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Abstract

We propose an end-to-end learning framework for seg-

menting generic objects in videos. Our method learns to

combine appearance and motion information to produce

pixel level segmentation masks for all prominent objects.

We formulate the task as a structured prediction problem

and design a two-stream fully convolutional neural net-

work which fuses together motion and appearance in a

unified framework. Since large-scale video datasets with

pixel level segmentations are lacking, we show how to boot-

strap weakly annotated videos together with existing im-

age recognition datasets for training. Through experiments

on three challenging video segmentation benchmarks, our

method substantially improves the state-of-the-art results

for segmenting generic (unseen) objects. Code and pre-

trained models are available on the project website.

1. Introduction

In video object segmentation, the task is to separate out

foreground objects from the background across all frames.

This entails computing dense pixel level masks for fore-

ground objects, regardless of the object’s category—i.e.,

learned object-specific models must not be assumed. A re-

sulting foreground object segment is a spatio-temporal tube

delineating object boundaries in both space and time. This

fundamental problem has a variety of applications, includ-

ing high level vision tasks such as activity and object recog-

nition, as well as graphics areas such as post production

video editing and rotoscoping.

In recent years, video object segmentation has received

significant attention, with great progress on fully automatic

algorithms [15, 56, 13, 23, 30, 58, 24, 35, 10], propaga-

tion methods [40, 47, 11, 50, 19, 53], and interactive meth-

ods [51, 26, 2, 42]. We are interested in the fully auto-

mated setup, where the system processes the video directly
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Figure 1: We show color-coded optical flow images (first row) and video

segmentation results (second row) produced by our joint model. Our pro-

posed end-to-end trainable model simultaneously draws on the respective

strengths of generic object appearance and motion in a unified framework.

without any human involvement. Forgoing manual anno-

tations could scale up the processing of video data, yet it

remains a very challenging problem. Automatic algorithms

not only need to produce accurate space-time boundaries

for any generic object but also need to handle challenges

like occlusions, shape changes, and camera motion.

While appearance alone drives segmentation in images,

videos provide a rich and complementary source of infor-

mation in form of object motion. It is natural to expect that

both appearance and motion should play a key role in suc-

cessfully segmenting objects in videos. However, existing

methods fall short of bringing these complementary sources

of information together in a unified manner.

In particular, today motion is employed for video seg-

mentation in two main ways. On the one hand, the prop-

agation or interactive techniques strongly rely on appear-

ance information stemming from human-drawn outlines on

frames in the video. Here motion is primarily used to ei-

ther propagate information or enforce temporal consistency

in the resulting segmentation [50, 19, 53, 37]. On the other

hand, fully automatic methods strongly rely on motion to

seed the segmentation process by locating possible moving

objects. Once a moving object is detected, appearance is

primarily used to track it across frames [23, 58, 35, 10].

Such methods can fail if the object(s) are static or when

there is significant camera motion. In either paradigm, re-

sults suffer because the two essential cues are treated only
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in a sequential or disconnected way.

We propose an end-to-end trainable model that draws on

the respective strengths of generic (non-category-specific)

object appearance and motion in a unified framework.

Specifically, we develop a novel two-stream fully convolu-

tional deep segmentation network where individual streams

encode generic appearance and motion cues derived from a

video frame and its corresponding optical flow. These in-

dividual cues are fused in the network to produce a final

object versus background pixel-level binary segmentation

for each video frame. The proposed network segments both

static and moving objects in new videos without any human

involvement.

Declaring that motion should assist in video segmenta-

tion is non-controversial, and indeed we are certainly not

the first to inject motion into video segmentation, as noted

above. However, thus far the sum is not much greater than

its parts. We contend that this is because the signal from

motion is adequately complex such that rich learned models

are necessary to exploit it. For example, a single object may

display multiple motions simultaneously, background and

camera motion can intermingle, and even small-magnitude

motions should be informative.

To learn the rich signals, sufficient training data is

needed. However, no large-scale video datasets with pixel-

level segmentations exist. Our second contribution is to ad-

dress this practical issue. We propose a solution that lever-

ages readily available image segmentation annotations to-

gether with weakly annotated video data to train our model.

Our results show the reward of learning from both sig-

nals in a unified framework: a true synergy, often with sub-

stantially stronger results than what we can obtain from ei-

ther one alone—even if they are treated with an equally

sophisticated deep network. We significantly advance the

state-of-the-art for fully automatic video object segmenta-

tion on multiple challenging datasets. In some cases, the

proposed method even outperforms existing methods that

require manual intervention on the target video. In sum-

mary our key contributions are:

• the first end-to-end trainable framework for producing

pixel level foreground object segmentation in videos.

• state-of-the-art on multiple datasets, improving over

many reported results in the literature and strongly out-

performing simpler applications of optical flow, and

• a means to train a deep pixel-level video segmentation

model with access to only weakly labeled videos and

strongly labeled images, with no explicit assumptions

about the categories present in either.

