise level varies with the square root of Top Of Atmosphere radiance, 

knowing that Lref/SNR ratio is unchanged for a given channel. FCI sensor has a SNR in line with 

the requirements of atmospherics measurements whereas OLCI is dimensioned for ocean color 

applications which requires higher SNR.  

 

2.6. First processing 

Filtering 

Because FCI noise level is not compatible with an accurate estimation of the concentration of Chl, 

SPM or CDOM [8] and because its temporal frequency of one image every 10 minutes is over 

dimensioned for the water color monitoring, we decided to increase the FCI SNR thanks to its high 

temporal repetitivity. Five consecutive FCI images are then averaged in order to obtain a filtered 

image every hour with an improved SNR, more suitable to coastal applications. The standard 

deviation of the remaining noise is then reduced by a factor of 3. 

 

Inversion of the atmospheric transfer 

Because the fusion process needs to be applied on reflectance images (normalized from acquisition 

conditions), an atmospheric correction is computed. To study the error due only to the fusion 

process, the atmospheric correction is considered to be perfect. As a consequence, a simple 

inversion of the atmospheric model has been performed (6) with the parameters previously defined 

(3). 𝜌 = [𝐿𝑇𝑂𝐴×𝜋𝐸𝑆×µ𝑆 − 𝜌𝑎𝑡𝑚 − 𝑡𝑆×𝑡𝑑𝑖𝑟×𝜌𝑒1−𝑆×𝜌𝑒 ] × (1−𝑆×𝜌𝑒𝑡𝑆×𝑡𝑑𝑖𝑟 )                                                    (6) 
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3. Methodology 

3.1. Fusion methods 

Spatial Spectral Temporal Fusion (SSTF) method 

Our fusion process consists in adding the OLCI spatial details into the 3 FCI spectral bands. The 

resulting image has thus, the spatial resolution of OLCI and the spectral and temporal resolutions 

of FCI. The SSTF method is inspired by the method proposed by Q. Vanhellemont [20] who 

combined data from the single broad red band of the SEVIRI GEO sensor with the corresponding 

band of the MODIS sun-synchronous sensor. This method considers that the temporal variations 

of the reflectance measured by two different sensors for a same interval are equals. Using this 

method, which has been adapted to our sensors, the ratio between 2 consecutive FCI images is 

multiplied by the high spatial resolution OLCI image with the corresponding band (7).  

𝑂𝐿𝐶𝐼(𝜆𝑖, 𝑡1) =  
𝐹𝐶𝐼(𝜆𝑖, 𝑡1)𝐹𝐶𝐼(𝜆𝑖, 𝑡0) × 𝑂𝐿𝐶𝐼(𝜆𝑖, 𝑡0) (7) 

 

The multispectral bands of the two sensors were associated according to their spectral proximity. 

FCI 1st band (444 nm) is fused with the OLCI 3rd band (442 nm), FCI 2nd band (510 nm) with OLCI 

5th band (510 nm) and FCI 3rd band (640 nm) with OLCI 7th band (620 nm). 

To implement this method, the FCI images need to be oversampled to reach the OLCI spatial 

resolution. To oversample the FCI images, two methods were compared: the cubic convolution 

[39] and the B-spline [40] interpolation methods . 

Only one OLCI image is acquired per day but the resulting fusion product (ti-1) is used to perform 

the next fusion with the existing FCI (ti) and to generate a new product (ti). This method was applied 

throughout 2 consecutive days. 

This method was compared to the STARFM existing method. 

