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Cellular-resolution connectomics is an ambitious research direction with the goal of

generating comprehensive brain connectivity maps using high-throughput, nano-scale

electron microscopy. One of the main challenges in connectomics research is developing

scalable image analysis algorithms that require minimal user intervention. Deep learning

has provided exceptional performance in image classification tasks in computer vision,

leading to a recent explosion in popularity. Similarly, its application to connectomic

analyses holds great promise. Here, we introduce a deep neural network architecture,

FusionNet, with a focus on its application to accomplish automatic segmentation of

neuronal structures in connectomics data. FusionNet combines recent advances in

machine learning, such as semantic segmentation and residual neural networks, with

summation-based skip connections. This results in a much deeper network architecture

and improves segmentation accuracy. We demonstrate the performance of the proposed

method by comparing it with several other popular electron microscopy segmentation

methods. We further illustrate its flexibility through segmentation results for two different

tasks: cell membrane segmentation and cell nucleus segmentation.

Keywords: connectomic analysis, image segementation, deep learning, refinement, skip connection

1 INTRODUCTION

The brain is considered the most complex organ in the human body. Despite decades of intense
research, our understanding of how its structure relates to its function remains limited (Lichtman and
Denk, 2011). Connectomics research seeks to disentangle the complicated neuronal circuits embedded
within the brain. This field has gained substantial attention recently thanks to the advent of new serial-
section electron microscopy (EM) technologies (Briggman and Bock, 2012; Hayworth et al., 2014;
Eberle and Zeidler, 2018; Zheng et al., 2018; Graham et al., 2019). The resolution afforded by EM is

sufficient for resolving tiny but important neuronal structures that are often densely packed together,
such as dendritic spine necks and synaptic vesicles. These structures are often only tens of nanometers
in diameter (Helmstaedter, 2013). Figure 1 shows an example of such an EM image and its cell
membrane segmentation. Such high-resolution imaging results in enormous datasets, approaching one
petabyte for only the relatively small tissue volume of one cubic millimeter. Therefore, handling and
analyzing EM datasets is one of the most challenging problems in connectomics.

Early connectomics research focused on the sparse reconstruction of neuronal circuits (Bock et al.,
2011; Briggman et al., 2011), meaning they focused reconstruction efforts on a subset of neurons in
the data using manual or semi-automatic tools (Jeong et al., 2010; Sommer et al., 2011; Cardona et al.,
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2012). Unfortunately, this approach requires too much human
interaction to scale well over the vast amount of EM data that can
be collected with new technologies. Therefore, developing
scalable and automatic image analysis algorithms is an
important and active research direction in the field of
connectomics.

Although some EM image processing pipelines use
conventional, light-weight pixel classifiers [e.g., RhoANA
(Kaynig et al., 2015)], the majority of automatic image
segmentation algorithms for connectomics rely on deep

learning. Earlier automatic segmentation work using deep
learning mainly focused on patch-based pixel-wise
classification based on a convolutional neural network
(CNN) for affinity map generation (Turaga et al., 2010) and
cell membrane probability estimation (Ciresan et al., 2012).
However, one limitation of applying a conventional CNN to EM
image segmentation is that per-pixel network deployment
scaling becomes prohibitively expensive considering the tera-
scale to peta-scale EM data size. For this reason, more efficient
and scalable deep neural networks are important for image
segmentation of the large datasets that can now be produced.

One approach is to extend a fully convolutional neural network
(FCN) (Long et al., 2015), which uses encoding and decoding
phases similar to an autoencoder for the end-to-end semantic
segmentation problem (Ronneberger et al., 2015; Chen et al.,
2016a).

