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Abstract

In this paper, we present a new unsupervised and unified
densely connected network for different types of image fu-
sion tasks, termed as FusionDN. In our method, the densely
connected network is trained to generate the fused image con-
ditioned on source images. Meanwhile, a weight block is ap-
plied to obtain two data-driven weights as the retention de-
grees of features in different source images, which are the
measurement of the quality and the amount of information
in them. Losses of similarities based on these weights are
applied for unsupervised learning. In addition, we obtain a
single model applicable to multiple fusion tasks by applying
elastic weight consolidation to avoid forgetting what has been
learned from previous tasks when training multiple tasks se-
quentially, rather than train individual models for every fusion
task or jointly train tasks roughly. Qualitative and quantitative
results demonstrate the advantages of FusionDN compared
with state-of-the-art methods in different fusion tasks.

Introduction

Image fusion is a significant branch of image enhancement
and has been applied in military and civilian fields, such
as computer vision and surveillance. Due to limitations of
devices and techniques, the image captured by one type
of sensor or under a single shooting setting cannot char-
acterize all the information in the scenario. For example,
visible images are affected by the light condition and in-
frared images cannot present details (Ma, Ma, and Li 2019;
Ma et al. 2016). Images taken by common devices can
only capture details within a very limited range, resulting in
under/over-exposure regions. Also, under a certain focal set-
ting of optical lens, only the objects within the depth-of-field
(DOF) have sharp appearances while others are blurred (Liu
et al. 2017b). Under these circumstances, more images taken
by different sensors or under different settings are needed
to describe the scenario in an all-round way. However, the
large amount of redundant information in these images is a
waste of storage space. Thus, the target of fusion is to pre-
serve the vital information in them and merge it into a single
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image. Then the fused result with more high-quality infor-
mation can provide better visual perception.

According to imaging principles, image fusion tasks can
be broadly divided into two categories, such as fusing
images obtained by multi-modality imaging and by digi-
tal photography. Many traditional methods have been pro-
posed to solve these kinds of fusion problems respectively.
These methods can be divided into spatial-domain meth-
ods and transform-domain methods (Zhang et al. 2020). In
spatial-domain methods, fusion is completed based on small
blocks or regions (Zhang, Bai, and Wang 2017). Transform-
domain methods transform source images to other domains,
and the fusion process is completed in these transformed
domains, including multi-scale transform (e.g., pyramid,
wavelet, shearlet, discrete coscine transform), sparse repre-
sentation (Zhang et al. 2018), hybrid (Paramanandham and
Rajendiran 2018), subspace and other methods.

In recent years, due to the strong ability of extracting im-
age features, deep learning has been successfully applied
to image fusion. i) For multi-modality images, (Liu et al.
2017a) proposed a siamese convolutional network to gener-
ate a weight map for fusing medical images. In (Li and Wu
2018), the encoding network and the decoder are designed
to extract and fuse features for the infrared and visible im-
age fusion and the method is also applied to multi-focus im-
age fusion. Also in infrared and visible image fusion, Fu-
sionGAN (Ma et al. 2019) and its variants (Ma et al. 2020;
Xu et al. 2019) established an adversarial game between
a generator and a discriminator. The discriminator forces
fused images to have more details in visible images. In re-
mote sensing image fusion, (Masi et al. 2016) proposed a
CNN for projection, mapping, and reconstruction to solve
the pansharpening problem. ii) For digital photography im-
ages, for the first time, (Prabhakar, Srikar, and Babu 2017)
introduced deep learning in multi-exposure image fusion by
building a novel CNN and applying MEF-SSIM to real-
ize unsupervised learning. In (Liu et al. 2017b), for fusing
multi-focus images, a deep CNN trained by high-quality im-
age patches and corresponding artificially made blurred ver-
sions is adopted to encode a direct mapping between source
images and the focus map.

