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Figure 1: Fusion++ with pose graph and discovered inventory on the public fr2 desk sequence [33].

Abstract

We propose an online object-level SLAM system which

builds a persistent and accurate 3D graph map of arbi-

trary reconstructed objects. As an RGB-D camera browses

a cluttered indoor scene, Mask-RCNN instance segmenta-

tions are used to initialise compact per-object Truncated

Signed Distance Function (TSDF) reconstructions with ob-

ject size-dependent resolutions and a novel 3D foreground

mask. Reconstructed objects are stored in an optimisable

6DoF pose graph which is our only persistent map repre-

sentation. Objects are incrementally refined via depth fu-

sion, and are used for tracking, relocalisation and loop clo-

sure detection. Loop closures cause adjustments in the rel-

ative pose estimates of object instances, but no intra-object

warping. Each object also carries semantic information

which is refined over time and an existence probability to

account for spurious instance predictions.

We demonstrate our approach on a hand-held RGB-D

sequence from a cluttered office scene with a large number

and variety of object instances, highlighting how the sys-

tem closes loops and makes good use of existing objects on

repeated loops. We quantitatively evaluate the trajectory er-

ror of our system against a baseline approach on the RGB-

D SLAM benchmark, and qualitatively compare reconstruc-

tion quality of discovered objects on the YCB video dataset.

Performance evaluation shows our approach is highly mem-

ory efficient and runs online at 4-8Hz (excluding relocalisa-

tion) despite not being optimised at the software level.

∗These two authors contributed equally.

1. Introduction

Indoor scene understanding and 3D mapping is a foun-

dational technology that can enable autonomous real-world

robotic task completion and also provide a common in-

terface for more intelligent and intuitive human-map and

human-robot interactions. To enable this requires a careful

choice of map representation. One particularly useful repre-

sentation is to build an object-oriented map. We argue this

is a natural and efficient way to represent the things that are

most important for robotic scene understanding, planning

and interaction; and it is also highly suitable as the basis for

human-robot communication.

In an object level map, the geometric elements which

make up an object are grouped together as instances and

can be labelled and reasoned about as units, in contrast to

approaches which independently label dense geometry such

as surfels or points. This approach also naturally paves the

way towards interaction and dynamic object reasoning, al-

though our system currently assumes a static environment

and does not yet aim to track individual dynamic objects.

In this work we demonstrate an object-oriented online

SLAM system with a focus on indoor scene understand-

ing using RGB-D data. We aim to produce semantically

labelled TSDF reconstructions of object instances without

strong a priori knowledge of the object types present in a

scene. We use Mask R-CNN [13, 40] to provide 2D instance

mask predictions and fuse these masks online into the TSDF

reconstruction (see Figure 1) along with a 3D ‘voxel mask’

to fuse the instance foreground (see Figure 3).

Unlike many dense reconstruction systems [24, 39, 43,
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38, 3, 8] we make no attempt to keep a dense representa-

tion of the entire scene. Our persistent map consists of only

reconstructed object instances. This allows the use of rigid

TSDF volumes for high-quality reconstructions to be com-

bined with the flexibility of a pose-graph system without

the complication of performing intra-TSDF deformations.

Each object is contained within a separate volume, allowing

each one to have a different, suitable, resolution with larger

objects integrated into lower fidelity TSDF volumes than

their smaller counterparts. It also enables tracking large

scenes with relatively small memory usage and high-fidelity

reconstructions by excluding large volumes of free-space.

A throw-away local TSDF of unidentified structure is used

to assist tracking and model occlusions.

We capture a repeated loop of an indoor office scene to

evaluate the system under conditions of occasional poorly

constrained ICP tracking. The scene also contains a large

number and variety of objects which not only exhibit the

generality of the approach but is useful for evaluating the

memory and run-time scaling of the method with many

objects. While not optimised for real-time operation, we

achieve ∼4-8Hz operating performance (excluding relocal-

isation/graph optimisation) on our office sequence and are

confident that with sufficient optimisation true real-time op-

eration is possible. We also quantitatively evaluate the tra-

jectory error improvement of our system over a baseline ap-

proach on the RGB-D SLAM Benchmark [33].