The motivation of the proposed work stems from our recent
research effort to develop a deeper neural network for end-to-end
cell segmentation with higher accuracy. We observed that, like
conventional CNNs, a popular deep neural network for end-to-end
segmentation known as U-net (Ronneberger et al., 2015) is limited
by gradient vanishing with increasing network depth. To address

this problem, we propose two extensions of U-net: using residual
layers in each level of the network and introducing summation-
based skip connections to make the entire network much deeper.
Our segmentation method produces an accurate result that is

competitive with similar EM segmentation methods. The main
contribution of this study can be summarized as follows:

• We introduce an end-to-end automatic EM image
segmentation method using deep learning. The proposed
method combines a variant of U-net and residual CNN
with novel summation-based skip connections to make the
proposed architecture, a fully residual deep CNN. This new
architecture directly employs residual properties within and
across levels, thus providing a deeper network with higher

accuracy.
• We demonstrate the performance of the proposed deep

learning architecture by comparing it with several EM
segmentation methods listed in the leader board of the
ISBI 2012 EM segmentation challenge (Arganda-Carreras
et al., 2015). Our method outperformed many of the top-
ranked methods in terms of segmentation accuracy.

• We introduce a data enrichment method specifically built
for EM data by collecting all the orientation variants of the
input images (eight in the 2D case, including all
combinations of flipping and rotation). We used the

same augmentation process for deployment: the final
output is a combination of eight different probability
values, which increases the accuracy of the method.

• We demonstrate the flexibility of the proposed method on
two different EM segmentation tasks. The first involves cell
membrane segmentation on a fruit fly (Drosophila) EM
dataset (Arganda-Carreras et al., 2015). The second involves
cell nucleus feature segmentation on a whole-brain larval
zebrafish EM dataset (Hildebrand et al., 2017).

2 RELATED WORK

Deep neural networks (LeCun et al., 2015) have surpassed human
performance in solving many complex visual recognition

FIGURE 1 | An example EM image (left) and its manually extracted cellular membrane segmentation result (right) from the ISBI 2012 EM segmentation challenge

(Arganda-Carreras et al., 2015). Scale bar (green): 500 nm.
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problems. Systems using this method can flexibly learn to
recognize patterns such as handwritten digits (Krizhevsky
et al., 2012) in images with increasing layers hierarchically
corresponding to increasing feature complexity (Zeiler and

Fergus, 2014). A major drawback of using deep neural
networks is that they often require a huge amount of training
data. In order to overcome this issue, researchers have started to
collect large databases containing millions of images that span
hundreds of categories (Russakovsky et al., 2015). Largely
thanks to such training datasets, many advanced architectures
have been introduced, including VGG (Simonyan and Zisserman,
2014) and GoogleNet (Szegedy et al., 2015). With these
architectures, computers are now able to perform even more
complex tasks, such as transferring artistic styles from a source
image to an unrelated target (Gatys et al., 2016). To leverage these

new capabilities, researchers are actively working to extend deep
learningmethods for analyzing biomedical image data (Cicek et al.,
2016). Developing such methods for automatic classification and
segmentation of different biomedical image modalities, such as CT
(Zheng et al., 2015) and MRI (Isin et al., 2016), is leading to faster
and more accurate decision-making processes in laboratory and
clinical settings.

Similarly, deep learning has been quickly adopted by
connectomics researchers to enhance automatic EM image
segmentation. One of the earliest applications to EM
segmentation involved the straightforward application of a

convolutional neural network (CNN) for pixel-wise membrane
probability estimation (Ciresan et al., 2012), an approach that
won the ISBI 2012 EM segmentation challenge (Arganda-
Carreras et al., 2015). As more deep learning methods are
introduced, automatic EM segmentation techniques evolve and
new groups overtake the title of state-of-the-art performance in
such challenges. One notable recent advancement was the
introduction of a fully convolutional neural network (FCN)
(Long et al., 2015) for end-to-end semantic segmentation.
Inspired by this work, several modified FCNs have been
proposed for EM image segmentation. One variant combined

multi-level upscaling layers to produce a final segmentation
(Chen et al., 2016a). Additional post-processing steps such as
lifted multi-cut (Beier et al., 2016; Pape et al., 2019) further
refined this segmentation result.