2. Related Work

Automatic methods Fully automatic or unsupervised

video segmentation methods assume no human input on the

video. They can be grouped into two broad categories. First

we have the supervoxel methods [15, 56, 13] which over-

segment the video into space-time blobs with cohesive ap-

pearance and motion. Their goal is to generate mid-level

video regions useful for downstream processing, whereas

ours is to produce space-time tubes which accurately de-

lineate object boundaries. Second we have the fully au-

tomatic methods that generate thousands of “object-like”

space-time segments [54, 12, 57, 34, 55]. While useful in

accelerating object detection, it is not straightforward to au-

tomatically select the most accurate one when a single hy-

pothesis is desired. Methods that do produce a single hy-

pothesis [23, 30, 58, 35, 10, 49, 45, 17] strongly rely on

motion to identify the objects, either by seeding appearance

models with moving regions or directly reasoning about oc-

clusion boundaries using optical flow. This limits their ca-

pability to segment static objects in video. In comparison,

our method is fully automatic, produces a single hypothesis,

and can segment both static and moving objects.

Human-guided methods Semi-supervised label propa-

gation methods accept human input on a subset of frames,

then propagate it to the remaining frames [40, 47, 1, 11, 50,

19, 53, 37, 31, 48]. In a similar vein, interactive video seg-

mentation methods leverage a human in the loop to provide

guidance or correct errors, e.g., [51, 2, 42, 39]. Since the

human pinpoints the object of interest, these methods typ-

ically focus more on learning object appearance from the

manual annotations. Motion is primarily used to propagate

information or enforce temporal smoothness. In the pro-

posed method, both motion and appearance play an equally

important role, and we show their synergistic combination

results in a much better segmentation quality. Moreover, our

method is fully automatic and uses no human involvement

to segment a novel video.

Category-specific semantic segmentation State-of-the-

art semantic segmentation techniques for images rely on

fully convolutional deep learning architectures that are end-

to-end trainable [33, 59, 28, 5]. These deep learning based

methods for segmenting images have seen rapid advances

in recent years. Unfortunately, video segmentation has not

seen such rapid progress. We hypothesize that the lack of

large-scale human segmented video segmentation bench-

marks is a key bottleneck. Recent video benchmarks like

Cityscapes [7] are valuable, but 1) it addresses category-

specific segmentation, and 2) thus far methods competing

on it process each frame independently, treating it like mul-

tiple image segmentation tasks. In contrast, we aim to seg-

ment generic objects in video, whether or not they appear in

training data. Furthermore, our idea to leverage weakly la-

beled video for training opens a path towards training deep

segmentation models that fuse spatial and temporal cues.
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Figure 2: Network structure for our model. Each convolutional layer except the first 7× 7 convolutional layer and our fusion blocks is a residual block [16],

adapted from ResNet-101. We show reduction in resolution at top of each box and the number of stacked convolutional layers in the bottom of each box.

Deep learning with motion Deep learning for combining

motion and appearance in videos has proven to be useful in

several other computer vision tasks such as video classifi-

cation [32, 22], action recognition [43, 20], object track-

ing [25, 52, 29] and even computation of optical flow [8].

While we take inspiration from these works, we are the

first to present a deep framework for segmenting objects in

videos in a fully automatic manner.

3. Approach

Our goal is to segment generic objects in video, indepen-

dent of the object categories they belong to, and without any

manual intervention. We pose the problem as a dense label-

ing task: given a sequence of video frames [I1, I2, ..., IN ],
we want to infer either “object” or “background” for each

pixel in each frame, to output a sequence of binary maps

[S1, S2, ..., SN ]. We propose a solution based on a convolu-

tional neural network.

First we segment generic objects based on appearance

only from individual frames (Sec. 3.1). Then we use the

appearance model to generate initial pixel-level annotations

in training videos, and bootstrap strong annotations to train

a model from motion (Sec. 3.2). Finally, we fuse the two

streams to perform video segmentation (Sec. 3.3).

3.1. Appearance Stream

Building on our “pixel objectness” method [18], we train

a deep fully convolutional network to learn a model of

generic foreground appearance. The main idea is to pre-

train for object classification, then re-purpose the network

to produce binary object segmentations by fine-tuning with

relatively few pixel-labeled foreground masks. Pixel object-

ness uses the VGG architecture [44] and transforms its fully

connected layers into convolutional layers. The resulting

network possesses a strong notion of objectness, making it

possible to identify foreground regions of more than 3,000

object categories despite seeing ground truth masks for only

20 during training.

We take this basic idea and upgrade its implementation

for our work. In particular, we adapt the image classifi-

cation model ResNet-101 [16, 6] by replacing the last two

groups of convolution layers with dilated convolution layers

to increase feature resolution. This results in only an 8× re-

duction in the output resolution instead of a 32× reduction

in the output resolution in the original ResNet model. In or-

der to improve the model’s ability to handle both large and

small objects, we replace the classification layer of ResNet-

101 with four parallel dilated convolutional layers with dif-

ferent sampling rates to explicitly account for object scale.