In this work we make the following contributions:

• A generic object-oriented SLAM system which per-

forms mapping as variable resolution 3D instance re-

construction.

• Per-frame instance detections are robustly fused using

voxel foreground masks and missing detections are ac-

counted for with an “existence” probability.

• We show high quality object reconstruction within

globally consistent loop-closed object SLAM maps.

2. Related work

For reconstruction, we follow the TSDF formulation of

Curless and Levoy [6] and the KinectFusion approach of

Newcombe et al. [23] for local tracking. Our approach to

object-level reconstruction is related to the work of Zhou

and Koltun [42], where “points of interest” were detected

and the aim was to reconstruct the scene so as to preserve

detail in these areas while distributing drift and registra-

tion errors throughout the rest of the environment. In our

work we analogously aim to optimise the quality of object

reconstructions and allow residual error to be absorbed in

the edges of the pose graph.

SLAM++ by Salas-Moreno et al. [30] was an early

RGB-D object-oriented mapping system. They used point

pair features for object detection and a pose graph for

global optimisation. The drawback was the requirement

that the full set of object instances, with their very detailed

geometric shapes, had to be known beforehand and pre-

processed in an offline stage before running. Stückler and

Behnke [31] also previously tracked object models learned

beforehand by registering them to a multi-resolution sur-

fel map. Tateno et al. [35] used a pre-trained database

of objects to generate descriptors, but they used a Kinect-

Fusion [23] TSDF to incrementally segment regions of a

reconstructed TSDF volume and match 3D descriptors di-

rectly against those of other objects in the database.

A number of approaches to object discovery exist [5, 32,

4]. Most related to ours is the work of Choudhary et al. [4]

where they localised the camera in an online manner using

discovered objects as landmarks in a pose-graph formula-

tion similar to ours, although they used the point cloud cen-

troid only whereas our pose-graph object landmark edges

are full 6 DoF SE(3) constraints provided from ICP on

dense volumes. They showed that the approach improves

SLAM results by detecting loop closures. However, unlike

our work they use point-clouds rather than TSDFs and do

not train an object detector but instead they use the unsu-

pervised segmentation approach of Trevor et al. [36].

Another approach to object discovery is through dense

change detection between successive mappings of the same

scene [12, 19, 11]. Unlike these systems, our system is de-

signed for online use and does not require changes to occur

in a scene before objects are detected. These approaches are

complementary to our proposed approach, providing super-

visory signals for CNN fine-tuning, and enabling additional

object database filtering mechanisms.

In RGB-only SLAM for object detection, Pillai and

Leonard [26] use ORB-SLAM [21] to assist object recogni-

tion. They use a semi-dense map to produce object propos-

als and aggregate detection evidence across multiple views

for object detection and classification. MO-SLAM by Dhar-

masiri et al. [9] focused on object discovery through du-

plicates. They use ORB [28] descriptors to search for sets

of landmarks which can be grouped by a single rigid body

transformation. This approach is similar to our relocali-

sation method, which uses BRISK features [18] but aug-

mented with depth.

Very closely related to ours is work by Sünderhauf et

al. [34], who proposed an object-oriented mapping system

composed of instances using bounding box detections from

a CNN and an unsupervised geometric segmentation algo-

rithm using RGB-D data. Although the premise is closely

related, there are a number of differences when compared

to our system. They use a separate SLAM system, ORB-

SLAM2 [22], whereas in our system the discovered object

instances are tightly integrated into the SLAM system itself.

We also fuse instances into separate TSDF volumes with a



foreground mask from 2D instance mask detection rather

than using point cloud segments.

A number of very recent related works have also been an-

nounced. Pham et al. [25] fuse a TSDF of the entire scene

and semantically label voxels using a CNN followed by a

progressive CRF. To segment instances, instead of fusing

native instance detections, they opt to cluster semantically

labelled voxels in 3D. This approach, although a natural

next-step from dense 3D semantic mapping, is not suitable

for object-level pose graph optimisation and reconstruction

as the instances are embedded within a shared TSDF. It also

requires semantic recognition as a pre-requisite for object

discovery which could prove problematic for similar or un-

recognised objects in close proximity (Figure 3).