However, for different types of source images, the vital in-
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formation varies greatly. For example, as representations of
multi-modality images, infrared images represent the ther-
mal radiation information with high contrast pixel intensi-
ties, while visible images mainly capture the reflected light
information with abundant gradient variations. In images ob-
tained by digital photography, features to be extracted are
the objects with clearer representation. Nevertheless, the ex-
traction process is difficult to implement in accordance with
a uniform rule. Some deep learning-based methods solve it
by training the model on the dataset of one fusion task and
applying the trained model to other tasks. But due to lack of
training on other datasets, the fused results are unsatisfac-
tory. Moreover, the major stumbling block in utilizing deep
learning for image fusion is the lack of ground-truth fused
images for supervised learning. Some methods solve this
problem by artificially making ground-truth images. How-
ever, for the image fusion problem, sometimes there is no
uniform standard to measure whether the artificially made
ground-truth images are appropriate or not. And it is not
only time-consuming and demanding but also difficult to be
universal for different fusion tasks.

To overcome these challenges, in this paper, we pro-
pose a unified densely connected network for image fu-
sion that overcomes catastrophic forgetting, termed as Fu-
sionDN. Given two source images, the densely connected
network is applied to generate the fused image. Meanwhile,
a weight block is applied to obtain two data-driven weights
as the retention degrees of features in different source im-
ages. Thus, for all fusion tasks, ground-truth fused images
are not required. In addition, rather than train different mod-
els for different fusion tasks individually, we obtain a sin-
gle model applicable to multiple fusion tasks by applying
elastic weight consolidation (EWC) to avoid forgetting what
has been learned from previous tasks when training multiple
tasks sequentially. Both qualitative and quantitative results
reveal the advantages of FusionDN compared with state-of-
the-art methods.

Contributions of our work include the following aspects:

• Considering the lack of ground-truth images as the stum-
bling block in image fusion, we propose a new unsuper-
vised network for image fusion. Since the loss function is
data-driven, the network can be applied to different fusion
tasks, i.e., it is a unified network for image fusion.

• We implement a single model to accomplish different fu-
sion tasks. It overcomes the disadvantage of training the
model only on single fusion task in existing methods, and
overcomes the storage and computation issues, or catas-
trophic forgetting. Thus it is not only a unified framework,
but also a unified model for several fusion tasks. The code
is available at: https://github.com/hanna-xu/FusionDN.

Proposed Method

Problem Formulation

First of all, it should be noted that there are differences
between source images of different fusion tasks. Some of
them are single-channel and some are three-channel (usu-
ally RGB) images. If source images are three-channel data,
we convert them from RGB to YCbCr color space. We are

DenseNet
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I1

I2

If

ω1 ω2

Figure 1: Overall procedure of our proposed FusionDN.

devoted to fusing the Y channel (luminance channel) values,
as the structural details and the brightness variation are in
this channel. And values of Cb and Cr channels (chromi-
nance channels) are fused in a traditional way. Then, the
fused components of these channels are transferred to RGB
color space to obtain the final fused image. In this way, all
fusion problems are unified into the single-channel image
fusion.

Given two single-channel source images I1 and I2, since
the vital information in different types of images varies
greatly, as a unified framework, it is difficult to predeter-
mine the features to be extracted and fused. In view of this
situation, rather than designing feature extraction and recon-
struction methods, from a new perspective we determine the
retention degrees of features of different source images in
the fused image according to their own properties. Since this
retention degree varies with the specific source image, our
method is a data-driven method by applying two data-driven
weights, i.e., ω1 and ω2. They are determined by the specific
properties of images instead of pre-setting artificially in ad-
vance. As shown in Figure 1, the weight block is employed
to generate the weights of different source images and then
feed them into the loss function of DenseNet. The DenseNet
is trained to extract and reconstruct the features of source
images according to the weights and sub loss functions.