Then we fuse the prediction from all four parallel layers

by summing all the outputs. The loss is the sum of cross-

entropy terms over each pixel position in the output layer,

where ground truth masks consist of only two labels—

object foreground or background. We train the model using

the Caffe implementation of [6]. The network takes a video

frame of arbitrary size and produces an objectness map of

the same size. See Fig. 2 (top stream).

3.2. Motion Stream

Our complete video segmentation architecture consists

of a two-stream network in which parallel streams for ap-

pearance and motion process the RGB and optical flow im-

ages, respectively, then join in a fusion layer (see Fig. 2).

The direct parallel to the appearance stream discussed

above would entail training the motion stream to map opti-

cal flow maps to video frame foreground maps. However,

an important practical catch to that solution is training data

availability. While ground truth foreground image segmen-

tations are at least modestly available, datasets for video

object segmentation masks are small-scale in deep learn-

ing terms, and primarily support evaluation. For example,

Segtrack-v2 [24], a commonly used benchmark dataset for

video segmentation, contains only 14 videos with 1066 la-

beled frames. DAVIS [36] contains only 50 sequences with

3455 labeled frames. None contain enough labeled frames

to train a deep neural network. Semantic video segmenta-

tion datasets like CamVid [4] or Cityscapes [7] are some-

what larger, yet limited in object diversity due to a focus on

street scenes and vehicles. A good training source for our

task would have ample frames with human-drawn segmen-

tations on a wide variety of foreground objects, and would
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show a good mix of static and moving objects. No such

large-scale dataset exists and creating one is non-trivial.

We propose a solution that leverages readily available

image segmentation annotations together with weakly anno-

tated video data to train our model. In brief, we temporarily

decouple the two streams of our model, and allow the ap-

pearance stream to hypothesize likely foreground regions in

frames of a large video dataset annotated only by bounding

boxes. Since appearance alone need not produce perfect

segmentations, we devise a series of filtering stages to gen-

erate high quality estimates of the true foreground. These

instances bootstrap pre-training of the optical flow stream,

then the two streams are joined to learn the best combina-

tion from minimal human labeled training videos.

More specifically, given a video dataset with bounding

boxes labeled for each object,1 we ignore the category la-

bels and map the boxes alone to each frame. Then, we apply

the appearance stream, thus far trained only from images la-

beled by their foreground masks, to compute a binary seg-

mentation for each frame.

Next we deconflict the box and segmentation in each

training frame. First, we refine the binary segmentation by

setting all the pixels outside the bounding box(es) as back-

ground. Second, for each bounding box, we check if the

the smallest rectangle that encloses all the foreground pix-

els overlaps with the bounding box by at least 75%. Oth-

erwise we discard the segmentation. Third, we discard re-

gions where the box contains more than 95% pixels labeled

as foreground, based on the prior that good segmentations

are rarely a rectangle, and thus probably the true foreground

spills out beyond the box. Finally, we eliminate segments

where object and background lack distinct optical flow, so

our motion model can learn from the desired cues. Specif-

ically, we compute the frame’s optical flow using [27] and

convert it to an RGB flow image [3]. If the 2-norm between

a) the average value within the bounding box and b) the

average value in a box whose height and width are twice

the original size exceeds 30, the frame and filtered segmen-

tation are added to the training set. See Fig. 3 for visual

illustration of these steps.

To recap, bootstrapping from the preliminary appearance

model, followed by bounding box pruning, bounding box

tests, and the optical flow test, we can generate accurate

per-pixel foreground masks for thousands of diverse mov-

ing objects—for which no such datasets exist to date. Note

that by eliminating training samples with these filters, we

aim to reduce label noise for training. However, at test time

our system will be evaluated on standard benchmarks for

which each frame is manually annotated (see Sec. 4).

With this data, we now turn to training the motion

stream. Analogous to our strong generic appearance model,

1We rely on ImageNet Video data, which contains 3862 videos and 30

diverse objects. See Sec. 4.

Figure 3: Procedure to generate (pseudo)-ground truth segmentations. We

first apply the appearance model to obtain initial segmentations (second

row, with object segment in green) and then prune by setting pixels outside

bounding boxes as background (third row). Then we apply the bounding

box test (fourth row, yellow bounding box is ground truth and blue bound-

ing box is the smallest bounding box enclosing the foreground segment)

and optical flow test (fifth row) to determine whether we add the segmen-

tation to the motion stream’s training set or discard it. Best viewed in color.

we also want to train a strong generic motion model that

can segment foreground objects purely based on motion.