Rünz and Agapito [29], as in our method, use Mask R-

CNN predictions to detect object instances. They aim to

densely reconstruct and track moving instances using an

ElasticFusion [38] surfel model for each object, as well as

for the background static map. Although using the same

prediction model, the approach and goals of these two sys-

tems differ substantially. Unlike the present work, they do

not aim to reconstruct high-quality objects as pose-graph

landmarks in room-scale SLAM. We on the other hand do

not currently tackle dynamic scenes and assume all objects

to be static during an observation. Clearly there is the long-

term potential to combine these two approaches.

3. Method

Our pipeline is visualised in Figure 2. From RGB-D

input, a coarse background TSDF is initialised for local

tracking and occlusion handling (Section 3.3). If the pose

changes sufficiently or the system appears lost, relocali-

sation (Section 3.4) and graph optimisation (Section 3.5)

are performed to arrive at a new camera location, and the

coarse TSDF is reset. In a separate thread RGB frames

are processed by Mask R-CNN and the detections are fil-

tered and matched to the existing map (Section 3.2). When

no match occurs, new TSDF object instances are created,

sized, and added to the map for local tracking, global graph

optimisation, and relocalisation. On future frames, associ-

ated foreground detections are fused into the object’s 3D

‘foreground’ mask alongside semantic and existence prob-

abilities (Section 3.1).

3.1. TSDF Object Instances

Our map is composed of object instances reconstructed

within separate TSDFs, Vo, each with a pose defined by a

transformation, TWO ∈ SE(3), which maps coordinates

of a point Op ∈ R
3 from object frame F−→O to coordinates

Wp ∈ R
3 in World frame F−→W . For convenience of nota-

tion, homogeneous coordinates are assumed where appro-

priate (e.g. in transformations), however when explicitly

required they are denoted with italics, Op = [Op
⊺, 1]⊺. Ob-
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Figure 2: Overview of the Fusion++ system.

ject instance frames have an origin at the centre of the vol-

ume and are sized cubically with an edge-length, so.

Initialisation and resizing: Detections not matched by

the procedure described in 3.2 are used to initialize an ap-

propriately sized and positioned instance TSDF. In the kth

frame each detection i produces a binary mask Mk
i . We

project all the masked image coordinates u = (u1, u2) into

F−→W using the depth map Dk(u),

Wp = T̃k
WCK

−1Dk(u)u , (1)

where K denotes the 3×3 intrinsic camera matrix, T̃k
WC ∈

SE(3) the camera pose estimate.

To robustly size the TSDF in the presence of masks

which can occasionally include far-away background sur-

faces, we do not directly accept the maximum and mini-

mum of this point cloud. Instead we use the 10th and 90th

percentiles of this point cloud (separately for each axis) to

define points p10 and p90 respectively, which are used to

calculate the volume centre po = p90+p10

2
and volume size

so = m‖(p90−p10)‖∞. We use an m of 1.5 to account for

erosion and provide additional padding.

Each instance TSDF has an initial fixed resolution along

a given axis of ro, which we choose to be 64, and so is used

to calculate the physical size of a voxel vo = so
ro

. There-

fore, small objects will be reconstructed with fine details

and large objects more coarsely, making the map as useful

as possible for a given memory footprint.

During operation matched objects may need to be re-

sized as new detections include additional areas. To do this,

the point cloud of the current mask described above is com-

bined with a similarly eroded point cloud generated from

the current TSDF reconstruction. The 3D volume encom-

passing them both is used to calculate the new volume cen-

tre and size as before. To avoid aliasing when re-sizing,

we translate the volume centre by discrete multiples of vo,

and maintain the same vo but increase ro, while maintain-

ing an even parity. We also limit the maximum voxel reso-

lution to 128, by re-initialising the volume as though new if

ro > 128, and limit the maximum object size to be 3m.



Before initialising an instance we require the volume

centre to be within 5m of the camera, and a 3D axis-aligned

bounding box Intersection over Union (IoU) < 0.5 with any

other volume already in the map. When an object centre is

moved, the pose-graph node and associated measurements

are also updated as described in Section 3.5.