 

 

STARFM  

STARFM method (Spatial and Temporal Adaptive Reflectance Fusion Model) [19] is also a 

multispectral-spatial-temporal fusion model but the predicted image is computed differently. The 

high resolution predicted image OLCI(t0), is considered equal to the oversampled coarse resolution 

image FCI(t0), added to the difference between the 2 sensors images at the acquisition time. A 

selection of neighboring pixels within a moving window is operated on the OLCI image according 

to the spectral similarity with the central pixel. The selected pixels are then weighted (Wijk) 

according to the spectral, spatial and temporal distances between the central and the selected pixels 

(8). 
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 𝑂𝐿𝐶𝐼(𝑥𝑤 2⁄ , 𝑦𝑤 2⁄ , 𝑡0)= ∑ ∑ ∑ 𝑊𝑖𝑗𝑘 × (𝐹𝐶𝐼(𝑥𝑖 , 𝑦𝑖, 𝑡0)𝑛
𝑘=1

𝑤
𝑗=1

𝑤
𝑖=1+ 𝑂𝐿𝐶𝐼(𝑥𝑖, 𝑦𝑖, 𝑡𝑘) − 𝐹𝐶𝐼(𝑥𝑖, 𝑦𝑖, 𝑡𝑘)) 

(8)  

where w is the searching window size, i and j the spatial location in the image, t0 and tk respectively 

the prediction and the acquisition date of FCI and OLCI images. More details are available in [19]. 

This fusion method has never been applied to the fusion of GEO and LEO images before. 

 

3.2. Validation method 

With the reference images 

The fusion products of the 2 methods can be compared to the reference images, having the same 

features (300 m, 3 bands, 10 min). The statistical index called ERGAS for “Relative Adimensional 

Global Error in Synthesis” (9) is used to assess the global quality of the fused images with more 

robustness than the RASE (Relative Average Spectral Error), regardless of the spatial resolution 

and the spectral bands. It also respects calibration and changes of units. The ideal value is 0 in case 

of perfect fusion, but its value remains correct under 3 [41]. 

 𝐸𝑅𝐺𝐴𝑆(𝐴, 𝐵) = 100 × ℎ𝑙 √ 1𝑛𝑏 ∑ 𝑅𝑀𝑆𝐸(𝐴, 𝐵, 𝜆)2𝑚𝑒𝑎𝑛(𝐴, 𝐵, 𝜆)2
𝑛𝑏

𝜆=1  

 

(9)  

where h/l is the ratio between OLCI and FCI spatial resolutions and nb is the number of fused 

bands. 

We also measured the persistence which consists in calculating the ERGAS index between the 

reference images at each hour and the only OLCI image of the day. It shows the error due to the 

seascape variations in order to judge whether the fusion is useful or not. If the persistence error is 

lower than the fusion error, the fusion is pointless. 

 

With water composition maps 

Radiometric indexes are good indicators to assess the fusion performance but sometimes they are 

not sufficient if the final application is not satisfied at the end of the study. The fusion methods can 

effectively be compared and evaluated on the accuracy of the water components estimation which 

is the final application of our fusion. This comparison can easily be made with the maps used as 

simulation input, which are the perfect “ground truth”. 
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Because the fusion product has only 3 bands, we cannot use an algorithm like OC5 which needs 

specific bands [42], so we chose to inverse a physical model developed by Lee [43],[44]. Lee’s 
model inputs are Chl, SPM and CDOM concentrations. The IOP (absorption a, backscattering bb) 

are derived from these inputs. a and bb are additives, so they result from the sum of the pure 

seawater aw, the phytoplankton coefficient aϕ, the coefficient of Coloured Dissolved Organic 

Matter (CDOM) ay, the non-algal particle coefficient anap, the pure seawater scattering coefficient 

bw, and the water particle scattering coefficient bp. The second step provides the remote sensing 

reflectance, i.e. apparent optical properties (AOP), derived from the IOP and from the observation 

geometry. 

This model can be reversed to estimate Chl’, SPM’ and CDOM’ concentrations from the fusion 

product (3 bands, 300 m), given in reflectance after atmospheric correction. The reverse model 

consists in varying the input concentrations in order to minimize the error between the model 

spectrum and the measured one. It requires the determination of the initial values and the range of 

variations for each concentration. An example is represented in Figure 3 for a Case 1 waters, with 

the remote sensing reflectance Rrs corresponding to the initial values (Chl=1 mg.m-3, SPM=1 g.m-

3 and CDOM=0.1 m-1) and Rrs once the iterative process of optimization is over, i.e. Chl=0.2 mg.m-

3, SPM=0.01 g.m-3 and CDOM=0.01 m-1. 