We use exactly the same network architecture as the ap-

pearance model (see Fig. 2). Our motion model takes only

optical flow as the input and is trained with automatically

generated pixel level ground truth segmentations. In partic-

ular, we convert the raw optical flow to a 3-channel (RGB)

color-coded optical flow image [3]. We use this color-coded

optical flow image as the input to the motion network. We

again initialize our network with pre-trained weights from

ImageNet classification [41]. Representing optical flow us-

ing RGB flow images allows us to leverage the strong pre-

trained initializations as well as maintain symmetry in the

appearance and motion arms of the network.

An alternative solution might forgo handing the system

optical flow, and instead input two raw consecutive RGB

frames. However, doing so would likely demand more

training instances in order to discover the necessary cues.

Another alternative would directly train the joint model that

combines both motion and appearance, whereas we first

“pre-train” each stream to make it discover convolutional

features that rely on appearance or motion alone, followed

by a fusion layer (below). Our design choices are rooted

in avoiding bias in training our model. Since the (pseudo)

ground truth comes from the initial appearance network,

training jointly from the onset is liable to bias the network

to exploit appearance at the expense of motion. By feed-

ing the motion model with only optical flow, we ensure our

motion stream learns to segment objects from motion.
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3.3. Fusion Model

The final processing in our pipeline joins the outputs of

the appearance and motion streams, and aims to leverage

a whole that is greater than the sum of its parts. We now

describe how to train the joint model using both streams.

An object segmentation prediction is reliable if 1) either

appearance or motion model alone predicts the object seg-

mentation with very strong confidence or 2) their combi-

nation together predicts the segmentation with high confi-

dence. This motivates the structure of our joint model.

We implement the idea by creating three independent

parallel branches: 1) We apply a 1×1 convolution layer fol-

lowed by a RELU to the output of the appearance model 2)

We apply a 1×1 convolution layer followed by a RELU to

the output of the motion model 3) We replicate the structure

of first and second branches and apply element-wise multi-

plication on their outputs. The element-wise multiplication

ensures the third branch outputs confident predictions of ob-

ject segmentation if and only if both appearance model and

motion model have strong predictions. We finally apply a

layer that takes the element-wise maximum to obtain the

final prediction. See Fig. 2.

As discussed above, we do not fuse the two streams in an

early stage because we want them both to have strong inde-

pendent predictions. Another advantage of our approach is

we only introduce six additional parameters in each 1×1

convolution layer, for a total of 24 trainable parameters.

We can then train the fusion model with very limited an-

notated video data, without overfitting. In the absence of

large volumes of video segmentation training data, preclud-

ing a complete end-to-end training, our strategy of decou-

pling the individual streams and training works very well in

practice.

4. Results

Datasets and metrics: We evaluate our method on

three challenging video object segmentation datasets:

DAVIS [36], YouTube-Objects [38, 19, 46] and Segtrack-

v2 [24]. To measure accuracy we use the standard Jaccard

score, which computes the intersection over union overlap

(IoU) between the predicted and ground truth object seg-

mentations. The three datasets are:

• DAVIS [36]: the latest and most challenging video

object segmentation benchmark consisting of 50 high

quality video sequences of diverse object categories

with 3, 455 densely annotated, pixel-accurate frames.

The videos are unconstrained in nature and contain

challenges such as occlusions, motion blur, and ap-

pearance changes. Only the prominent moving objects

are annotated in the ground-truth.

• YouTube-Objects [38, 19, 46]: consists of 126 chal-

lenging web videos from 10 object categories with

more than 20,000 frames and is commonly used for

evaluating video object segmentation. We use the

subset defined in [46] and the ground truth provided

by [19] for evaluation.

• SegTrack-v2 [24]: one of the most common bench-

marks for video object segmentation consisting of 14

videos with a total of 1, 066 frames with pixel-level

annotations. For videos with multiple objects with in-

dividual ground-truth segmentations, we treat them as

a single foreground for evaluation.

Baselines: We compare with several state-of-the-art meth-

ods for each dataset as reported in the literature. Here we

group them together based on whether they can operate in

a fully automatic fashion (automatic) or require a human in

the loop (semi-supervised) to do the segmentation:

• Automatic methods: Automatic video segmentation

methods do not require any human involvement to

segment new videos. Depending on the dataset, we

compare with the following state of the art methods:

FST [35], KEY [23], NLC [10] and COSEG [49]. All

use some form of unsupervised motion or objectness

cues to identify foreground objects followed by post-

processing to obtain space-time object segmentations.

• Semi-supervised methods: Semi-supervised methods

bring a human in the loop. They have some knowledge

about the object of interest which is exploited to ob-

tain the segmentation (e.g., a manually annotated first

frame). We compare with the following state-of-the-art

methods: HVS [15], HBT [14], FCP [37], IVID [42],

HOP [19], and BVS [31]. The methods require dif-

ferent amounts of human annotation to operate, e.g.