Another approach added skip connections for
concatenating feature maps into a “U-net” architecture
(Ronneberger et al., 2015). While U-net and its variants can
learn multi-contextual information from input data, they are
limited in the depth of the network they can construct because
of the vanishing gradient problem. On the other hand, the
addition of shortcut connections and direction summations

(He et al., 2016) allows gradients to flow across multiple layers
during the training phase. This creates a fully residual CNN
where the architecture is a fusion of the U-net design and
networks with summation-based skip connections, similar to
Fully Convolutional Residual Networks (FC-ResNets)
(Drozdzal et al., 2016) and Residual Deconvolutional
Networks (RDN) (Fakhry et al., 2017). These related studies
inspired us to propose a fully residual CNN for analyzing
connectomics data.

FIGURE 2 | The proposed FusionNet architecture. An illustration of the

encoding path (top to middle) and the decoding path (middle to bottom).

Each intermediate residual block contains a residual skip connection within

the same path, while the nested residual skip connections connect two

different paths.
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Work that leverages recurrent neural network (RNN)
architectures can also accomplish this segmentation task
(Stollenga et al., 2015). Instead of simultaneously
considering all surrounding pixels and computing responses
for the feature maps, RNN-based networks treat the pixels as a

list or sequence with various routing rules and recurrently
update each feature pixel. In fact, RNN-based membrane
segmentation approaches are crucial for connected
component labeling steps that can resolve false splits and
merges during the post-processing of probability maps
(Ensafi et al., 2014; Parag et al., 2015).

3 METHODS

3.1 Network Architecture
Our proposed network, FusionNet, is based on the architecture of
a convolutional autoencoder and is illustrated in Figure 2. It
consists of an encoding path (upper half, from 640 × 640 to 40 ×

40) that retrieves features of interest and a symmetric decoding
path (lower half, from 40 × 40 to 640 × 640) that accumulates the
feature maps from different scales to form the segmentation. Both
the encoding and decoding paths consist of multiple levels
(i.e., resolutions). Four basic building blocks are used to
construct the proposed network. Each green block is a regular
convolutional layer followed by rectified linear unit activation
and batch normalization (omitted from the figure for simplicity).
Each violet block is a residual layer that consists of three
convolutional blocks and a residual skip connection. Each blue
block is a maxpooling layer located between levels only in the

encoding path to perform downsampling for feature
compression. Each red block is a deconvolutional layer located
between levels only in the decoding path to upsample the input

data using learnable interpolations. A detailed specification of
FusionNet, including the number of feature maps and their sizes,
is provided in Table 1.

One major difference between the FusionNet and U-net
architectures is the way in which skip connections are used
(Figure 3). In FusionNet, each level in the decoding path begins
with a deconvolutional block (red) that un-pools the feature
map from a coarser level (i.e., resolution), then merges it by

pixel-wise addition with the feature map from the
corresponding level in the encoding path by a long skip
connection. There is also a short skip connection contained
in each residual block (violet) that serves as a direct connection
from the previous layer within the same encoding or decoding
path. In contrast, U-net concatenates feature maps using only
long skip connections. Additionally, by replacing concatenation
with addition, FusionNet becomes a fully residual network,
which resolves some common issues in deep networks

TABLE 1 | Architecture of the proposed network.

