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Abstract

We have developed FusionSeq to identify fusion transcripts from paired-end RNA-sequencing. FusionSeq includes

filters to remove spurious candidate fusions with artifacts, such as misalignment or random pairing of transcript

fragments, and it ranks candidates according to several statistics. It also has a module to identify exact sequences

at breakpoint junctions. FusionSeq detected known and novel fusions in a specially sequenced calibration data set,

including eight cancers with and without known rearrangements.

Background

Deep sequencing approaches applied to transcriptome

profiling (RNA-Seq) are dramatically impacting our

understanding of the extent and complexity of eukaryo-

tic transcription [1-4]. RNA-Seq provides a more accu-

rate measurement of expression levels of genes and

more information about alternative splicing of their iso-

forms compared to other chip-based methods [1,4-10].

Large international consortia, such as the ENCODE

project [11] and the modENCODE project [12], are

exploiting this technology to obtain a better picture of

the transcriptome. More recently, RNA-Seq was applied

to the identification of fusion transcripts, where mRNAs

from two different genes are joined together [13-17].

Although the role of these chimeric transcripts is not

fully understood, some studies have shown that they

might be implicated in cancer [18,19]. Also, a fusion

transcript may indicate an underlying genomic rearran-

gement between the two genes. Such gene fusions are

thought to drive molecular events, such as in chronic

myelogenous leukemia, which is defined by the

reciprocal translocation between chromosome 9 and 22

leading to a chimeric fusion oncogene (BCR-ABL1)

encoding a tyrosine kinase that is constitutively active.

Most gene fusions reported in the past have been

attributed to hematological cancers [20-22]. Recently,

recurrent fusions between the transmembrane protease

serine 2 (TMPRSS2) gene and members of the ETS

family of transcription factors (mainly the v-ets erythro-

blastosis virus E26 oncogene homolog (avian), ERG, and

the ets variant 1, ETV1) were reported in prostate can-

cer [23]. Other epithelial tumors, such as lung and

breast cancer, also harbor translocations [24-26].

Compared to DNA sequencing, RNA-Seq seems to

have less requirements in terms of overall coverage,

since it aims at sequencing only the regions of the gen-

ome that are transcribed and spliced into mature

mRNA, which current estimates set at about 2 to 6%.

However, this apparent advantage of RNA-Seq in prac-

tice is not so straightforward. Indeed, determining the

depth of sequencing needed to completely assess the

extent of transcription in complex organisms is compli-

cated by the high dynamic range of gene expression, the

presence of alternatively spliced transcripts, and the bio-

logical condition of the transcriptome, that is, cell types

or environmental conditions [2].
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State-of-the-art

RNA-Seq can be used effectively to detect fusion tran-

scripts. Maher et al. [13] discovered novel fusion tran-

scripts using single-end reads of various lengths. This

approach nominated multiple candidates such as

SLC45A3-ELK4, which was independently confirmed as

a common ‘read-through’ transcript identified in pros-

tate cancer (that is, fusion transcripts resulting from two

nearby genes without any genomic rearrangement [19]).

This and other non-genomic events of adjacent or

neighboring genes appear to be common. Maher et al.

showed in principle how to use RNA-Seq to discover

fusion transcripts. They used two single-end sequencing

platforms, which is rather infeasible in terms of both

cost and labor efforts [13]. Since then, paired-end (PE)

RNA-Seq has been introduced and has received broader

attention for transcriptome profiling, bringing with it

great potential to accelerate fusion discoveries [14,15].

The concept of sequencing both ends of a fragment,

either cDNA or genomic DNA, was introduced in the

context of the identification of structural variants

[27-31]. Such events are among the basic mechanisms

generating fusion transcripts. The main advantage of PE

reads is that the connectivity information between the

sequenced ends is available. PE sequencing is thus the

obvious method to employ for identifying fusion tran-

scripts. In a path-breaking study, Maher et al. [15] ana-

lyzed PE RNA-Seq data and demonstrated the feasibility

of this technology to confirm known gene fusions and

identify novel fusion transcripts. Their study also con-

firmed the need for a systematic analysis accounting for

computational complexity and statistical significance.

The method proposed, however, relies on the distance

between the two ends of a transcript fragment (insert

size). This idea, inspired by structural variant analysis,

cannot be directly translated to the transcriptome analy-

sis in order to obtain an accurate description of all the

occurring events. The main reason is the complexity of

the transcription, and in particular the splicing of

introns, that can lead to read pairs spanning several

exons, as we describe in detail later.