HOP, BVS, and FCP make use of manual complete ob-

ject segmentation in the first frame to seed the method;

HBT requests a bounding box around the object of in-

terest in the first frame; HVS, IVID require a human to

constantly guide the algorithm whenever it fails.

Note that our method requires human annotated data only

during training. At test time it operates in a fully automatic

fashion. Thus, given a new video, we require equal effort

as the automatic methods, and less effort than the semi-

supervised methods.

Apart from these comparisons, we also examine some

natural baselines and variants of our method:

• Flow-thresholding (Flow-Th): To examine the effec-

tiveness of motion alone in segmenting objects, we

adaptively threshold the optical flow in each frame us-

ing the flow magnitude. Specifically, we compute the

mean and standard deviation from the L2 norm of flow

magnitude and use “mean+unit std.” as the threshold.

• Flow-saliency (Flow-Sal): Optical flow magnitudes

can have large variances, hence we also try a variant
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DAVIS: Densely Annotated Video Segmentation dataset (50 videos)

Methods Flow-Th Flow-Sal FST [35] KEY [23] NLC [10] HVS [15] FCP [37] BVS [31] Ours-A Ours-M Ours-Joint

Human in loop? No No No No No Yes Yes Yes No No No

Avg. IoU 42.95 30.22 57.5 56.9 64.1 59.6 63.1 66.5 64.69 60.18 71.51

Table 1: Video object segmentation results on DAVIS dataset. We show the average accuracy over all 50 videos. Our method outperforms

several state-of-the art methods, including the ones which actually require human annotations during segmentation. The best performing

methods grouped by whether they require human-in-the-loop or not during segmentation are highlighted in bold. Metric: Jaccard score,

higher is better. Please see supp. for per video results.

which normalizes the flow by applying a saliency de-

tection method [21] to the flow image itself. We use

average thresholding to obtain the segmentation.

• Appearance model (Ours-A): To quantify the role of

appearance in segmenting objects, we obtain segmen-

tations using only the appearance stream of our model.

• Motion model (Ours-M): To quantify the role of mo-

tion, we obtain segmentations using only the motion

stream of our model.

• Joint model (Ours-Joint): Our complete joint model

that learns to combine both motion and appearance to-

gether to obtain the final object segmentation.

Implementation details: To train the appearance stream,

we rely on the PASCAL VOC 2012 segmentation

dataset [9] and use a total of 10,582 training images with

binary object vs. background masks (see [18] for more de-

tails). As weak bounding box video annotations, we use

the ImageNet-Video dataset [41]. This dataset comes with

a total of 3,862 training videos from 30 object categories

with 866,870 labeled object bounding boxes from over a

million frames. Post refinement using our ground truth gen-

eration procedure (see Sec. 3.2), we are left with 84,929

frames with good pixel segmentations2 which are then used

to train our motion model. For training the joint model we

use a held-out set for each dataset. We train each stream

for a total of 20,000 iterations, use “poly” learning rate pol-

icy (power = 0.9) with momentum (0.9) and weight decay

(0.0005). No post-processing is applied on the segmenta-

tions obtained from our networks.

Quality of training data: To ascertain that the quality of

training data we automatically generate for training our mo-

tion stream is good, we first compare it with a small amount

of human annotated ground truth. We randomly select 100

frames that passed both the bounding box and optical flow

tests, and collect human-drawn segmentations on Amazon

MTurk. We first present crowd workers a frame with a

bounding box labeled for each object, and then ask them

to draw the detailed segmentation for all objects within the

bounding boxes. Each frame is labeled by three crowd

workers and the final segmentation is obtained by majority

2Available for download on our project website.

vote on each pixel. The results indicate that our strategy to

gather pseudo-ground truth is effective. On the 100 labeled

frames, Jaccard overlap with the human-drawn ground truth

is 77.8 (and 70.2 before pruning with bounding boxes).

Quantitative evaluation: We now present the quantita-

tive comparisons of our method with several state-of-the-art

methods and baselines, for each of the three datasets in turn.

DAVIS dataset: Table 1 shows the results, with some of

the best performing methods taken from the benchmark re-

sults [36]. Our method outperforms all existing methods on

this dataset and significantly advances state-of-the-art. Our

method is significantly better than simple flow baselines.

This supports our claim that even though motion contains

a strong signal about foreground objects in videos, it is not

straightforward to simply threshold optical flow and obtain

those segmentations. A data-driven approach that learns to

identify motion patterns indicative of objects as opposed to

backgrounds or camera motion is required.

The appearance and motion variants of our method them-

selves result in a very good performance. The performance

of the motion variant is particularly impressive, knowing

that it has no information about object’s appearance and

purely relies on the flow signal. When combined together,

the joint model results in a significant improvement, with

an absolute gain of up to 11% over individual streams.