Integration: For integrating surface measurements from

a depth map Dk into Vo we take an approach similar to

Newcombe et al. [23]1. Vo stores at each discrete voxel lo-

cation v = (vx, vy, vz) both the current normalised trun-

cated signed distance value So
k−1(v) and its associated

weight W o
k−1(v). If v projects into a camera frame pixel

with a depth value less than the depth measurement plus

the truncation distance, µ (here chosen as 4vo), then that

measurement is fused into the volume in a weighted aver-

age fashion. Integration is performed on every frame where

the TSDF volume is visible, when 50% of TSDF pixels are

validly tracked and the ICP RMSE < 0.03 (these error met-

rics are described in more detail in Section 3.3). This is to

maintain the reconstruction quality of instances when the

camera frame may have drifted.

It is also important to note that the above surface integra-

tion is performed throughout the entire volume, regardless

of whether it is a masked region or not. To store which vox-

els correspond to this instance’s ‘foreground’ we also fuse

instance mask detections. We view each positive or nega-

tive detection as the result of a binomial trial sampled from

a latent foreground probability, po(v ∈ foreground). We

store foreground F o
k−1(v) and not foreground No

k−1(v) de-

tection counts as the (α, β) shape parameters in a beta dis-

tribution conjugate prior which are initialised with (1, 1).
When a new detection is matched and the depth measure-

ment is within the truncation distance as above, then we also

update the detection counts using the corresponding mask i:

F o
k (v) = F o

k−1(v) +M i
k(Kπ(Cp(v))), (2)

No
k (v) = No

k−1(v) + (1−M i
k(Kπ(Cp(v)))), (3)

with π([x, y, z]⊺) = [x/z, y/z, 1]⊺ denoting the projection.

Finally, to compute whether a voxel is part of the foreground

we calculate the expectation,

E[po(v)] =
F o
k−1(v)

F o
k−1(v) +No

k−1(v)
, (4)

and use a decision threshold of E[po(v)] > 0.5. A visuali-

sation of this is shown in Figure 3.

Raycasting: For tracking, data association, and visuali-

sation we render depth, normals, vertices, RGB, and object

indices. Within each object volume Vo we step along the

ray with a stepsize of vos (and 0.5vos when So
k(v) < 0.8,

where So
k(v) is the SDF normalised by µ) and search for the

1Code based on https://github.com/GerhardR/kfusion.

Figure 3: Object volume foreground. Note that if this value

falls below 0.5 it is not rendered.

zero-crossing point in So
k(v) where E[po(v)] > 0.5 (both

values are trilinearly interpolated from neighbouring vox-

els to smooth the representation). We store the ray length

of the nearest of these intersections to avoid searching past

that point in another volume.

This alone results in occluding surfaces which are not

part of the foreground failing to occlude the ray. If a back-

ground TSDF is available, and either no intersection with a

foreground object occurs or the intersection is farther than

5cm behind the background TSDF intersection, then the

background TSDF ray intersection is used instead.

Existence Probability: To prevent spurious instances

from building up over time, we also model the probability

of each instance’s existence as p(o) using the Beta distri-

bution, in a manner identical to the foreground mask. For

any frame where a predicted instance should be clearly vis-

ible (i.e. our raycasted image has more than 502 pixels of

that instance), then if the instance has been associated to a

detection its existence count eo is incremented, and if not

its non-existence count, do, is incremented. If E[p(o)] falls

below 0.1, the instance is deleted and the object node with

all associated edges are removed from the pose graph (de-

scribed in Section 3.5).

Semantic Labels: Each TSDF also stores a probabil-

ity distribution over potential class labels lo. Mask R-CNN

provides a probability distribution p(lo|Ik) over the classes

given the image, Ik. We found that the standard multiplica-

tive Bayesian update scheme [15, 20]:

p(lko |I1, . . . , Ik) = Z−1p(lo|Ik)p(lo|I1, . . . , Ik−1), (5)

where Z is a normalising constant, often leads to an overly

confident class probability distribution, with scores unsuit-

able for ranking in object detection. Instead here we fuse

multiple associated detections by simple averaging:

p(lko |I1, . . . , Ik) =
1

k

k∑

i=1

p(lo|Ii), (6)

which produces a more even class probability distribution.

https://github.com/GerhardR/kfusion


3.2. Detection and Data Association

Detections from the Mask R-CNN model [13] for a given

frame k contain instances i with a binary mask M i
k and

class probability distribution p(li|Ik). A forward pass takes

∼250ms, and although our system is not real-time, this still

represents a significant bottleneck and so can be performed

in a parallel thread. For GPU memory efficiency, we take

only the top 100 detections (scored according to the region

proposal network ‘object’ score [27]) and filter for masks

not near the image border (within 20 pixels) and where both

max(p(li|Ik)) > 0.5 and
∑

M i
k > 502.