Two more recent studies focus on the identification of

novel splice junctions from RNA-Seq data [32,33]. This

problem is related to the discovery of fusion transcripts

because, in principle, a ‘splice junction’ can indeed join

two different genes and thus suggest a fusion event.

Although these methods can, in principle, be applied to

the discovery of fusion transcripts, they mainly focus on

the mapping of the reads. They do not analyze the

impact of artifacts independent from the mapping pro-

cedure on the detection of fusion transcripts, such as

the random pairing of transcript fragments during sam-

ple preparation (see Materials and methods). These

tools also do not provide a means to summarize the

results of the detection of potential fusion transcripts.

Finally, the experimenter would not have the flexibility

of using other mapping tools that may provide comple-

mentary information. Specifically, SplitSeek is currently

available only for AB/SOLiD [33].

To address these issues, we developed FusionSeq, a

novel computational suite whose aim is to detect candi-

date fusion transcripts by analyzing PE RNA-Seq data

[34]. FusionSeq is mapping-independent as much as

possible, such that it is not bound to a single platform

or mapping approach. It accounts for several sources of

errors in order to provide a high-confidence list of

fusion candidates, which are also scored by using several

statistics to prioritize experimental validation. FusionSeq

also includes tools to summarize and present its results

integrated into a web browser. Furthermore, we

sequenced an appropriate data set to calibrate this

approach, comprising mostly human prostate cancer tis-

sues with and without known fusion events.

Results and discussion

Mapping the reads

The first step when dealing with next-generation

sequencing is the alignment of the reads against known

reference sequences. Here the main challenge is how to

map millions of reads in a computationally efficient way.

Several alignment tools have been developed and, since

this research field is quite active, it is likely that

improved or new tools will be introduced. In addition, a

variety of mapping strategies can be employed. As an

example, a splice junction library may be employed

along with the reference genome to identify reads brid-

ging exons. Our goal is to develop a method that is

independent as much as possible from mapping strate-

gies and alignment tools. As a test, we tried a variety of

alignment tools and approaches, all yielding consistent

results, thus demonstrating the robustness of FusionSeq

(Additional file 1). For simplicity, we here report the

results obtained by mapping the reads to the genome

with ELAND, the standard program supplied with the

Illumina platform (see Materials and methods). Table 1

reports the results of the mapping (details in Additional

file 1).

Overall modular framework

The overall schematic of our approach is depicted in

Figure 1. It consists of three modules.

Module 1: fusion transcript detection

This module only assumes that the PE reads have been

aligned and their location is known. It identifies the set

of candidate fusions from the mapped sequence reads.

Conceptually, it consists of three steps (Figure 1a): step

1, poor quality reads are removed; step 2, PE reads that

map to the same gene are considered part of the normal
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transcriptome; step 3, PE reads that map to different

genes are selected as potential candidate fusion tran-

scripts; also, reads that do not align anywhere are stored

for the computational validation of the candidates and

for determining the sequence of the junctions. Note that

the mapping of the reads can occur anywhere within a

gene: exons, introns or splice junctions.

We employ a reference annotation set (University of

California Santa Cruz (UCSC) Known Genes [35]) and

classify each single-end of a PE read into different cate-

gories depending on what parts of the gene it is mapped

to: exon, intron, splice junction or boundary. The latter

case corresponds to reads that might be mapped to the

genomic boundary of an exon - for example, in the case

of a retained intron or when pre-mRNA is sequenced.

Module 2: filtration cascade

Several types of noise can introduce artifacts at any

stage of the sequencing and analysis process. Hence, we

developed a number of different filters to reduce the

problem of artificial chimeric transcripts (Figure 1b).

Additional filters, more specific to the reference annota-

tion set employed, are described in Additional file 1.

Three misalignment filters The reads can be mapped

to a different location on the genome compared to

where they were generated, mainly because of the

sequence similarity of regions in the genome (paralogs,

pseudogenes, repetitive elements). Indeed, it is possible

that single nucleotide polymorphisms (SNPs), RNA edit-

ing, or errors in the base caller can lead to misalignment

of one of the ends resulting in artificial chimeric tran-

scripts. This issue is particularly relevant in the inter-

mediate range of sequencing depth (1 million to 100

million reads), which FusionSeq has been designed for.

We devised three filters to deal with this issue of

sequence similarity, briefly described hereafter (see

Materials and methods for detail).