Block type Ingredients Size of feature maps

input 640 × 640 × 1

down 1 conv + res + conv 640 × 640 × 64

+ maxpooling 320 × 320 × 64

down 2 conv + res + conv 320 × 320 × 128

+ maxpooling 160 × 160 × 128

down 3 conv + res + conv 160 × 160 × 256

+ maxpooling 80 × 80 × 256

down 4 conv + res + conv 80 × 80 × 512

+ maxpooling 40 × 40 × 512

bridge conv + res + conv 40 × 40 × 1024

up 4 deconv + merge + 80 × 80 × 512

conv + res + conv 80 × 80 × 512

up 3 deconv + merge + 160 × 160 × 256

conv + res + conv 160 × 160 × 256

up 2 deconv + merge + 320 × 320 × 128

conv + res + conv 320 × 320 × 128

up 1 deconv + merge + 640 × 640 × 64

conv + res + conv 640 × 640 × 64

output conv 640 × 640 × 1

FIGURE 3 | Difference between the core connections of U-net

(Ronneberger et al., 2015) (left) and FusionNet (right). Note that FusionNet is

a fully residual network due to the summation-based skip connections and is a

much deeper network.
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(i.e., gradient vanishing). Furthermore, the nested short and
long skip connections in FusionNet permit information flow
within and across levels.

In the FusionNet encoding path, the number of feature
maps doubles whenever downsampling is performed. After

passing through the encoding path, the bridge level (i.e., 40 ×

40 layer) residual block starts to expand feature maps into the
following decoding path. In the decoding path, the number of
feature maps is halved at every level, which maintains network
symmetry. Note that there are convolutional layers both before and
after each residual block. These convolutional layers serve as portal
gateways that effectively adjust the amount of feature maps before
and after residual blocks to the appropriate numbers. The
placement of these convolutional layers on either side of the
residual block leads the entire network to be perfectly
symmetric (see Figure 2).

FusionNet performs end-to-end segmentation from the input
EM data to the output segmentation label prediction. We train the
network with pairs of EM images and their corresponding
manually segmented label images as input. The training process
involves comparing the output prediction with the input target
labels using a mean-absolute-error (MAE) loss function to back-
propagate adjustments to the connection weights. We considered
the network sufficiently trained when its loss function values
plateaued over several hundred epochs.

3.2 Data Augmentation
Our system involves data augmentation in multiple stages during
both the training and deployment phases.

For training:

• The order of the image and label pairs are shuffled and
organized with three-fold cross-validation to improve the
generalization of our method.

• Offline, all training images and labels are reoriented to first
produce an enriched dataset.

• Online, elastic field deformation is applied to both images and
corresponding labels, followed by noise addition to only the
images.

For prediction:

• Offline, input images are reoriented as for training.
• Inference is performed on all reoriented images separately,

then each intermediate result is reverted to the original
orientation, and all intermediate results are averaged to
produce the final prediction.

Boundary extension is performed for all input images and
labels. We describe each augmentation step in more detail in the
following subsections.

Reorienation enrichment: Different EM images typically

share similar orientation-independent textures in structures such
as mitochondria, axons, and synapses. We reasoned that it should
therefore be possible to enrich our input data with seven additional
image and label pairs by reorienting the EM images, and in the case
of training, their corresponding labels. Figure 4 shows all eight
orientations resulting from a single EM image after performing this
data enrichment, with an overlaid letter “g” in each panel to
provide a simpler view of the generated orientation. To generate
these permutations, we rotated each EM image (and corresponding
label) by 90°, 180°, and 270°. We then vertically reflected the
original and rotated images. For training, each orientation was

added as a new image and label pair. For prediction, inference was
performed on each of these data orientations separately, then each
prediction result was reverted to the original orientation before
averaging to produce the final accumulation. Our intuition here is
that, based on the equivariance of isotropic data, each orientation
will contribute equally toward the final prediction result. Note that
because the image and label pairs are enriched eight times by this
process, other on-the-fly linear data augmentation techniques such
as random rotation, flipping, or transposition are unnecessary.

FIGURE 4 | Eight reoriented versions of the same EM image. The original image is outlined in blue. By adding these reoriented images, the input data size is

increased by eight times.
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FIGURE 5 | Elastic field deformation example. A randomly sparse vector field (A) is generated for each training image and label pair. This sparse vector field is then

used to warp both the original image data (B, left) and its corresponding label (C, left) to form an augmentation pair consisting of warped image data (B, middle) and

warped label (C, middle). The difference between the original and warped images (B, right) and labels (C, right) show the effect of deformation.