[insert Figure 3] 

This method enables these three parameters to be determined simultaneously by using the remote 

sensing reflectance from at least three spectral bands between 400 and 800 nm. 

The relative errors are then computed between the input maps (Chl, SPM and CDOM) and the 

estimation maps (Chl’, SPM’, CDOM’) from the images resulting from the fusion. The flowchart 

of fusion and validation process is presented Figure 4.  

[insert Figure 4] 

 

 

4. Results 

4.1. Results of simulation 

Figure 5 shows a color composite of the FCI simulated images (444, 510 and 640 nm) on the Gulf 

of Lion at 2:00 pm without noise simulation (a), with noise simulation (b) and after noise filtering 

(c) and the corresponding horizontal profiles for the 3 bands (d), (e) and (f) corresponding to the 

red line on the images. On (d) we see the relevant information (the water color signal) while on (e) 

this information is combined with the noise. On (f), we can see that the noise is reduced compared 

to (e) and the information is preserved compared to (d). Figure 6 shows a color composite of the 

OLCI simulated image (442, 510 and 620 nm) at 10:00 am without noise simulation (a) and with 

noise simulation (b). On OLCI images, the noise is so low that it is not visible on the image (b) but 

it can however be visualized on the profile (d). 
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[insert Figure 5] 

[insert Figure 6] 

Spatial differences between images of FCI (1 km) and OLCI (300 m) can be noticed between Figure 

5 and Figure 6. 

 

4.2. Results of fusion 

Figure 7 shows a color composite (444, 510 and 640 nm) of the fusion product with the SSTF 

method corresponding to the increase of FCI spatial resolution (1 km) thanks to the OLCI one (300 

m), without noise simulation (a), with noise simulation (b) and with FCI noise filtering (c). The 

spatial resolution was improved for the 3 images but the noise is very noticeable on (b). However, 

the fusion applied to FCI filtered images gives much better results (c) compared to (b). 

[insert Figure 7] 

 

4.3. Result of validation 

With reference images 

In order to quantify accurately the error induced by the fusion process, the ERGAS statistical index 

was computed each hour between the fusion product and the simulated reference image. 

The 2 oversampling methods enabling FCI images to reach OLCI spatial resolution, cubic 

convolution and B-spline (6th degree), were compared and the B-spline method always provided 

an ERGAS value 1.5 times higher than those obtained with the cubic convolution method. 

Furthermore, the high reflectance values due to the high concentration of SPM on the shore created 

spatial fluctuations of reflectance (artefacts) that were still present in the resulting fused images. 

We then chose to use the cubic convolution resampling method in the fusion process. 

On Figure 8, ERGAS index corresponding to May 18th and 19th 2008 is computed between the 

fusion product and the reference images without noise. The ERGAS value corresponding to the 

persistence is also plotted. The ERGAS value being lower than the persistence proves that the 

fusion product provides more extensive information than the OLCI image alone and it then proves 

the usefulness of the fusion. But in case of significant seascape variations, the fusion can generate 

serious errors that are propagated to the next hour’s fusion and cumulated throughout the day. 

Figure 8 shows that these errors are totally different from one day to the next. For example, with 

the images without noise, the average ERGAS is 0.9 for the first day while it is only 0.29 for the 

second day. During the first day with high seascape dynamics, the difference between fusion 

ERGAS and the persistence is much higher than for the second day. The fusion is still useful but 

the increase of seascape change induces an increase of the ERGAS error.  