Large scale sequence similarity filter If the two genes

of a candidate fusion transcript are paralogous, they are

discarded because of this homology potentially causing a

misalignment. We use TreeFam to identify these candi-

dates and remove them from the list [36,37].

Small scale sequence similarity filter The above filter

seeks broad similarities between two transcripts. How-

ever, it may be possible that there is high similarity

between small regions within the two genes where the

reads actually map. To identify these cases, for each of

the candidate chimeric transcripts, the reads aligned to

one gene are searched for sequence similarity against

the corresponding partner. If high similarity is found,

the pair is removed (Materials and methods).

Repetitive regions filter Some reads may be aligned to

repetitive regions in the genome due to the low

sequence complexity of those regions and may result in

artificial fusion candidates. We thus remove reads

mapped to those regions (Materials and methods).

Random pairing of transcript fragments: abnormal insert

size filter

The filters described so far deal with computationally

generated artifacts. However, some artifacts can be

intrinsic to the experimental protocol. Library prepara-

tion typically requires the fragmentation of the cDNA.

This may result in the generation of random chimeric

transcripts when inefficient A-tailing may lead to the

ligation of random cDNA molecules [38]. This issue

affects more highly expressed genes. The abnormal

insert size filter addresses this problem by exploiting the

fact that the transcript fragments have approximately

the same size because a size-selection step is typically

part of the experimental protocol. We could filter the

set of candidate fusion transcripts by selecting those

paired reads having an insert size - that is, the distance

between the two mapped reads - comparable to the

fragment size and by excluding those with a much

higher insert size, somewhat resembling the approach

for determining DNA structural variants [27,39-41].

However, this approach is based on the fact that the

alignment of genomic PE reads to the genome reflects

its linearity, where any deviation from this ‘nominal’

Table 1 Results of the alignment

Sample
ID

Type Known fusion
type

Read size
(nt)

Total number of PE
reads

Mapped PE
reads

Percentage of mapped PE
reads

106_T PCa TMPRSS2-ERG 51 7,239,733 4,723,941 65.25%

1700_D PCa TMPRSS2-ERG 51 12,435,299 7,629,273 61.35%

580_B PCa TMPRSS2-ERG 36 18,134,550 7,690,673 42.41%

99_T PCa NDRG1-ERG 36 2,844,879 1,515,444 53.27%

2621_D PCa SLC45A3-ERG 54 22,079,700 11,899,984 53.90%

1043_D PCa No known fusions 51 3,003,305 1,898,332 63.21%

NCI-H660 PCa cell line TMPRSS2-ERG 51 6,512,688 4,120,365 63.27%

GM12878 Lymphoblastoid cell
line

No known fusions 54 44,829,991 20,676,159 46.12%

Total number of PE reads, number of mapped PE reads and the percentage mapped are reported, Note that the number of single-end reads is double the

number of PE reads. PCa, prostate cancer.
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Figure 1 Schematic of FusionSeq. (a) The PE reads are processed to identify potential fusion candidates. Poor quality reads are discarded at

first, and the remaining PE reads are aligned to the reference human genome (hg18). The reads are compared to the annotation set (UCSC

Known Genes) in order to classify them as belonging to the same gene or to different genes. Those aligned to two different genes are then

selected as potential fusion candidates. All good quality single-end reads are also stored for the identification of the sequence of the junction.

(b) The filtration cascade module analyzes the candidates and removes those that have high sequence homology between the two genes or a

higher insert size compared to the transcriptome norm. Additional filters are employed to remove candidates due to random pairing and

misalignment as well as PCR artifacts and annotation inconsistencies. The high-confidence list of candidates is then scored and processed to find

the sequence of the junction. (c). The junction-sequence identifier detects the actual sequence at the breakpoints by constructing a fusion

junction library. It first covers the regions of the potential breakpoint of each gene with ‘tiles’ 1 nt apart, and then creates all possible

combinations, considering both orientation of the fusion, namely gene A upstream of gene B and vice versa. All single-end reads are then

aligned to the fusion junction library and the junction with the highest support is identified as the sequence of the fusion transcript junction.

DASPER, difference between the observed and analytically calculated expected SPER; RESPER, ratio of empirically computed SPERs; SPER,

supportive PE reads.
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insert size will be considered abnormal (Figure S1a in

Additional file 1). These approaches cannot be directly

translated to RNA-Seq analysis because of at least three

additional layers of complexity: the splicing mechanism

of the transcription; the genome of the individual, which

contains some differences from the reference genome;

and the cancer genome of the same individual, which

can include additional somatic variations (Figure S1b in

Additional file 1).