After local tracking (Section 3.3) we use the estimated

camera pose and TSDFs already initialised in the map to

raycast a binary mask Mo
k for object instances o in the

current view. We map each detection i to a single in-

stance o by calculating the intersection of the two as a pro-

portion of the detection’s area, adetect(i, o) =
∑

Mo

k
∩Mi

k∑
Mi

k

and assigning the detection to the largest intersection, õ =
argmaxo adetect(i, o), where adetect(i, õ) > 0.2, otherwise

the detection is unassigned. For the integration step, each

detection which has been mapped to the same instance is

combined by taking the union of the detection masks, and

the average of the class probabilities.

3.3. Layered Local Tracking

We maintain an instance-agnostic coarse background

TSDF, a, to assist local frame-to-model tracking

where/when there are no instances and to handle oc-

clusions. It has a resolution of 2563 with a voxel size of

2cm. Its initialisation point Wpa = Tk
WC [0 0 2.56]⊺,

is 2.56m along the z-axis in the camera frame F−→C to

prevent wasted volume as in [37]. The volume is re-

set when its new initialisation point exits a spherical

threshold (1.28m) around the previous volume centre, i.e.

‖Wpa −Tk
WC [0 0 2.56]⊺‖2 > 1.28.

We combine the background TSDF with individual in-

stances to raycast (Section 3.1) a ‘layered’ reference frame,

denoted r, with vertex map, Vr, normal map, Nr, and ob-

ject index map, Xr, from the previous camera pose, TWCr
,

with vertices and normals defined in the world frame F−→W .

The transform to the live frame, denoted l, is estimated by

aligning the live depth map, after bilateral filtering and pro-

jection to a vertex map Vl and normal map Nl with pix-

els ul, to the rendered maps with iterative closest point us-

ing projective data association and a point-to-plane error,

Eicp(T̃WCl
), as described in [23]:

ur = Kπ(T−1
WCr

T̃WCl
Vl(ul)), (7)

ricp(T̃WCl
,ul) = Nr(ur) · (Vr(ur)− T̃WCl

Vl(ul)), (8)

Eicp(T̃WCl
) =

∑

ul∈Vvalid

ricp(T̃WCl
,ul)

2. (9)

Where Vvalid includes any ul with a corresponding vertex

and normal, where there is a corresponding ur with a valid

vertex and normal, and where Nr(ur) · Nl(ul) < 0.8 and

‖Vr(ur)− T̃WCl
Vl(ul)‖2 < 0.1m.

We minimize this non-linear least squares problem using

the Gauss-Newton algorithm. We linearise T̃WCl
about the

previous estimate with the perturbation, ζ where T̃WC =
exp(ζ)T̄WC . Each row of the |Vvalid| × 6 Jacobian, Jicp,

corresponds to the residual of a given ul ∈ Vvalid:

∂ricp(ζ,ul)

∂ζ
|ζ=0 = −[N⊺

r (ur), (Vl(ul)×Nr(ur))
⊺].

(10)

The Gauss-Newton iteration can then be implemented as

follows (with iteration index t):

ζt = −(J⊺

icpJicp)
−1J

⊺

icpricp, (11)

T̃t+1
WCl

= exp(ζt)T̄t
WCl

. (12)

The 6 × 6 Hessian approximation, J
⊺

icpJicp, and 6 × 1 er-

ror Jacobian, J
⊺

icpricp, are reduced in parallel on the GPU

and solved on the CPU using SVD and back substitution.

We use a three-level coarse-to-fine pyramid scheme with 5

Gauss-Newton iterations per level.