As for assessing the weight of each source image, the
primary consideration is to preserve the higher-quality in-
formation in images with a higher weight. For example, it
is embodied in the regions with less noise in visible im-
ages compared with corresponding infrared images, the ob-
jects within the DOF with sharper appearance in multi-focus
images, the objects with more suitable brightness and less
distortion in multi-exposure images and so on, as shown
in Figure 2(a)-(c). Therefore, to evaluate the quality of the
information contained in each source image, deep neural
networks for image quality assessment (IQA) (Bosse et al.
2017) is employed here to realize the assessment. For ex-
ample, it assesses whether the source image quality declines
due to problems such as Gaussian blur, noise, compression
and local block-wise distortions of different intensity. More-
over, because the original high-quality images are difficult to
obtain or these images do not really exist, we employ the no-
reference (NR) model instead of the full-reference model.
Then, we can obtain two image quality scores, i.e., IQA1

and IQA2, of I1 and I2, correspondingly.
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Figure 2: Some example patches of different fusion tasks.
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Figure 3: Illustration of the specific process of weight block.

Nevertheless, there is a problem that IQA is merely the
evaluation of image quality regardless of other aspects of
the image. A typical example is shown in Figure 2(d). The
visible patch has a higher image quality compared with the
infrared patch but the infrared patch has a more complete
scenario representation. Intuitively, we prefer that the infor-
mation in the infrared patch be preserved more in the fused
image. This is the reflection of another fusion criterion. In
theory, the more information from source images preserved
in the fused image, the better. While the amount of infor-
mation is not within the measurement of image quality. To
tackle this problem, in addition to NR-IQA, we apply the
objective metric entropy to measure the amount of informa-
tion in each source image on the basis of information theory.
Mathematically, it is defined as follows:

EN = −
∑L−1

l=0
pllog2pl, (1)

where L is the number of gray levels and generally set as
256. pl is the probability of the corresponding level. On
the one hand, the larger value of EN means that there is
more information contained. On the other hand, EN can
be affected by noise easily. Solely relying on EN to assign
weights may result in a great deal of noise and distortions in
the fused result. Complementarily, IQA can assess the noise
and other problems of reducing image quality.

Therefore, the two metrics IQA and EN can complement
and make up for each other’s weakness. So we take both of
the quality and the amount of information into consideration
to get a more comprehensive evaluation criterion. With the
function F applied for some subsequent operations to deter-
mine the final weights ω1 and ω2, the specific process in the
weight block can be illustrated as Figure 3.

Loss Functions

With a weight λ to control the trade-off between the qual-
ity and the amount of information in source images, we can
obtain their respective scores, i.e., s1 and s2:

s1 = IQA1 + λEN1, s2 = IQA2 + λEN2. (2)

The final weights are assigned according to the scores.
Since the difference between the scores is much smaller
compared with the values themselves, the weights obtained
by direct normalization cannot reflect the difference be-
tween them. Thus, to enhance and embody the difference in
weights, s1 and s2 are exponentially stretched. With a posi-
tive number c to scale values and the subsequent normaliza-
tion processing, the final weights of source images can be
defined as follows:

ω1 =
exp( s1

c
)

exp( s1
c
) + exp( s2

c
)
, ω2 =

exp( s2
c
)

exp( s1
c
) + exp( s2

c
)
. (3)

Eqs. (2)-(3) are the operations in F in Figure 3. ω1 and ω2

are employed in the loss function of DenseNet to control the
retention degrees of features in different source images.

The higher the retention degree, the higher the similar-
ity between the fused image and the source image. As for
constraining the similarity between different images, struc-
tural similarity index measure (SSIM) is the most widely
used metric which models the loss and distortion according
to the similarities in light, contrast and structure informa-
tion (Wang et al. 2004). Mathematically, SSIM between im-
ages x and y can be defined as follows:

SSIMx,y =

∑

xi,yi

2µxiµyi + C1

µ2
xi

+ µ2
yi

+ C1

·

2σxiσyi + C2

σ2
xi

+ σ2
yi

+ C2

·

σxiyi + C3

σxiσyi + C3

,

(4)

where µ denotes the mean value, σ denotes the standard
deviation/covariance, C1, C2 and C3 are the parameters to
make the metric stable. Thus, the loss of DenseNet based on
SSIM can be formulated as:

LSSIM = ω1(1− SSIMIf ,I1) + ω2(1− SSIMIf ,I2). (5)