We devised a method to address some of these issues

and still make use of this concept to identify true chi-

meric transcripts. We first introduce the concept of the

‘composite model’ of a gene - that is, the union of all

exons from all known isoforms of a gene - and then we

define the ‘minimal fusion transcript fragment’ (Figure

2). This is generated by using all PE reads bridging the

two different genes. It is important to note that in the

case of a real fusion transcript, we can only identify the

region around the fusion junction. Reads generated by a

fusion transcript that are distant from the junction will

be assigned to one gene or the other. For a real chimeric

transcript, the minimal fusion transcript fragment will

thus capture the region around the breakpoint and the

insert-size distribution computed on it will be similar to

the insert size distribution of normal transcripts. Con-

versely, for an artifactual chimeric transcript, paired

reads would randomly join the two genes from all differ-

ent parts (Figure 2b, right-hand side). The minimal

fusion transcript fragment would be bigger than the

expected fragment. Hence, the insert-size distribution

computed on this minimal fusion transcript fragment

will be higher than that of normal transcripts, that is,

abnormal. The normal insert-size distribution can be

estimated from the data by using the composite models

of all genes (see Materials and methods).

Two filters for the combination of misalignments and

random pairing

An additional complication is the possibility that ran-

dom pairing and misalignment occur together. Highly

expressed genes may generate transcript fragments that

randomly join with another gene. In addition, misalign-

ment can affect the correct identification of the genes

involved in this random pairing. This is particularly

challenging because only a fraction of the reads from

random pairing will be misaligned; specifically, those

with high similarity to another region of the genome.

Figure 2 Abnormal insert-size principle applied to transcriptome data. The composite model of a gene is created via the union of the

exonic nucleotides from all its isoforms. By using the composite model, we can exploit the abnormal insert-size principle. A minimal fusion

transcript fragment is created by connecting the regions of the two genes joined by PE reads. Subsequently, the insert-size of these chimeric PE

reads is computed and compared to the insert-size distribution of PE reads in the normal transcriptome. The higher insert-size compared to the

transcriptome norm would suggest an artifact since it may be due to the random joining of fragments during library generation.
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This would result in PE reads bridging relatively small

regions that can escape the abnormal insert size filter.

Hence, we devised two additional filters: one comparing

the candidates to the typically highly expressed riboso-

mal genes, and the other assessing the consistency of

the expression levels of the individual genes of a chi-

meric transcript (see Materials and methods).

PCR filter

Most library preparations also require a PCR amplifica-

tion step. This may lead to potentially artifactual fusion

candidates when the same read is over-represented,

yielding to a ‘spike-in-like’ signal, that is, a narrow signal

with a high peak. To reduce this effect, we filter candi-

dates that have chimeric reads piling up in a small

region (see Materials and methods).

Module 3: junction sequence identifier After the iden-

tification of high-quality candidate fusion transcripts, we

can seek the overall support of those candidates taking

advantage of the pool of all single-end reads. This pro-

cess also allows the identification of the exact sequence

of the fusion transcript junction. The knowledge of the

actual junction sequence has many uses. First, it can

help to identify the actual regions that are connected in

the fusion transcript. Second, it helps in subsequent

experimental validation, such as by RT-PCR. Finally, it

can provide additional evidence for the fusion transcript

or can be used to rule out artifacts.

In order to identify the junction sequence, we build a

‘fusion junction library’ and align all single-end reads to

this library (Figure 1c). To be computationally efficient,

we first identify the regions where the potential break-

points are using the information from the PE reads brid-

ging the two genes. The exact size of the regions bears

greatly on the resulting complexity of the potential

fusion transcript and the computational power (see

Materials and methods). Then, we cover these regions

with ‘tiles’ that are spaced 1 nt apart and, finally, we

generate the fusion junction library by creating all pair-

wise connections between these tiles. The rationale is

that the correct junction sequence will correspond to

one of these connected tiles and that there will be full-

length single-end reads that will align to that sequence

(see Materials and methods).