We perform an additional reduction on the GPU to

produce the same system of equations partitioned into

pixels, ul, associated to each instance in Xr(ur) for

pose-graph optimisation and to produce per-instance er-

ror metrics. The error metrics are the ICP RMSE,

(|Vvalid|
−1Eicp(T̃WCl

))
1

2 , and the proportion of validly

tracked pixels
|Vvalid|
|Vl|

. These are used for instance integra-

tion and to check whether local tracking is lost. We consider

local tracking to be lost when the total ICP RMSE is greater

than 0.05m or when at least 10% of the image consists of

instance TSDFs and less than half of the pixels are validly

tracked, in which case we enter relocalisation mode.

3.4. Relocalisation

If the system is lost or we reset the coarse TSDF, we per-

form relocalisation to align the current frame to the current

set of instances (if there are any). We found direct dense

ICP methods using only the volume reconstructions did not

produce accurate results for wide baseline relocalisation as

they are sensitive to the initial pose and small objects were

often ambiguous without texture constraints. Although al-

ternative dense methods may also prove useful here, we

took the approach of using snapshots of sparse BRISK fea-

tures2 (with a detection threshold of 10) projected to 3D

using the depth map. For a given detection of an object if

there is no existing snapshot of the object within 15◦ view

2BRISK v.2 with homogeneous Harris scale space corner detection on

only the highest image resolution.



Snapshots Min. Angle

Sphere

Figure 4: Re-localisation snapshots around an instance.

angle difference, we then add a new snapshot of the object

from that pose (see Figure 4).

To re-localise we perform 3D-3D RANSAC against each

instance where the dot product with the predicted class dis-

tribution is greater than 0.6. We use OpenGV [16] with

a minimum of 5 inlier features (within 2cm) to match each

object individually. If we find one or more matching objects

in the scene, we run a final 3D-3D RANSAC on every point

in the scene (from all objects and the background jointly)

with a minimum of 50 inlier features (within 5cm) to arrive

at a final camera pose. This pose is used to render a new ref-

erence image of the map to produce the constraints required

for the pose graph optimisation described below.

3.5. Object­Level Pose Graph

Our pose-graph formulation is similar to that of [30].

For every frame with a Mask R-CNN detection (including

coarse TSDF resets), we add a new camera pose node to our

graph. When a new instance, index o, is initialised, a corre-

sponding landmark node is added to the graph, defined by

the coordinate frame attached to the centre of the object’s

volume, po. The first camera pose node is fixed and defined

to be the origin of the world frame, F−→W . Each node con-

sists of a full SE(3) transformation from object to World,

TWO, or camera to world, TWC , and the measurements are

SE(3) relative pose constraints between nodes.

Each relative measurement is derived by employing only

the ICP error terms which correspond to the pixels of the

specific object o (for object-camera constraints), or the

instance-agnostic background a (for camera-camera con-

straints). To ensure that the measurement coincides with

the minimum of the partitioned set’s quadratically approx-

imated error function, an additional Gauss-Newton step is

performed using the partitioned Jo
icp (see Section 3.3) to

produce ‘virtual’ relative pose measurements T̃′a
Ck−1Ck

, be-

tween camera nodes, and T̃′o
OCk

, between camera and land-

mark objects. The resulting measurement errors for the

graph factors are:

ecc(TCk−1W ,TWCk
) = log((T̃′a

Ck−1Ck
)−1TCk−1WTWCk

),
(13)

eoc(T
o
OW ,TWCk

) = log((T̃′o
OCk

)−1To
OWTWCk

). (14)

For every relative measurement, we approximate the in-

verse measurement covariance by Σ−1 = J
o⊺
icpJ

o
icp. How-

ever, since the way perturbations are modelled differs be-

tween the ICP algorithm and the employed pose graph op-

timiser we need to transform the covariance by consider-

ing the relation between the local perturbations. The graph

optimiser models perturbations ζpg to relative pose mea-

surements via T̃′o
O′Ck

= T̃′o
OCk

exp(ζpg) (equivalently for

T̃′a
Ck−1Ck

). To ensure our information matrix properly cor-

responds to perturbations ζpg, it is necessary to convert

Jicp. As can be seen in Eq. 12, Jicp is with respect to per-

turbations applied via T̃W ′Ck
= exp(ζicp)T̃WCk

. The re-

lation between ζicp and ζpg is:

exp(ζicp)TWCk
= To

WOT̃
′o
OCk

exp(ζpg), (15)