While in some task, the features to be extracted may be
the image itself. For example, the features to be preserved in
multi-focus images are the region within the DOF. In other
words, the fused image is expected to reconstruct the fo-
cused region in the source image and not to mix the blurred
information in the other one as much as possible. For such
high standard reconstruction problem, it is not enough to
solely rely on the three aspects of constraints defined in
SSIM. So, in additional to the pixel-wise similarity, we also
encourage If to represent the high perceptual similarity with
I1 and I2. Therefore, we adopt the pre-trained VGG-16
network as the feature extractor and duplicate the single-
channel I1 and I2 to make RGB channels before feeding
them into the VGG network. The output of the convolu-
tional layers before max-pooling layers is the extracted fea-
ture map used in the perceptual loss, which can be defined
as:

Lper(x, y) =
∑

j

1

HjWjCj

‖φj(x)− φj(y)‖
2

2
(6)
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Figure 4: Architecture of the densely connected network (DenseNet). BN: batch normalization. ReLU/tanh: activate function.

where φj(x) are the extracted feature map by the con-
volutional layer before the jth max-pooling layer of size
Hj × Wj × Cj . Then the perceptual loss of DenseNet can
be specifically defined as:

Lper = ω1Lper(If , I1) + ω2Lper(If , I2). (7)

In the perceptual loss, features extracted from higher lay-
ers in VGG-16 cannot reconstruct detail information, such as
texture and exact shape, but only content and overall spatial
structure. In addition, in order to make the fused image ex-
hibit sharper appearance, we add another term to constrain
the gradient difference to slightly improve the results. The
gradient loss is defined by the squared Frobenius norm be-
tween the gradient variations of images x and y as Eq. (8)
and the gradient loss of DenseNet can be obtained as Eq. (9):

Lgra(x, y) =
1

HW
‖∇x−∇y‖2F , (8)

Lgra = ω1Lgra(If , I1) + ω2Lgra(If , I2). (9)

These three components compose the loss function. With α
and β controlling the trade-off, it can be defined as:

L = LSSIM + αLper + βLgra. (10)

Network Architecture of DenseNet

There are five common convolutional layers and four blocks
in our network DenseNet to generate If . The input of the
network is the concatenated I1 and I2. As for the first six lay-
ers, since it has been proven that CNNs can be significantly
deeper and can be trained efficiently if they contain shorter
connections between layers close to the input and those
close to the output, we employ the densely connected lay-
ers from densely connected convolutional networks (Huang
et al. 2017) in our DenseNet. Short direct connections are
built between each layer and all layers in a feed-forward
fashion, as shown in Figure 4, which are able to address the
issue of vanishing gradients and strengthen feature propaga-
tion while substantially reducing the number of parameters
in the network (Zhang, Sindagi, and Patel 2018). Then, the
features extracted by these layers are fed into subsequent
four common layers to reduce the channels of feature maps
gradually and generate the final fused image.

Table 1: Input/output channels of all convolutional layers.
Input channels Output channels

Common layer 1 2 48

Block 1
conv1 conv2 conv1 conv2

48 48 48 48

Block 2
conv1 conv2 conv1 conv2

96 48 48 48

Block 3
conv1 conv2 conv1 conv2
144 48 48 48

Block 4
conv1 conv2 conv1 conv2
192 48 48 48

Common layer 2 240 240

Common layer 3 240 128

Common layer 4 128 64

Common layer 5 64 1

Moreover, in the densely connected layers, we apply the
block composed by two convolutional layers to replace the
common convolutional layer. By introducing the additional
convolutional layer, the block can be trained to learn higher
level features, which are used in short direct connections. In
this way, the number of parameters can be reduced compared
with building short connections for all convolutional layers
when we deepen our DenseNet.

The specific settings of all layers are shown in Table 1.
To avoid information loss, the reflect padding is applied be-
fore convolution. All kernel sizes are set as 3 × 3 and all
strides are set as 1 with no pooling layers. To accelerate deep
network training by reducing internal covariate shift, batch
normalization is applied.