Scoring the candidates

Although FusionSeq filters out many spurious fusion

candidates, some may still be present, especially random

chimeric transcripts generated during sample prepara-

tion. Hence, candidates are scored based on their likeli-

hood to be real, allowing prioritization of validation

experiments. The first obvious measure is simply the

number of inter-transcript PE reads (mi) normalized by

the total number of mapped PE reads (Nmapped), simi-

larly to RPKM (reads per kilobase of exon model per

million mapped reads) for measuring gene expression

[3]. This is expressed per million mapped reads and

called SPER for ‘supportive PE reads’. For the i-th candi-

date:

SPER =
m

N
i

i

m apped

⋅10
6

This measure gives an indication of the abundance of

the fusion transcript. However, to assess whether a

given SPER is ‘high’ enough, we compare it with two

‘expected’ values: one is calculated analytically and the

other empirically. The first quantity is DASPER (the dif-

ference between the observed and analytically calculated

expected SPER), indicating how many (normalized)

inter-transcript PE reads we observe more than expecta-

tion. The analytically calculated expected SPER (<SPER

>) is based on the observation that if two ends were ran-

domly joined, the probability that this occurs for gene A

and gene B is proportional to the product of the prob-

ability that the two single-ends of the pair are mapped

to gene A and gene B (see Materials and methods). This

scoring method takes into account fusion transcripts

that might have been generated during sample prepara-

tion from highly expressed genes. Obviously, the higher

DASPER is, the more likely the fusion candidate is real.

The second measure is RESPER (the ratio of empiri-

cally computed SPERs). The rationale for this measure

is the comparison of the observed SPER with the SPERs

of the other candidates. We expect a real fusion tran-

script to be supported by a higher number of reads

compared to the artifactual chimeric transcripts (see

Materials and methods). This quantity, contrary to DAS-

PER, is independent of the fragment size, thus more sui-

table for comparisons across samples. While RESPER is

useful, it suffers in comparison to DASPER if a sample

has several real fusions.

In summary, by computing these quantities, we can

‘demote’ fusion candidates that may result from random

joining of highly expressed genes (DASPER), and select

those candidates that ‘stand out’ compared to the others

(RESPER), thus providing a high-confidence ranked list

of candidates.

Classifying the candidates

FusionSeq provides a list of potential fusion candidates

that are automatically classified into different categories

depending on the genes that are involved [13]: (1) inter-

chromosomal - two genes on different chromosomes;

(2) intra-chromosomal - two genes on the same chro-

mosomes. The latter can be further subclassified as: (2a)

read-through candidates if the two genes are close

neighbors on the genomes, that is, if no other gene is

present between them; (2b) cis candidates - similar to

read-through events, but the two genes are on different

strands.
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Several read-through events have been reported in the

literature, although their role remains unclear [42]. This

may also be an effect of the pervasive transcription of

the genome. Indeed, when considering primary tran-

scripts, more than 90% of the nucleotides of the human

genome are transcribed [11]. Although the RNA-Seq

protocol requires a poly-A selection step, it may occur

that pre-mRNA fragments with stretches of adenosines

are still selected and sequenced.

FusionSeq applied to prostate cancer samples

In order to develop and calibrate FusionSeq, we selected

a set of prostate cancer tissues harboring the common

TMPRSS2-ERG fusion, others with less common fusions

(SLC45A3-ERG, NDRG1-ERG) and prostate cancers with

no evidence of known ETS fusions. We also sequenced a

prostate cancer cell line with the TMPRSS2-ERG fusion

(NCI-H660) and a lymphoblastoid cell line (GM12878)

that was selected for the HapMap project and employed

by the ENCODE project as controls. This normal cell

line is not expected to have gene fusions (Table 1). Over-

all, FusionSeq takes about 2 hours to analyze 20 million

mapped reads. More details about the computational

complexity are discussed in Materials and methods.

Fusion candidates The application of FusionSeq to the

above samples resulted in the identification of 12 fusion

candidates, on average, per sample with SPER greater

than 1 (range 0 to 25). Considering the top candidate

for each sample, the average SPER is 13.99 for those

with known ERG rearrangements and 3.09 for those

without known fusions (Table 2; Table S1 in Additional

file 1). The vast majority of candidate fusions are intra-

chromosomal - they occur between genes that are on

the same chromosome - with the majority being read-

through events (Table S1 in Additional file 1).

The most common fusion, TMPRSS2-ERG, is ranked

at the top of the list. The other known fusions between

ERG and other 5’ partners, namely SLC45A3 and

NDRG1, are also included in the top candidates. The

remaining candidates appear to be read-through events,

including ZNF649-ZNF577 (Table 2).