ζicp = log(TWCk
exp(ζpg)T

−1
WCk

) = AdjTWCk

ζpg,

(16)

Jpg =
∂ζicp

∂ζpg

= AdjTWCk

, (17)

where AdjTWCk

is the Adjoint of TWCk
such that

exp(AdjTWCk

ζpg) = TWCk
exp(ζpg)T

−1
WCk

as described

in [10]. The derivation for camera nodes results in the same

transformation and the new information matrix therefore

becomes,

Hpg = J⊺

pg(J
o⊺
icpJ

o
icp)Jpg. (18)

The final error to be minimised in the pose graph is the

sum over all the edges from the camera to objects, O, and

camera to camera, C, given their state, the measurement,

and the information matrix,

Epg =
∑

cc∈C

Lσ(e
⊺

ccHpgecc) +
∑

oc∈O

Lσ(e
⊺

ocHpg, eoc),

(19)

where Lσ denotes a robust Huber kernel. We solve this

graph in the g2o [17] framework using sparse Cholesky de-

composition and Levenberg-Marquart. After optimisation

we update the pose of the instance TSDFs and the camera

before initialising the new coarse TSDF to that pose and

continuing with local tracking.

As described in Section 3.1, when a landmark is re-

sized, its centre, po, can also be adjusted from F−→O to a

new frame F−→O′ via the transform TO′O . In this case we

also transform the corresponding node variable, To
WO′ =

To
WOT

−1
OO, as well as the measurement for every edge con-

nected to that node, T̃′o
O′C = TO′OT̃

′o
OC .
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Figure 5: Comparison of office sequence trajectory before loop-closure (left) and after loop-closure (right).

4. Experiments

We evaluate the performance and memory usage of our

system on a Linux system with an Intel Core i7-5820K CPU

at 3.30GHz, and an nVidia GeForce GTX1080 Ti GPU with

11.175GB of memory. Our core pipeline is implemented in

Python and uses Tensorflow for instance predictions, and

Python wrappers around other core components which are

developed in C++ and/or CUDA, such as KFusion, g2o,

BRISK, and OpenGV. Our input is standard 640× 480 res-

olution RGB-D video. To allow for reproducibility, instead

of running an asynchronous CNN thread we here perform

predictions synchronously every 30 frames.

Our Mask-RCNN uses the ResNet-101 base model [14]

(up to the conv4 x block) and is finetuned from the publicly

available tensorpack implementation and weights [40].3

For finetuning on indoor scenes we use the NYUv2 dataset.

We lock the ResNet-101 weights from the COCO pre-

training and fine-tune the remaining layers. As the COCO

dataset consists of 80 classes we re-size and reinitialise the

class-specific upper layers of Mask R-CNN and Faster R-

CNN. We train using stochastic gradient descent with mo-

mentum of 0.9 for 30 epochs with a learning rate of 0.001.

4.1. Loop Closure and Map Consistency

To evaluate the performance of our system while repeat-

edly viewing a scene of instances we captured a 3,685 frame

sequence of an indoor office scene. We tailored this se-

quence to evaluate the consistency of our map in the pres-

ence of poorly constrained (planar floor) geometry and ICP

drift, after which we loop over the same scene again. The

pose-graph and loop closure is shown in Figure 5, it can

be seen that despite the accumulated drift, the system re-

localises and corrects the pose graph, this allows the previ-

ously reconstructed objects to be correctly associated in fu-

ture frames. On the entirety of the trajectory our system re-

3http://models.tensorpack.com

constructed 105 landmark object instances, however, it must

be noted that despite our filtering mechanisms, a build up of

noisy partially reconstructed sub-objects still occurs.

4.2. Reconstruction Quality

To evaluate the reconstruction quality we use objects

from the YCB dataset which provides ground truth mod-

els [1] and reconstruct discovered objects from sequence

0001 of the public YCB video dataset [41]. Figure 6 shows

a qualitative comparison against the ground truth. The miss-

ing portion of the cracker box was caused by an occlusion

by another object, and a missed foreground detection on one

of the few frames where the cracker box was unoccluded.

1

2

3

4

Fusion++

Ground Truth

Figure 6: Reconstruction quality vs ground truth from se-

quence 0001 of the public YCB video dataset [41].