FIGURE 6 | FusionNetW4, a chain of four concatenated FusionNet units.
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Elastic field deformation: To avoid overfitting (i.e., network
remembering the training data), elastic deformation was performed
on the entire enriched image dataset for every training epoch. This

strategy is common inmachine learning, especially for deep networks,
to overcome limitations associated with small training dataset sizes.
This procedure is illustrated in Figure 5. We first initialized a random
sparse 12 × 12 vector field whose amplitudes at the image border
boundaries vanish to zero. This fieldwas then interpolated to the input
size and used to warp both EM images and corresponding labels. The
flow map was randomly generated for each epoch. No elastic field
deformation was performed during deployment.

Random noise addition: During only the training phase, we
randomly added Gaussian noise (mean µ � 0, variance σ � 0.1) to
each EM input image but not its corresponding label.

Boundary extension: FusionNet accepts an input image size of
512 × 512. Each input image, and in the case of training its

corresponding label, was automatically padded with the mirror
reflections of itself across the image border boundary (radius �
64 px) to maintain similar statistics for pixels that are near the
edges. This padding is the reason why FusionNet starts with a 640×
640 image, which is 128 px larger along each edge than the original
input. However, we performed convolution with 3 × 3 kernel size
and “SAME”mode, which leads the final segmentation to have the
same padded size. To account for this, the final output prediction
was cropped to eliminate the padded regions.

3.3 Experimental Setup
FusionNet was implemented using the Keras open-source deep
learning library (Chollet, 2015). This library provides an easy-to-
use, high-level programming API written in Python, with Theano
or TensorFlow as a back-end engine. The model was trained with
the Adam optimizer with a decaying learning rate of 2e−4 for over
50,000 epochs to harness the benefits of heavy elastic deformation
on the small annotated datasets. FusionNet has also been
translated to PyTorch and pure TensorFlow for other
applications, such as Image-to-Image translation (Lee et al.,

2018) and MRI reconstruction (Quan et al., 2018). All training
and deployment presented here was conducted on a system with
an Intel i7 CPU, 32 GB RAM, and a NVIDIA GTX GeForce
1080 GPU.

3.4 Network Chaining
FusionNet by itself performs end-to-end segmentation from the
EM data input to the final prediction output. In typical real world
applications of end-to-end segmentation approaches, however,
manual proofreading by human experts is usually performed in
an attempt to “correct” any mistakes in the output labels. We

therefore reasoned that concatenating a chain of several
FusionNet units could serve as a form of built-in refinement
similar to proofreading that could resolve ambiguities in the
initial predictions. Figure 6 shows an example case with four
chained FusionNet units (FusionNetW4). To impose a target-
driven approach across the chained network during training, we
calculate the loss between the output of each separate unit and the
training labels. As a result, chained FusionNet architectures have
a single input and multiple outputs, where the end of each

FIGURE 7 | Example results of cellular membrane segmentation on test data from the ISBI 2012 EM segmentation challenge (slice 22/30) illustrating an input EM

image (left), the probability prediction from FusionNetW2
64 (middle), and the thinned probability prediction after applying LMC (Beier et al., 2017) post-processing

(right). Pink boxes highlight uncertain regions that are ambiguous because of membrane smearing, likely due to anisotropy in the data.

TABLE 2 | Accuracy of various segmentation methods on the Drosophila EM

dataset (ISBI 2012 EM segmentation challenge leaderboard, June 2020). Bold

values correspond to the method presented here.