Although the candidates are ranked by RESPER, it is

worth noting that the TMPRSS2-ERG fusion has high

values for both SPER and DASPER, as expected. These sta-

tistics are almost equivalent for the top candidates; how-

ever, they substantially differ in the case of artifacts given

by highly expressed genes (Tables S1, S3 and S5 in Addi-

tional file 1), suggesting the effectiveness of DASPER in

identifying those cases. Indicatively, DASPER and RESPER

values greater than 1 seem to conservatively select for true

chimeric events, with 16 out of 19 candidates (84%) being

either experimentally confirmed or with EST evidence.

We find a second candidate fusion transcript involving

ERG and GMPR in sample 1700_D in addition to

TMPRSS2-ERG. By analyzing the regions that are

connected, it seems that the exons not involved in the

TMPRSS2-ERG fusion are linked to GMPR, suggesting

that ERG undergoes a balanced translocation. This

novel finding was experimentally validated (Figure S2 in

Additional file 1). Another novel finding is the fusion

transcript involving PIGU and ALG5 that was also

experimentally confirmed [43]. Finally, there is one cis

candidate including AX747861 and FLI1, which may

suggest some complex rearrangement (Materials and

methods). However, from EST data there is evidence

that this may correspond to a single FLI1 transcript,

thus suggesting an artifact caused by the annotation set

(Figure S3 in Additional file 1). Although FusionSeq can

properly handle such cases with the annotation filters

(Additional file 1), we report it here as an example of

how the framework can be employed to refine the

search of candidate fusion transcripts and help the

experimenter screen this list.

Effects of the filters The application of the filters

reduced the number of candidates identified by the

fusion detection module. Out of a total of 7,342 candi-

dates, only 133 candidates passed all the filters, a reduc-

tion of 98% (average number of identified candidates

per sample = 917.75, range [451 to 1,618]; average num-

ber of candidates per sample after filtering = 16.63,

range [4 to 41]). In Figure 3a, we summarize the effect

Table 2 SPER, DASPER, and RESPER for the top candidates

with DASPER > 0 and RESPER > 1 across all prostate

cancer tissue samples

Type ID Fusion candidate SPER DASPER RESPER

Intra 580_B TMPRSS2-ERG 36.54 36.53 14.31

Intra 1700_D TMPRSS2-ERG 19.66 19.63 8.79

Intra 106_T TMPRSS2-ERG 10.16 10.11 3.97

Inter 2621_D SLC45A3-ERG 4.29 4.15 3.56

Inter 1700_D ERG-GMPR 4.59 4.59 2.05

Read-through 1700_D SLC16A8-BAIAP2L2 4.33 4.33 1.93

Read-through 106_T AK094188-AK311452 4.87 4.87 1.9

Read-through 1700_D ZNF473-FLJ26850 3.54 3.54 1.58

Read-through 580_B ZNF577-FLJ26850 4.03 4.03 1.58

Read-through 1043_D ZNF577-ZNF649 5.79 5.79 1.55

Read-through 1700_D CAMTA2-INCA1 3.01 3.01 1.35

Inter 1700_D EEF1D-HDAC5 2.88 2.84 1.29

Read-through 1043_D FLJ00248-LRCH4 4.74 4.74 1.27

Read-through 1700_D VMAC-CAPS 2.62 2.62 1.17

Read-through 106_T FLJ00248-LRCH4 2.96 2.96 1.16

Cis 1043_D AX747861-FLI1 4.21 4.21 1.13

Read-through 106_T TAGLN-AK126420 2.75 2.75 1.07

Inter 580_B PIGU-ALG5 2.73 2.73 1.07

Inter 99_T NDRG1-ERG 7.26 7.15 1.02

Cell lines are reported in Table S1 in Additional file 1. Entries in bold are

known gene fusions, and those in italics read-through events confirmed either

experimentally or via additional evidence, such as ESTs or mRNAs from

GenBank.

Sboner et al. Genome Biology 2010, 11:R104

http://genomebiology.com/2010/11/10/R104

Page 7 of 19



Figure 3 Filtration cascade module. (a) The average percentage of candidates identified by the fusion detection module that are removed by

each filter is reported. The labels also depict the order the filters have been applied in this case (counter-clockwise starting from the

RepeatMasker filter), but it is worth noting that the order of the application of the filters does not affect the final list of candidates. (b) RESPER

(ratio of empirically computed SPERs) versus depth of sequencing. The plot shows the RESPER values for SLC45A3-ERG, a real fusion transcript,

and P4HB-KLK3, an artifact likely created by the random pairing due to the high expression of KLK3 at different sequencing depths.
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of the filters. Each filter reduces the number of potential

candidates to some extent, indicating that they address

these issues. We experimentally verified that some of

the candidates filtered out or with negative DASPER are

artifactual (Table S6 in Additional file 1).