Single Model for Multi-Fusion Task with EWC

The diversity of source images in different fusion tasks leads
to the difference of the features extracted by the network,
which is directly reflected in parameters. Therefore, rather
than training different models with the same architecture for
different tasks individually, we are committed to training a
single model for all fusion tasks. In other words, we pre-
fer to employ a single model to continuously learn different
tasks without forgetting what has been learned from previ-
ous tasks. In this way, all the trained fusion tasks can be
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data1 data2 data3

Task1: Task2: Task3:

DenseNet DenseNet DenseNet ……

Figure 5: Intuitive description of data flow between different
tasks and the process of EWC. Thin lines indicate that only
a small subset of data are kept, which are merely used to
calculate Fi and not applied to train DenseNet.

accomplished with the same set of parameters.
The simplest solution is to jointly train multiple tasks,

and it has been shown to be much more effective than se-
quentially training. Nevertheless, as the number of tasks in-
creases, there are two urgent problems. One is that always
keeping the data of previous tasks results in the storage is-
sue. The other one is that using all the data for training
causes the computation issue, including the difficulty and
time cost of computation. Therefore, we adopt the strat-
egy of sequentially training different fusion tasks instead of
jointly training. To avoid the most serious catastrophic for-
getting problem caused by sequentially training, the EWC
algorithm is applied to safeguard against this (Kirkpatrick et
al. 2017).

In addition to the loss of each task itself, i.e., L(θ) in
Eq. (11), an extra regularization term is also included in the
total loss function of the current task L′(θ). To retain what
the network has learned from previous tasks, the squared dis-
tances between parameter values of the current task θi and
those of the previous task θ∗i are added up to form this term.
The subscript i represents the ith parameter in the network.

L′(θ) = L(θ) + γ
∑

i Fi(θi − θ∗i )
2, (11)

where Fi represents the penalty value of corresponding
squared distance. If θ∗i has an important impact on what has
been learned before, the squared distance between θi and θ∗i
should be small and we give such squared distance a larger
penalty value Fi. Fi can be assigned as the diagonal terms
of Fisher information matrix and can be easily approximated
by computing square of gradients with the data of previous
tasks, as defined in Eq. (12):

Fi = E

[

(
∂

∂θ∗i
log p(D∗|θ∗)

2
|θ∗

]

, (12)

where D∗ represents the data of previous tasks. Thereinto,
log p(D∗|θ∗) can be approximately replaced by −L(θ∗).
With γ to control the trade-off, the loss function of current
task can be formulated as Eq. (11). For multiple tasks, the se-
quential training process and the data flow can be intuitively
shown in Figure 5. In our model, θ are the parameters in
DenseNet and L(θ) is the loss function defined in Eq. (10).
Then, Eq. (11) can be specifically converted as follows:

L′ = LSSIM + αLper + βLgra + γ
∑

i Fi(θi − θ∗i )
2. (13)

DenseNet is designed for fusing images of one channel.
If the source images are three-channel images, the fused Y
channel value can be obtained by DenseNet. And as for val-
ues of chrominance channels (Cb and Cr channels), if C1

and C2 are not equal to τ , they can be fused as follows:

Cf =
C1(|C1 − τ |) + C2(|C2 − τ |)

|C1 − τ |+ |C2 − τ |
, (14)

Otherwise, Cf can be directly set as τ . C1 and C2 are the
Cb/Cr channel values of two source images, and Cf is the
corresponding fused channel value of the fused image. τ is
set as 128. Then, the final fused image in RGB color space
can be obtained by the corresponding color space transform
formula.

Experimental Results and Discussions

Training Details

We perform FusionDN with EWC on three fusion tasks:
1) visible and infrared image fusion; 2) multi-exposure im-
age fusion; and 3) multi-focus image fusion. These are the
specific tasks in Figure 5. The training and test sets are
from three publicly available datasets: RoadScene for task11,
the dataset provided by (Cai, Gu, and Zhang 2018)2 for
task2, and Lytro Multi-focus3 for task3. Thereinto, Road-
Scene dataset is a new infrared and visible image dataset
released by ourselves to remedy shortcomings in existing
datasets. The new dataset has 221 aligned Vis and IR image
pairs containing rich scenes such as roads, vehicles, pedes-
trians and so on. These image pairs are highly representative
scenes from the FLIR video4. We preprocess the background
thermal noise in the original IR images, accurately align the
Vis and IR image pairs, and cut out the exact registration re-
gions to form this dataset. It solves the problems in existing
datasets such as few image pairs, low spatial resolution and
extreme lack of detailed information in infrared images.