Methods Vrand Vinfo

**Human values** 0.997847778 0.998997659

PatchPerPix Hirsch et al. (2020) 0.988290649 0.991641507

IAL MutexWS Wolf et al. (2019) 0.987922250 0.991833594

CASIA MIRA Xiao et al. (2018) 0.987877739 0.990920188

IAL - SFCNN Weiler et al. (2017) 0.986800916 0.991438892

ACE-net Zhu et al. (2019) 0.985032746 0.989490497

M2FCN-MFA Shen et al. (2017) 0.983651122 0.991303595

FusionNetW2
64 LMC 0.983651122 0.991303595

IAL MC/LMC Beier et al. (2017) 0.982616131 0.989461939

IAL LMC Beier et al. (2016) 0.982240005 0.988448278

FusionNetW2
64 0.981586186 0.990099898

PolyMtl Drozdzal et al. (2016) 0.980582825 0.988163049

KUnet Chen et al. (2016b) 0.980222514 0.988967601

FusionNetW1
64 0.978042575 0.989945379

IAL IC Lin et al. (2014) 0.977345721 0.989240736

Masters Wiehman and Villiers (2016) 0.977141154 0.987534429

CUMedVision Chen et al. (2016a) 0.976824580 0.988645822

ICNN Wu (2015) 0.976546913 0.988341665

DIVE-SCI Fakhry et al. (2016) 0.976229111 0.987392123

LSTM Stollenga et al. (2015) 0.975366444 0.987425430

U-net Ronneberger et al. (2015) 0.972760748 0.986616590
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decoding path serves as a checkpoint between units attempting to
produce better and better segmentation results.

Since the architecture of each individual unit is the same, the
chained FusionNet model can be thought of as similar to an

unfolded Recurrent Neural Network (RNN) with each FusionNet
unit akin to a single feedback cycle but with weights that are not
shared across cycles. Each FusionNet can be considered as a
V-cycle in the multigrid method (Shapira, 2008) commonly used
in numerical analysis, where the contraction in the encoding path
is similar to restriction from a fine to a coarse grid, the expansion
in the decoding is similar to the prolongation toward the final
segmentation, and the skip connections play a role similar to
relaxation. The simplest chain of two V-cycle units forms a W
shape, so we refer to FusionNet chains using a “FusionNetW”

terminology. To differentiate various configurations, we use the

superscript to indicate how many FusionNet units are chained
and the subscript to show the initial number of feature maps in
the original resolution. For example, FusionNetW4

64 would signify
a network that chains four FusionNet units, each of them with the
base number of convolution kernels (in Keras, nb_filters
parameter) set to 64. We chose this specific 4-chain example
case as the maximum chain length used here ad hoc to roughly
match the memory available on our GPU. We also used 64 for the
base number of convolution kernels in every case to match the
backbone architecture of U-net. During training, the weights of
each FusionNet unit (θk[i]) are updated independently, as

opposed to the RNN strategy of averaging the gradients from
shared weights. For the example FusionNetW4 case, we trained
with the input images S and corresponding manual labels L. Each
FusionNet unit in FusionNetW4, which can be indexed as
FusionNetW4[i] where i � 1, 2, 3 or 4, generates the prediction
P[i] by minimizing the MAE loss between its prediction values and
the target labels L. For each epoch, we incrementally train

FusionNetW4[i] and fix its weights before training

FusionNetW4[i + 1]. This procedure can be summarized as follows:

min
θ
4[1]

MAE(P[1], L) s.t. P[1] � FusionNet4[1](S)

min
θ
4[2]

MAE(P[2], L) s.t. P[2] � FusionNet4[2](P[1])

min
θ
4[3]

MAE(P[3], L) s.t. P[3] � FusionNet4[3](P[2])

min
θ
4[4]

MAE(P[4], L) s.t. P[4] � FusionNet4[4](P[3])

(1)

The loss training curves decrease as i increases, eventually
converging as the number of training epochs increases.

4 RESULTS

4.1 Fruit Fly Data
The fruit fly (Drosophila) ventral nerve cord EM data used here
was captured from a first instar larva (Cardona et al., 2010).
Training and test datasets were provided as part of the ISBI 2012
EM segmentation challenge1 (Arganda-Carreras et al., 2015).
Each dataset consisted of a 512 × 512 × 30 volume acquired
at anisotropic 4 × 4 × ∼ 50 nm3 vx−1 resolution with
transmission EM. These datasets were originally chosen in
part because they contained noise and small image alignment
errors that frequently occur in serial-section EM. For training, the

provided dataset included EM image data and publicly available
manual segmentation labels. The first 20 of 30 slices of the
training volume were used for training and the last 10 slices
were used for validation. For testing, the provided dataset
included only EM image data, while segmentation labels were
kept private for the assessment of segmentation accuracy
(Arganda-Carreras et al., 2015). Test segmentations were
produced for all 30 slices of the test volume and were then
uploaded for comparison to the hidden ISBI Challenge
segmentation labels.