Sequencing depth and detection of fusion candidates

We investigated the effect of the number of mapped

reads on the detection of fusion transcripts. We ran-

domly sampled fractions of mapped reads from sample

2621_D, and applied FusionSeq to the reduced data sets

(see Materials and methods). The top candidate is

always SLC45A3-ERG with an increasing RESPER, as

expected (Figure 3b). That RESPER increases with

increasing sequencing depth is an indicator that the real

fusion transcript stands out compared to the back-

ground. Although the number of fusion candidates

increases as well, the DASPER for the majority of other

candidates is negative, suggesting that they are artifacts

(Table S1 in Additional file 1).

TMPRSS2-ERG fusion-positive prostate cancer tissues

For all the TMPRSS2-ERG-positive prostate cancer tissues,

FusionSeq always detects this fusion transcript at the top

of the list (Table S1 in Additional file 1). Figure 4a shows

the PE reads bridging the two genes for the three tissue

samples and the cell line harboring the fusion for the

entire region between TMPRSS2 and ERG. It is worth not-

ing that the regions connected by the PE reads are differ-

ent across the samples, suggesting the presence of

different TMPRSS2-ERG isoforms.

Exon expression The expression of a fusion transcript

should also be reflected in the intensity of the signal at

the exon level. Specifically, if a fusion transcript does

not include some exons of the ‘wild-type’ gene, the

expression of those excluded exons should be lower

compared to that of exons that are part of the fusion

transcript. This observation was originally reported by

Tomlins et al. [23] using a standard exon walking

experiment and has been confirmed using exon arrays

[44].

For illustration purposes, Figure 5 shows the expres-

sion values (RPKM) for the exons of ERG and

TMPRSS2. It is common that the expression of ERG is

driven by its fusion with a 5’ partner. Hence, we can

expect that the major expression signal is due to the

fusion transcript. Indeed, the expression signal of the

exons involved in the fusion transcript is higher than

that of the region excluded. A similar conclusion is

obtained when looking at TMPRSS2.

Junction-sequence identification analysis Figure 4c

shows the results of the junction-sequence identifier

module for the four samples with TMPRSS2-ERG fusion.

The main breakpoints are detected for both TMPRSS2

and ERG. This allows the determination of the correct

fusion isoform, which was experimentally validated with

RT-PCR (Figure 4d). By taking a closer look at the junc-

tion-sequence identification results, a second potential

breakpoint for sample 1700_D can be detected, albeit

with much fewer number of reads (5 compared to 320

for the main breakpoint; Figure S4a in Additional file 1).

The reads supporting it are uniformly distributed across

the junction, suggesting that it is a real breakpoint and

that multiple fusion variants are present. This finding

has been validated with RT-PCR using a primer specific

to this junction (Figure S4b in Additional file 1).

ERG-rearranged cases with different 5’ partners We

analyzed two other ERG-rearranged cases where the 5’

partner of ERG is different from TMPRSS2. We pre-

viously reported the discovery of a novel rearrangement

between ERG and NDRG1 for sample 99_T, resulting

from the focused analysis of PE RNA-Seq restricted to

the specific region of ERG [14]. With the current

method that performs a genome-wide analysis, we con-

firmed the NDRG1-ERG fusion transcript as the top

candidate (Table 2). Furthermore, we applied FusionSeq

to another ERG-rearranged sample, 2621_D, identifying

SLC45A3-ERG as top candidate (Table 2, Figure 4b).

ERG rearranged-negative case and normal cell line

When applied to the sample without known fusion tran-

scripts (1043_D), FusionSeq detected only a few candi-

dates, the top being the read-through event between

ZNF577 and ZNF649, which is common in all prostate

tissues analyzed here and has been already documented

[13]. For the GM12878 cell line, it is noteworthy that,

despite having more than 20 million mapped PE reads,

none of the few candidates (n = 4) have a SPER higher

than 0.3, as expected being a normal cell line (Table S1

in Additional file 1). The read-through event with posi-

tive DASPER appears to be a mis-annotation of the

untranslated regions (UTRs; BC110369-BC080605),

whereas the inter-chromosomal candidates have a nega-

tive DASPER, suggesting that they may be due to ran-

dom chimeric pairing. Indeed, one of the genes involved

is a highly expressed gene, ACTG1, with an RPKM

>232,000 [3]. Furthermore, the junction-sequence identi-

fier analysis does not yield any result.