Source images in the training datasets are cropped to
patches of size 64×64. As for multi-focus images, due to
the lack of aligned dataset, the source images are enlarged
and flipped (either horizontally or vertically) to obtain more
training data. λ is set as 12, 15 and 11, respectively. c is
set as 13, 8 and 1 correspondingly. α is set as 5e-5 and β
is set as 3e3. The parameters in DenseNet are updated by
RMSPropOptimizer with the learning rate set as 1e-4. In
the training phase, 177 Vis/IR pairs, 60 under/over-exposure
pairs, and 10 far/near-focused pairs are used for training, re-
spectively. In the testing phase, the numbers of image pairs
in these 3 fusion tasks are 44, 30 and 10 correspondingly.

Results

We conduct qualitative and quantitative experiments to vali-
date the effectiveness. For each task, we compare our results
with five state-of-the-art methods respectively. These com-
parative methods contain traditional, deep learning-based

1https://github.com/hanna-xu/RoadScene
2http://rit-mcsl.org/fairchild//HDRPS/HDRthumbs.html
3https://mansournejati.ece.iut.ac.ir/content/lytro-multi-focus-

dataset
4https://www.flir.com/oem/adas/adas-dataset-form/
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Figure 6: Qualitative comparison of FusionDN with corresponding state-of-the-art methods on infrared and visible (the first and
second columns), multi-exposure (from the third to the fifth columns), and multi-focus (the last three columns) image pairs.

and general fusion methods, such as HMSD (Zhou et al.
2016), GTF (Ma et al. 2016), FPDE (Bavirisetti, Xiao, and
Liu 2017), DenseFuse (Li and Wu 2018) and FusionGAN
(Ma et al. 2019) for infrared and visible fusion, GFF (Li,
Kang, and Hu 2013), DSIFT (Liu and Wang 2015), GBM
(Paul, Sevcenco, and Agathoklis 2016), Deepfuse (Prab-

hakar, Srikar, and Babu 2017) and FLER (Yang et al. 2018)
for multi-exposure fusion, MSTSR (Liu, Liu, and Wang
2015a), DSIFT (Liu, Liu, and Wang 2015b), GBM, CNN
(Liu et al. 2017b) and DenseFuse for multi-focus fusion.

Qualitative Comparisons The qualitative results are intu-
itively shown in Figure 6. For the infrared and visible image
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Table 2: Mean values on infrared and visible image fusion.
Bold indicates the best and italics denote the second best

EN MG VIF NABF

HMSD 7.3414 0.0304 1.0542 0.2404
GTF 7.4717 0.0150 0.4664 0.0599

FPDE 6.9044 0.0249 0.4428 0.1575
DenseFuse 7.2588 0.0199 0.4530 0.2131

FusionGAN 6.9150 0.0138 0.3466 0.0778
FusionDN (ours) 7.5832 0.0305 1.0915 0.2668