4.3. RGB­D SLAM Benchmark

We evaluate the trajectory error of our system against the

baseline approach of simple coarse TSDF odometry, i.e. us-

ing the same coarse resetting background without instances

layered on top, and without loop-closure pose graph opti-

misation. Table 1 shows the results. It can be seen that in

all but one of the sequences evaluated our Fusion++ system

improved upon the baseline approach (while providing an

inventory of objects as Figure 1 visualises for the fr2 desk

sequence). It is also worth noting that our system does

http://models.tensorpack.com


Figure 7: GPU memory usage and per-frame wall clock

scaling by number of objects on the office sequence.

not achieve state-of-the-art performance on these sequences

such as [38, 22], and would require additional work, such as

including joint depth and photometric tracking, to become

competitive. We focused on a usable object map here and

leave accuracy of motion tracking for future work.

Table 1: RGB-D SLAM Benchmark ATE RMSE (m).

Sequence TSDF Odometry Fusion++

fr1 desk 0.066 0.049

fr1 desk2 0.146 0.153

fr1 room 0.305 0.235

fr2 desk 0.342 0.114

fr2 xyz 0.022 0.020

fr3 long office 0.281 0.108

4.4. Memory and Run­time Analysis

Memory usage: We use the office sequence to evaluate

the run-time performance and memory usage of our system.

As memory usage scales cubically with the size of a TSDF,

it is significantly more efficient to compose a map of many

relatively small, highly detailed, volumes in dense areas of

interest than to use one large one with a resolution equal to

the smallest. After loading the CNN and image buffers, our

remaining ∼7GB GPU memory budget (and 10 bytes per

voxel) would allow a single 9003 volume or, as here, a 2563

background volume and up to 2.5K object volumes with di-

mension 643, 2MB. Our object volumes dynamically vary

up to 1283 and on our office sequence used 377MB for 105

objects (∼4MB/object), as shown in Figure 7. Of course,

more efficient alternatives such as an octree or voxel hash-

ing can also be used to directly eliminate wasted free-space

voxels, and are also directly applicable to our approach.

Runtime performance: Our system, although not real-

time, scales well with the number of objects. Excluding re-

localisation on the office sequence the average frame rate

was 4-8Hz (shown in Figure 7), with an average additional

computational cost of 1ms per object. A more detailed

breakdown of the runtime performance of different compo-

nents and their scaling factors is given in Table 2.

Table 2: Run-time analysis of system components (ms)

with approximate scaling performance on office sequence.

Component Base (ms) Scaling

Every frame

Tracking + coarse TSDF 35 constant

Raycast all TSDFs 25 +0.5/vis. object

Object integration 15 +1.6/vis. object

On detection frames

Mask R-CNN thread 260 constant

Detection point-cloud 10 constant

New object initialisation - +30/new object

Object resize+mask fuse - +20/vis. object

TSDF reset/re-localisation

Relocalisation 780 +65/snapshot

Pose-graph optimisation 80 +2/object

5. Conclusions

We have shown consistent instance mapping and classi-

fication of numerous objects of previously unknown shape

in real, cluttered indoor scenes. Our online and near real-

time system, which is built from modules for image-based

instance segmentation, TSDF fusion and tracking, and pose

graph optimisation, makes a long-term map which focuses

on the most important object elements of a scene with vari-

able, object size-dependent resolution.

A number of shortcomings of the current approach re-

main to be addressed in future work. There is a balance to

be struck between filtering detections and providing good

coverage of a scene, and even with the existence probability

and deletion mechanism detailed here, over time spurious

detections result in a growing clutter of partial object recon-

structions. More thorough object detection precision/recall

evaluations as well as semantic accuracy metrics will as-

sist in this. A learned mechanism for filtering and recon-

structing these objects, such as [7] may prove useful in this

regard, or combining view-based segmentation and classi-

fication with 3D methods which take advantage of object

databases such as ShapeNet [2].

There is also significant scope in future to better combine

information from multiple duplicate objects seen from dif-

ferent views to reconstruct a single better model, rather than

maintaining separate TSDFs for each. Our object-oriented

representation can also naturally be extended to model mov-

ing objects with individually changing poses. This attribute

would be particularly useful when reasoning about dynamic

applications in robotics or augmented reality.
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