Figure 7 illustrates the FusionNetW2
64 probability map

extraction results from test data without any post-processing
steps (middle) and with lifted multi-cut (LMC) algorithm post-
processing (right) (Beier et al., 2017), which resulted in thinning

FIGURE 8 | Visual comparison of the larval zebrafish EM volume segmentation. (A) Input serial-section EM volume. (B) Manual segmentation (ground truth). (C)

U-net (Ronneberger et al., 2015) result. (D) RDN (Fakhry et al., 2017) result. (E) FusionNetW4
16 result. Red arrows indicate errors.

TABLE 3 | Segmentation accuracy on a test volume from the zebrafish EM

dataset. Bold values correspond to the method presented here.

Methods FusionNetW2
64 RDN Fakhry et al.

(2017)

U-net Ronneberger et al.

(2015)

Vrand 0.998648782 0.991844302 0.987366177

Vinfo 0.996929124 0.994208722 0.992482059

Vdice 0.963047248 0.946099985 0.908491647

1http://brainiac2.mit.edu/isbi_challenge/
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of the probability map. As this shows, our chained FusionNet
method is able to remove extraneous structures belonging to
mitochondria (appearing as dark shaded textures) and vesicles
(appearing as small circles). Uncertain regions in the prediction

results without post-processing appear as blurry gray smears
(highlighted by pink boxes). In cases like this, FusionNetW2

64

must decide whether or not the highlighted pixels should be
segmented as membrane, but the region is ambiguous because of
membrane smearing, likely due to anisotropy in the data.

FusionNet approaches outperformed several other methods in
segmenting the ISBI 2012 EM challenge data by several standard

metrics. These metrics include foreground-restricted Rand scoring

after border thinning (Vrand) and foreground-restricted

information-theoretic scoring after border thinning (Vinfo)

(Arganda-Carreras et al., 2015). Quantitative comparisons with

other methods are summarized in Table 2. Even using a single

FusionNet unit (FusionNetW1
64), we achieved better results

compared to many well-known methods, such as U-net

(Ronneberger et al., 2015), network-in-network (Lin et al.,

2014), fused-architecture (Chen et al., 2016a), and long short-

term memory (LSTM) (Stollenga et al., 2015) approaches. Using a

chained FusionNet with two modules (FusionNetW2
64) performed

even better, surpassing the performance of many previous state-of-

the-art deep learning methods (Chen et al., 2016b; Drozdzal et al.,

2016). These results confirm that chaining a deeper architecture

with a residual bottleneck helps to increase the accuracy of the EM

segmentation task. Both with and without LMC post-processing,

FusionNetW2
64 ranks among the top 10 in the ISBI 2012 EM

segmentation challenge leaderboard (as of June 2020).

4.2 Zebrafish Data
The zebrafish EM data used here was taken from a publicly
available database2. It was captured from a 5.5 days post-
fertilization larval specimen. This specimen was cut into
∼18,000 serial sections and collected onto a tape substrate
with an automated tape-collecting ultramicrotome (ATUM)
(Hayworth et al., 2014). A series of images spanning the
anterior quarter of the larval zebrafish was acquired at 56.4 ×
56.4 × ∼ 60 nm3 vx−1 resolution from 16,000 sections using
scanning EM (Hildebrand, 2015; Hildebrand et al., 2017).
All 2D images were then co-registered into a 3D volume

using an FFT signal whitening approach (Wetzel et al.,
2016). For training, two small sub-volume crops were
extracted from a near-final iteration of the full volume
alignment in order to avoid deploying later segmentation
runs on training data. Two training volumes that contained
different tissue features were chosen. One volume was 512 ×