Our method is also significantly better than fully au-

tomatic methods, which typically rely on motion alone

to identify foreground objects. This illustrates the bene-

fits of a unified combination of both motion and appear-

ance. Most surprisingly, our method significantly outper-

forms even the state-of-the-art semi-supervised techniques,

which require substantial human annotation on every video

they process. The main motivation behind bringing a hu-

man in the loop is to achieve higher accuracies than fully

automated methods, yet in this case, our proposed fully

automatic method outperforms the best human-in-the-loop

algorithms by a significant margin. For example, the

BVS [31] method—which is the current best performing

semi-supervised method and requires the first frame of the

video to be manually segmented—achieves an overlap score

of 66.5%. Our method significantly outperforms it with an

overlap score of 71.51%, yet uses no human involvement.

YouTube-Objects dataset: In Table 2 we see a similarly
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YouTube-Objects dataset (126 videos)

Methods Flow-Th Flow-Sal FST [35] COSEG [49] HBT [14] HOP [19] IVID [42] Ours-A Ours-M Ours-Joint

Human in loop? No No No No Yes Yes Yes No No No

airplane (6) 18.27 33.32 70.9 69.3 73.6 86.27 89 83.38 59.38 81.74

bird (6) 31.63 33.74 70.6 76 56.1 81.04 81.6 60.89 64.06 63.84

boat (15) 4.35 22.59 42.5 53.5 57.8 68.59 74.2 72.62 40.21 72.38

car (7) 21.93 48.63 65.2 70.4 33.9 69.36 70.9 74.50 61.32 74.92

cat (16) 19.9 32.33 52.1 66.8 30.5 58.89 67.7 67.99 49.16 68.43

cow (20) 16.56 29.11 44.5 49 41.8 68.56 79.1 69.63 39.38 68.07

dog (27) 17.8 25.43 65.3 47.5 36.8 61.78 70.3 69.10 54.79 69.48

horse (14) 12.23 24.17 53.5 55.7 44.3 53.96 67.8 62.79 39.96 60.44

mbike (10) 12.99 17.06 44.2 39.5 48.9 60.87 61.5 61.92 42.95 62.74

train (5) 18.16 24.21 29.6 53.4 39.2 66.33 78.2 62.82 43.13 62.20

Avg. IoU 17.38 29.05 53.84 58.11 46.29 67.56 74.03 68.57 49.43 68.43

Table 2: Video object segmentation results on YouTube-Objects dataset. We show the average performance for each of the 10 categories

from the dataset. The final row shows an average over all the videos. Our method outperforms several state-of-the art methods, including

the ones which actually require human annotation during segmentation. The best performing methods grouped by whether they require

human-in-the-loop or not during segmentation are highlighted in bold. Metric: Jaccard score, higher is better.

Segtrack-v2 dataset (14 videos)

Methods Flow-Th Flow-Sal FST [35] KEY [23] NLC [10] HBT [14] HVS [15] Ours-A Ours-M Ours-Joint

Human in loop? No No No No No Yes Yes No No No

Avg. IoU 37.77 27.04 53.5 57.3 80* 41.3 50.8 56.88 53.04 61.40

Table 3: Video object segmentation results on Segtrack-v2. We show the average accuracy over all 14 videos. Our method outperforms

several state-of-the art methods, including the ones which actually require human annotation during segmentation. The best performing

methods grouped by whether they require human-in-the-loop or not during segmentation are highlighted in bold. ∗For NLC results are

averaged over 12 videos as reported in their paper [10]. Metric: Jaccard score, higher is better. Please see supp. for per video results.

strong result on the YouTube-Objects dataset. Our method

again outperforms the flow baselines and all the automatic

methods by a significant margin. The publicly available

code for NLC [10] runs successfully only on 9% of the

YouTube dataset (1725 frames); on those, its jaccard score

is 43.64%. Our proposed model outperforms it by a signifi-

cant margin of 25%. Even among human-in-the-loop meth-

ods, we outperform all methods except IVID [42]. How-

ever, IVID [42] requires a human to consistently track the

segmentation performance and correct whatever mistakes

the algorithm makes. This can take up to minutes of an-

notation time for each video. Our method uses zero human

involvement but still performs competitively.

It is also important to note that this dataset shares cate-

gories with the PASCAL segmentation benchmark which is

used to train our appearance stream. Accordingly, we ob-

serve that the appearance stream itself results in the over-

all best performance. Moreover, this dataset has a mix

of static and moving objects which explains the relatively

weaker performance of our motion model alone. Overall

the joint model works similarly well as appearance alone,

however our ablation study (see Table 4) where we rank

test frames by their amount of motion, shows that our joint-

model is stronger for moving objects. In short, our joint

model outperforms our appearance model on moving ob-

jects, while our appearance model is sufficient for the most

static frames. Whereas existing methods tend to suffer in

one extreme or the other, our method handles both well.