Table 3: Mean values on multi-exposure image fusion.
SD EN SSIM VIF

GFF 0.1974 7.3990 1.9492 2.5763
DSIFT 0.1760 7.2753 1.9525 2.1207
GBM 0.1417 6.9354 1.9628 3.1403

Deepfuse 0.1467 6.8950 1.9649 1.9497
FLER 0.1296 6.8322 1.9582 2.4506

FusionDN (ours) 0.1999 7.4488 1.9654 5.3011

fusion, our results have two advantages. First, our results can
preserve the high contrast in the infrared image by highlight-
ing thermal targets or the highly illuminated regions in the
visible image. The second one is that on the basis of retain-
ing the thermal radiation information, our method can add
more texture details to the background and objects to make
them more similar to those in the visible image. As for multi-
exposure image fusion, our results show more evidently ap-
propriate exposure compared with others. By avoiding the
dark regions in other methods, our results can exhibit more
clear details, as shown in the red boxes in the third to fifth
columns. In multi-focus image fusion, although we do not
artificially produce a large number of clear and blurred im-
ages as the training data, nor do we directly extract focused
regions and fill them in fused results, we also achieve com-
parable results. As shown in the last three columns, our re-
sults can preserve the sharp appearance in both source im-
ages as our method tries to reconstruct the focused regions
in source images as much as possible after judging the rela-
tive blurring between them. For ease of observation, regions
in red boxes are highlighted and shown in the last row. It
is worth noting that since we apply a single model to per-
form multi-fusion tasks and have previously trained it on
the multi-exposure fusion task, the model can also modify
the over-exposure region in multi-focus images, as shown in
green boxes in the seventh column, which are highlighted
and shown in the lower right corner.

Quantitative Comparisons We also perform objective
metrics to evaluate fused results, and different appropriate
metrics are used for different tasks. For each task, the first
two metrics are devoted to evaluating the properties of fused
images, while the rest two metrics evaluate the relevance be-
tween fused images and source images. More concretely, we
employ the entropy (EN) (Liu et al. 2014), mean gradient
(MG) and standard deviation (SD) to evaluate the amount of
information, edges and textures, and contrast in the fused
image. And the visual information fidelity (VIF) (Sheikh

Table 4: Mean values on multi-focus image fusion.
SD EN VIF SCD

MSTSR 0.1909 7.3801 1.1465 2.5763
DSIFT 0.2044 7.4603 1.2848 2.1207
GBM 0.1875 7.4596 1.3592 3.1403
CNN 0.2040 7.4586 1.2740 1.9497

DenseFuse 0.2195 7.5783 1.3454 2.4506
FusionDN (ours) 0.2312 7.6800 1.5949 5.3011
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Figure 7: Changes of the content loss with (i.e., the left plot)
or without (i.e., the right plot) EWC.

and Bovik 2006), petrovic metric parameter (NABF) (Petro-
vic and Xydeas 2005), SSIM (Wang et al. 2004) and sum
of the correlations of differences (SCD) (Aslantas and Ben-
des 2015) are used to evaluate the distortion, noise or ar-
tifacts added due to fusion, similarity, and amount of com-
plementary information transferred between the fused image
and source images. The specific results are shown in the Ta-
bles 2–4. The optimal mean values of our method on these
metrics show that our results contain more information, tex-
ture details, stronger contrast, and a higher similarity with
the source image with less distortion or artifacts.

Comparative Experiments In our method, we employ
EWC to train a single model for all tasks without catas-
trophic forgetting. To validate its effectiveness, we sequen-
tially train the three tasks without EWC. The difference is
shown in the changes of the content loss in Figure 7. With
EWC, when we train the next task, the content losses of pre-
vious tasks are basically the same as the losses when they
were trained, as shown in the left plot of Figure 7. However,
without EWC, because of the differences between specific
fusion tasks, when we train the model on the next fusion
task, the content losses of previous tasks increase evidently,
as shown in the right plot of Figure 7, which is the represen-
tation of a decline in the performance of the single model
on previous tasks. Thus, with EWC, FusionDN can obtain a
single model applicable to the above three fusion tasks.

Conclusion

In this paper, a new unsupervised deep learning fusion
method, called FusionDN, is proposed by using a unified
densely connected network to generate fused images. A
weight block is applied to obtain two data-driven weights as
the retention degrees of features in different source images.
These weights are obtained based on measuring the quality
and the amount of information in source images. Moreover,
we obtain a single model applicable to multiple fusion tasks
that overcomes catastrophic forgetting and avoids the stor-
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age and computation issues of jointly training. This single
model can generate high-quality fused results in infrared and
visible, multi-exposure, and multi-focus image fusions com-
pared with state-of-the-art methods. Also, based on the FLIR
video, we release a new aligned infrared and visible image
dataset, i.e., RoadScene, which provides a new choice for
image fusion benchmark evaluation.
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