512 × 512 and the other was 512 × 512 × 256. The blob-like
features of interest—neuronal nuclei—were manually
segmented as area-lists in each training volume using the
Fiji (Schindelin et al., 2012) TrakEM2 plug-in (Cardona
et al., 2012). From each of these two training volumes, three

FIGURE 9 | Cell nucleus segmentation results overlaid onto zebrafish

EM volume cross-sections through the transverse (top, blue to red color map

varies with cell sphericity) and horizontal (bottom) planes.

2http://zebrafish.link/hildebrand16/

Frontiers in Computer Science | www.frontiersin.org May 2021 | Volume 3 | Article 6139819

Quan et al. FusionNet: Image Segmentation in Connectomics

%20http://zebrafish.link/hildebrand16/
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


quarters were used for training and one quarter was used for
validation. These area-lists were exported as binary masks for
use in the training procedure. For accuracy assessments, an
additional non-overlapping 512 × 512 × 512 testing sub-

volume and corresponding manual segmentation labels
were used.

To assess the performance of FusionNetW4
16 on this

segmentation task, we first deployed it on 512 × 512 × 512
test volume alongside the U-net (Ronneberger et al., 2015) and
RDN (Fakhry et al., 2017) methods. Figure 8 displays volume
renderings of the zebrafish test set EM data, its manual cell
nucleus segmentation, and segmentation results from U-net,
RDN, and FusionNetW4

16. As this shows, FusionNetW4
16

introduced less false predictions compared to U-net and RDN.
Table 3 compares U-net, RDN, and FusionNetW4

16 using three

quality metrics: foreground-restricted Rand scoring after border
thinning (Vrand), foreground-restricted information theoretic
scoring after border thinning (Vinfo), and the Dice coefficient
(Vdice). By all of these metrics, FusionNetW4

16 produced more
accurate segmentation results.

We also deployed the trained network to the complete set of
16,000 sections of the larval zebrafish brain imaged at 56.4 ×
56.4 × ∼ 60 nm3 vx−1 resolution, which is about 1.2 terabytes in
data size. Figure 9 shows EM dataset cross-sections in the
transverse (top, x-y) and horizontal (bottom, x-z) planes of the
larval zebrafish overlaid with the cell nucleus segmentation

results. The transverse view overlay also shows the sphericity
of each segmented cell nucleus in a blue to red color map, which
can help to visually identify the location of false positives.

5 CONCLUSIONS

In this paper, we introduced a deep neural network architecture
for image segmentation with a focus on connectomics EM image
analysis. The proposed architecture, FusionNet, extends the
U-net and residual CNN architectures to develop a deeper
network for a more accurate end-to-end segmentation. We

demonstrated the flexibility and performance of FusionNet in
membrane- and blob-type EM segmentation tasks.

Several other approaches share similarities with FusionNet,
particularly in concatenated chain forms. Chen et al. proposed
concatenating multiple FCNs to build a RNN that extracts inter-
slice contexts (Chen et al., 2016b). Unlike FusionNet, this

approach takes as input multiple different resolutions of the
raw image to produce a single segmentation output and uses a
single loss function. Wu proposed iteratively applying a pixel-
wise CNN (ICNN) to refine membrane detection probability

maps (MDPM) (Wu, 2015). In this method, a regular CNN for
generating MDPM from the raw input images and an iterative
CNN for refining MDPM are trained independently. In
contrast, FusionNet is trained as a single chained network.
Additionally, FusionNet can refine errors in MDPM more
completely using a chained network (i.e., by correcting errors
in the error-corrected results) and scales better to larger image
sizes due to the end-to-end nature of the network. More in-
depth analyses into why chaining approaches are beneficial to
improve the prediction accuracy of such deep networks will be
an important goal for future work.
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