Methods Top 10% moving Top 10% static

Ours-A 71.58 61.79

Ours-Joint 72.34 59.86

Table 4: Ablation study for YouTube-Objects dataset: Perfor-

mance of our appearance and joint models on frames with most

(left) and least (right) motion.

Segtrack-v2 dataset: In Table 3, our method outper-

forms all semi-supervised and automatic methods except

NLC [10] on Segtrack. While our approach significantly

outperforms NLC [10] on the DAVIS dataset, NLC is ex-

ceptionally strong on this dataset. Our relatively weaker

performance could be due to the low quality and resolution

of the Segtrack-v2 videos, making it hard for our network

based model to process them. Nonetheless, our joint model

still provides a significant boost over both our appearance

and motion models, showing it again realizes the synergy

of motion and appearance in a serious way.

Qualitative evaluation: Fig. 4 shows qualitative results.

The top half shows visual comparisons between different

components of our method including the appearance, mo-

tion, and joint models. We also show the optical flow image

that was used as an input to the motion stream. These im-

ages help reveal the complexity of learned motion signals.

In the bear example, the flow is most salient only on the

bear’s head, still our motion stream alone is able to seg-

ment the bear completely. The boat, car, and sail examples

show that even when the flow is noisy—including strong
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Appearance model (Ours-A)

Motion model (Ours-M)

Joint model (Ours-Joint)

Optical Flow Image

Ours vs. Automatic Ours vs. Semi-supervised

FST [35] BVS [31]

NLC [10] FCP [37]

Ours-Joint Ours-Joint

Figure 4: Qualitative results: The top half shows examples from our appearance, motion, and joint models along with the flow image which was used as an

input to the motion network. The bottom rows show visual comparisons of our method with automatic and semi-supervised baselines (best viewed on pdf

and see text for the discussion). Videos of our segmentation results are available on the project website.

flow on the background—our motion model is able to learn

about object shapes and successfully suppresses the back-

ground. The rhino and train examples show cases where the

appearance model fails but when combined with the motion

stream, the joint model produces accurate segmentations.

The bottom half of Fig. 4 shows visual comparisons be-

tween our method and state-of-the-art automatic [35, 10]

and semi-supervised [37, 31] methods. The automatic

methods have a very weak notion about object’s appear-

ance; hence they completely miss parts of objects [10]

or cannot disambiguate the objects from background [35].

Semi-supervised methods [37, 31], which rely heavily on

the initial human-segmented frame to learn about object’s

appearance, start to fail as time elapses and the object’s ap-

pearance changes considerably. In contrast, our method

successfully learns to combine generic cues about object

motion and appearance, segmenting much more accurately

across all frames even in very challenging videos.

5. Conclusions
We presented a new approach for learning to segment

generic objects in video that 1) achieves deeper synergy

between motion and appearance and 2) addresses practical

challenges in training a deep network for video segmenta-

tion. Results show sizeable improvements over many exist-

ing methods—in some cases, even those requiring human

intervention.

Acknowledgements: This research is supported in part

by ONR YIP N00014-12-1-0754.

3671



References

[1] V. Badrinarayanan, F. Galasso, and R. Cipolla. Label propa-

gation in video sequences. In CVPR, 2010. 2

[2] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video snap-

cut: Robust video object cutout using localized classifiers.

In SIGGRAPH, 2009. 1, 2

[3] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A database and evaluation methodology for opti-

cal flow. International Journal of Computer Vision, 92(1):1–

31, 2011. 4

[4] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object

classes in video: A high-definition ground truth database.

Pattern Recognition Letters, 2009. 3

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. In ICLR, 2015. 2

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016. 3

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 2, 3

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In ICCV, December 2015. 3

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

(VOC) challenge. International Journal of Computer Vision,

88(2):303–338, 2010. 6

[10] A. Faktor and M. Irani. Video segmentation by non-local

consensus voting. In BMVC, 2014. 1, 2, 5, 6, 7, 8

[11] A. Fathi, M. Balcan, X. Ren, and J. Rehg. Combining

self training and active learning for video segmentation. In

BMVC, 2011. 1, 2

[12] K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik. Learn-

ing to segment moving objects in videos. In CVPR, June

2015. 2

[13] F. Galasso, R. Cipolla, and B. Schiele. Video segmentation

with superpixels. In ACCV, 2012. 1, 2

[14] M. Godec, P. M. Roth, and H. Bischof. Hough-based track-

ing of non-rigid objects. In ICCV, 2011. 5, 7

[15] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hi-

erarchical graph based video segmentation. In CVPR, 2010.

1, 2, 5, 6, 7

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 3

[17] D. Hoiem, M. Hebert, and A. Stein. Learning to find object

boundaries using motion cues. ICCV, 2007. 2

[18] S. Jain, B. Xiong, and K. Grauman. Pixel objectness. arXiv

preprint arXiv:1701.05349, 2017. 3, 6

[19] S. D. Jain and K. Grauman. Supervoxel-consistent fore-

ground propagation in video. In ECCV, 2014. 1, 2, 5, 7

[20] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(1):221–

231, 2013. 3

[21] B. Jiang, L. Zhang, H. Lu, C. Yang, and M.-H. Yang.