[insert Figure 8] 
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To analyze the impact of the noise on the fusion performance, Figure 9 shows the evolution of the 

ERGAS index on May 18th 2008 with noiseless, noisy and FCI filtered input images, the persistence 

is plotted in red.  The error of the fusion process for the first hour’s fusion is around 0.3 with 

noiseless images, 0.9 with noisy images and 0.5 with filtered images as input. Then the error added 

from one hour to the next is only 0.1 whatever the input images. These values show that the noise 

reduction computed on the noisy FCI images has greatly improved the fusion product. The plot 

also shows that the error seems to be constant throughout the day. The persistence shows that the 

fusion provides more consistent information, even with noisy FCI images, than with the same OLCI 

image used throughout the day. 

 [insert Figure 9] 

In order to visualize the spatial distribution of the accumulated errors at the end of the day, error 

maps between the reference and the final fusion images at 5:00 pm were displayed (Figure 10). On 

(a) we can see that the errors correspond to the plume variations (on the borders). On (b) and (c) 

the errors are spatially constant, due to the GEO sensor noise and they were reduced by 50% with 

the temporal FCI filtering (c). 

[insert Figure 10] 

With water composition maps 

We compared the water composition maps obtained after the fusion process with the input maps. 

On Figure 11, the mean relative errors of the estimated Chl (a), SPM (b) and CDOM maps (c) 

without noise during May 18th and 19th 2008 is plotted. The Chl is misestimated for the 2 days 

with relative errors around 64% and 60%, SPM is accurately estimated with 6.5% and 5.5% as the 

CDOM around 5.5 and 9%.  

We also plotted the errors on Chl (a), SPM (b) and CDOM maps (c) with input images without 

noise, noisy and filtered for May 18th 2008 (Figure 12). The results are greatly improved by the 

temporal filtering of the FCI images. Without filtering, average relative errors on Chl, SPM and 

CDOM estimation are respectively 258%, 16% and 28%, whereas with filtering, they become 82%, 

8% and 12%.  

[insert Figure 11] 

[insert Figure 12] 

 

4.4 Comparison with results from the STARFM algorithm 

The SSTF method was also compared with the existing STARFM method by computing the 

ERGAS index and relative errors on water component estimation during the day 18/05/2008 (Table 

2). Using images filtered from the noise as input, average ERGAS is 1 with the SSTF method and 

1.47 with the STARFM method. While SSTF relative errors are constant through the day, 

STARFM ones increase. Concerning the water component estimation, relative errors on Chl, SPM 

and CDOM are respectively 79.9%, 8.87% and 13.9% with the SSTF method, and 63.1%, 8.52% 
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and 13.85% with the STARFM method. The results are quite similar for SPM and CDOM but chl 

is really improved when estimated with STARFM fused images. 

[insert Table 2] 

 

5. Discussion 

This work has shown that the fusion of LEO and GEO images has 2 sources of errors. The first is 

due to the seascape dynamics that increase the error between the fusion products and the images 

that would have been acquired by a sensor with the spatial resolution of the LEO sensor and the 

spectral and the temporal resolution of the GEO one. Because only one high spatial resolution 

image is acquired during the day, an error of propagation is measured by the ERGAS index 

throughout the day. The fusion was applied to noiseless simulated images and the spatial analysis 

showed that this radiometric error is located on the area of most variations, on the border of the 

plume for example (Figure 10). But whatever the seascape dynamics, the persistence study showed 

that the fusion is always useful (ERGAS with persistence higher than ERGAS with fusion, Figure 

8). The seascape variations during the day also have a noticeable impact on the estimation maps. 

The relative errors on SPM and the CDOM estimation are low (respectively ~5.5% and ~9%) and 

increase slightly throughout the day. Chl is misestimated (~60%) because SPM obscures the 

influence of Chl on the water surface reflectance, and remains constant (Figure 11).  

The second source of errors is due to the SNR of FCI images. Without noise filtering the ERGAS 

value is around 1, Chl is misestimated by 250%, SPM by 16% and CDOM by 28%. The error is 

then acceptable for SPM and CDOM values even without noisy images but not for Chl. 

When FCI images are temporally filtered, the ERGAS value is improved and approaches the fusion 

without noise (0.75/0.6), proving that the temporal filtering is really effective (Figure 9). On the 

water component estimation, filtering is much more effective because all components are much 

more accurately estimated: chl (250/80%), SPM (16/8%) and CDOM (28/12%) (Figure 12). 

If we compare the 2 sources of errors, we can say that without temporal filtering, the noise impact 

is higher than the seascape dynamics on the fusion performance but when the temporal filtering is 

applied, the seascape dynamics becomes the main source of error.  

The remaining noise could also be reduced by using an adaptive temporal filtering. We tried to 

temporally filter the images with the median filter but the resulting SNR of the filtered images was 

lower than the one obtained by temporal average filtering. On the contrary, the seascape dynamics 

could not be reduced because this is useful information that should be kept and analyzed.  

Compared to other fusion methods like MMT or CNMF, this method doesn’t make the assumption 
that the landscape has not changed between the 2 acquisitions and this is important in marine areas. 

Even if the fusion error increases with the seascape change, the information concerning change is 

kept and used by this method. Furthermore, our method was compared to the STARFM method, 

never tested on LEO and GEO images before. SSTF provides a lower ERGAS index than STARFM 

but results on water component estimation are quite similar except for chl having lower error with 
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STARFM. Compared to the STARFM method, no weighting function in a searching window is 

needed, SSTF is then less time consuming than STARFM.  

 

Concerning the misestimation of Chl after the fusion between FCI and OLCI images, we can 

surmise that in Case 1 waters, the estimation of Chl would be better because the influence of Chl 

on reflectance would not be masked by the SPM presence and the estimation would then be more 

reliable.  

One limitation of the SSTF method is that our fusion process does not provide the 12 bands of 

OLCI sensor. The original idea was to provide an image combining the best qualities of the 2 

sensors (spatial, spectral and temporal features). We combined the spatial resolution of OLCI and 

the temporal resolution of FCI but we have not yet succeeded in obtaining fused images with OLCI 

spectral resolution. Our idea was to use a physical model of reflectance to add a spectral fusion 

phase after the spatial one (presented here), but this process would not have added more 

information to the resulting image. We therefore disregarded this idea for the moment. The 

improvement of the SNR and the spatial resolution of the FCI images are already a notable 

progress. But to estimate Chl concentrations, more than 3 bands would certainly be helpful. 

Concerning the future applications of these fusion products, 3 main directions can be cited. The 

first one is the monitoring of daily biological dynamics in offshore waters (Case 1 waters). 

Monitoring the Chlorophyll enables the phytoplankton cycle to be studied, contributor to 

photosynthetic activity and contributes indirectly to monitoring the carbon cycle. In a preliminary 

study of FCI and OLCI sensors for the estimation of water composition, we proved that for Case 1 

waters, the Chl estimation is possible with low errors with the 3 FCI broad bands after a noise 

filtering. The second application would be the monitoring of coastal area dynamics, to follow the 

river mouth and the river plume as we did in this paper for example.  

Finally, the last application of this fusion method will be the increase of the spatial coverage to 

take into account the cloud cover over some overcast areas. The advantage of GEO sensor is to 

provide several images during the day (60 FCI images for example). This number of images would 

make available limited area without cloud each day. These local images could be fused with the 

last LEO sensor image received. The image could then be recomposed from different local fusion 

products. Having a composite product with no clouds is one of the aims of the color water 

community (see IOCCG reports), but this product will have to be used very carefully because of 

the temporal inconsistency of concomitant pixels which could have been acquired at different 

times. 
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6. Conclusion 

This work has shown that even with a lower SNR, GEO images can provide useful information in 

addition to LEO ocean color sensors even for ocean color surveys because the temporal resolution 

can balance the low SNR by using temporal filtering. A fusion method which was given the name 

SSTF was then proposed to combine the spatial resolution of the LEO sensor with the temporal 

resolution of the GEO sensor in order to obtain multispectral GEO images enabling a quasi-

continuous monitoring of water composition. The SSTF method was applied to the future FCI 

(MTG) and OLCI (Sentinel-3) images that were simulated to assess the fusion method. Because 