Saliency detection via absorbing markov chain. In ICCV,

pages 1665–1672, 2013. 6

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 3

[23] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In ICCV, 2011. 1, 2, 5, 6, 7

[24] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

Segmentation by Tracking Many Figure-Ground Segments.

In ICCV, 2013. 1, 3, 5

[25] H. Li, Y. Li, and F. Porikli. Deeptrack: Learning discrimina-

tive feature representations by convolutional neural networks

for visual tracking. In BMVC, 2014. 3

[26] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste.

ACM Trans. Graph., 24(3):595–600, 2005. 1

[27] C. Liu. Beyond pixels: exploring new representations and

applications for motion analysis. PhD thesis, Citeseer, 2009.

4

[28] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. CVPR, Nov. 2015. 2

[29] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical

convolutional features for visual tracking. In ICCV, 2015. 3

[30] T. Ma and L. Latecki. Maximum weight cliques with mutex

constraints for video object segmentation. In CVPR, 2012.

1, 2

[31] N. Märki, F. Perazzi, O. Wang, and A. Sorkine-Hornung. Bi-

lateral space video segmentation. In CVPR, 2016. 2, 5, 6, 8

[32] J. Y.-H. Ng, M. J. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. In CVPR, 2015.

3

[33] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In ICCV, 2015. 2

[34] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-

temporal object detection proposals. In ECCV, Sep 2014.

2

[35] A. Papazoglou and V. Ferrari. Fast object segmentation in

unconstrained video. In ICCV, 2013. 1, 2, 5, 6, 7, 8

[36] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool,

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In CVPR, 2016. 3, 5, 6

[37] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung.

Fully connected object proposals for video segmentation. In

ICCV, December 2015. 1, 2, 5, 6, 8

[38] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Fer-

rari. Learning object class detectors from weakly annotated

video. In CVPR, 2012. 5

[39] B. L. Price, B. S. Morse, and S. Cohen. Livecut: Learning-

based interactive video segmentation by evaluation of multi-

ple propagated cues. In ICCV, 2009. 2

3672



[40] X. Ren and J. Malik. Tracking as repeated figure/ground

segmentation. In CVPR, 2007. 1, 2

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. 4, 6

[42] N. Shankar Nagaraja, F. R. Schmidt, and T. Brox. Video

segmentation with just a few strokes. In ICCV, 2015. 1, 2, 5,

7

[43] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 3

[44] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 3

[45] P. Sundberg, T. Brox, M. Maire, P. Arbelaez, and J. Malik.

Occlusion boundary detection and figure/ground assignment

from optical flow. In CVPR, 2011. 2

[46] K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei. Discrimi-

native segment annotation in weakly labeled video. In CVPR,

2013. 5

[47] D. Tsai, M. Flagg, and J. Rehg. Motion coherent tracking

with multi-label mrf optimization. In BMVC, 2010. 1, 2

[48] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmenta-

tion via object flow. In CVPR, 2016. 2

[49] Y.-H. Tsai, G. Zhong, and M.-H. Yang. Semantic co-

segmentation in videos. In ECCV, 2016. 2, 5, 7

[50] S. Vijayanarasimhan and K. Grauman. Active frame selec-

tion for label propagation in videos. In ECCV, 2012. 1, 2

[51] J. Wang, P. Bhat, A. Colburn, M. Agrawala, and M. F. Cohen.

Interactive video cutout. ACM Trans. Graph., 24(3):585–

594, 2005. 1, 2

[52] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking

with fully convolutional networks. In ICCV, December 2015.

3

[53] L. Wen, D. Du, Z. Lei, S. Z. Li, and M.-H. Yang. Jots: Joint

online tracking and segmentation. In CVPR, June 2015. 1, 2

[54] Z. Wu, F. Li, R. Sukthankar, and J. M. Rehg. Robust

video segment proposals with painless occlusion handling.

In CVPR, June 2015. 2

[55] F. Xiao and Y. J. Lee. Track and segment: An iterative un-

supervised approach for video object proposals. In CVPR,

2016. 2

[56] C. Xu, C. Xiong, and J. J. Corso. Streaming Hierarchical

Video Segmentation. In ECCV, 2012. 1, 2

[57] G. Yu and J. Yuan. Fast action proposals for human action

detection and search. In CVPR, June 2015. 2

[58] D. Zhang, O. Javed, and M. Shah. Video object segmentation

through spatially accurate and temporally dense extraction of

primary object regions. In CVPR, 2013. 1, 2

[59] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. Torr. Conditional random

fields as recurrent neural networks. In ICCV, 2015. 2

3673