FCI is dimensioned for meteorological applications and not for ocean observations, a noise filtering 

was applied and enabled the noise to be reduced by 39% on the 3 bands. The SSTF method was 

compared with STARFM. The results are quite similar with both methods but we noticed that SSTF 

gives better results in case of high landscape dynamic while STARFM is  more efficient with noisy 

images. 
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Tables:  

 

FCI 

Channels 

Center 

(nm) 

Width 

(nm) 

 1 444 60 

2 510 40 

3 640 50 

                                   (a) 

OLCI 

Channels 

Center 

(nm) 

Width 

(nm) 

1 400 15 

2 412 10 

3 442 10 

4 490 10 

5 510 10 

6 560 10 

7 620 10 

8 665 10 

9 681 7.5 

10 709 10 

11 753 7.5 

12 761 2.5 

                                   (b)  

Table 1: FCI (a) and OLCI (b) channels. 
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  ERGAS with 

reference images 

Relative errors with water composition maps (%) 

 

 time 

 

 SSTF 

 

STARFM 

 SSTF  STARFM 

 Chl SPM 

 

 CDOM  Chl SPM   CDOM 

8:00 AM 1.040 1.074 86.38 9.26 14.91 66.82 9.65 14.91 

9:00 AM 0.709 0.647 79.64 8.15 12.79 64.38 7.93 12.47 

10:00 AM 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 

11:00 AM 0.629 0.701 77.49 8.24 12.77 60.77 6.15 10.17 

12:00 AM 0.887 1.087 85.41 8.39 13.40 60.73 6.89 11.75 

1:00 PM 1.077 1.390 83.08 8.53 13.69 59.79 7.49 13.09 

2:00 PM 1.127 1.608 77.21 8.54 13.71 60.30 8.05 13.95 

3:00 PM 1.139 1.722 76.66 8.84 13.85 60.38 8.72 14.62 

4:00 PM 1.110 1.832 76.51 9.09 13.89 62.89 9.35 15.13 

5:00 PM 1.106 1.912 77.20 9.38 14.29 65.54 9.97 15.80 

6:00 PM 1.186 2.031 80.29 10.3 15.73 69.31 11.0 16.67 

Table 2: ERGAS index between the fusion products of the 2 fusion methods and the reference 

images and relative error between estimated water contents and input maps for the 18/5/2008. 

 

Figures:  

 

 

Figure 1: Flowchart of image simulation process. 
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Figure 2: FCI (a) and OLCI (b) spectral responses. 

 

 

Figure 3: Initial and final reflectance of the optimization process. 

 

 

 

Figure 4: Flowchart of fusion and validation process. 
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Figure 5: FCI simulated images at 2:00 PM without noise simulation (a), with noise simulation 

(b), after noise filtering (c) and the 3 corresponding profiles (d), (e), and (f). 

 

 

 

Figure 6: OLCI simulated images at 10:00 AM without noise simulation (a) and with noise 

simulation (b) and the 2 corresponding profiles (c) and (d). 

 

 



22 

 

 

 

 
Figure 7: Fusion product of FCI and OLCI images at 1:00 PM without noise simulation (a), with 

noise simulation (b), with noise filtering (c). 

 

 

 

 
Figure 8: ERGAS index for the SSTF method for the 18/05/2008 and the 19/05/2008 without 

noise simulation and the corresponding persistence. 
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Figure 9: ERGAS index for the SSTF method for the 18/05/2008 without noise simulation, with 

noise simulation and with noise filtering and the persistence. 

 

 

 

 
Figure 10: Averaged error maps on the fusion product at 5:00 PM without noise simulation (a), 

with noise simulation (b) and with noise filtering (c). 

 

 

 
Figure 11: Relative error between input maps and estimated maps from the fusion products for the 

18 and 19/05/2008. 
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Figure 12: Relative error between input maps and estimated maps from the fusion products for the 

18/05/2008 with FCI and OLCI images without noise simulation, with noise simulation and with 

noise filtering as inputs. 

 