Simulation results

In addition to experimental evidence, we also performed

a simulation study to assess FusionSeq performance. We

employed the GM12878 cell line as an estimate of the

background because it is not expected to harbor any

fusion transcripts. We randomly generated inter-tran-

script reads, thus simulating the presence of fusion tran-

scripts, and added these PE reads to the pool of the

actual PE reads of the GM12878 cell line data (see

Additional file 1 for details). The results showed that a

DASPER score greater than 1 achieves high sensitivity

(0.80) even if the fusion transcript is expressed at half

the rate of the ‘wild-type’ allele (F = 0.5) with an area
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Figure 4 Results of FusionSeq. (a) A subset of the PE reads connecting TMPRSS2 and ERG are shown for four samples (106_T, NCI-H660,

1700_D, 580_B). (b) PE reads connecting ERG and SLC45A3 for sample 2621_D. The outer circle reports all chromosomes, whereas the inset

shows only the region of ERG and SLC45A3. The gray lines depict the intra-transcript PE reads, whereas the red ones represent the inter-

transcript PE reads. Note that for illustration purposes, only the inter-transcript reads are shown for SLC45A3. The inset also depicts the composite

model (blue line) and its exons (green boxes). (c) Results of the junction-sequence identifier. The location of the breakpoints for the four

samples with the TMPRSS2-ERG fusion are reported as bars (not to scale). Moreover, the sequence of the junctions as well as a subset of the

aligned reads for two samples is reported (106_T, 580_B). (d) The locations of the PCR primers used for the validation are depicted as red

arrows. The isoforms consist of TMPRSS2 and ERG exons fused to form different exon combinations as depicted schematically. For both samples

NCI-H660 and 1700_D, isoform III is detected, whereas, for samples 106_T and 580_B, isoforms I and VI are determined, respectively (Table S7 in

Additional file 1) [46,56]. The transcript isoforms were validated by a PCR assay for each sample separately (gel images). A 50-nt length standard

(lane 1) is shown here for the determination of the approximate fragment size. The identity of the PCR products was validated by Sanger

sequencing.
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under the receiver operating characteristic (ROC) curve

(AUC) higher than 0.95 (Figure S5 in Additional file 1).

Conclusions

Gene fusions have been considered the key molecular

event in leukemias, lymphomas, and some soft tissue

tumors (that is, sarcomas). With the 2005 discovery of

common recurrent gene fusions in prostate cancer,

there exists a strong likelihood that recurrent gene

fusions are present in common epithelial cancers [23].

Numerous studies have now confirmed that approxi-

mately 50% of prostate cancers harbor a recurrent

fusion between TMPRSS2 and ERG or ETV1 [45]. In an

attempt to identify these fusion events, we employed PE

RNA-Seq technology exploiting the connectivity infor-

mation of the two ends of transcript fragments. As is

the case for other applications of deep sequencing, con-

siderations of computational complexity and statistical

significance are mandatory.

FusionSeq: a modular framework

In the current study, we describe FusionSeq, a novel

computational and statistical framework to identify

fusion transcripts by analyzing PE RNA-Seq data. This

framework consists of three modules: a fusion transcript

detection module; a filtration cascade module, which is

composed of a set of filters that remove different types

of artifacts and rank the candidates by different scores;

and a junction-sequence identifier module, which

detects the actual sequence of the fusion junction.

Among the advantages of our method is the decoupling

of the alignment approach from the identification of

candidate fusion transcripts. Indeed, we developed

FusionSeq to be independent from the alignment tool

and the mapping strategy as much as possible. Other

methods proposed that could potentially identify fusion

transcripts require a particular choice of the mapping

tool or platform and do not provide any considerations

about artifactual fusion transcripts generated by the

sequencing protocol [32,33]. To this end, we have devel-

oped a set of filters to remove artifactual candidates gen-

erated by several sources of errors (see Materials and

methods), which are particularly relevant in the inter-

mediate range of sequencing depth (1 million to 100 mil-

lion reads). It is likely that with higher coverage those

issues will impact the analysis less since one can use the

statistics of the higher coverage to overcome errors.

Of further interest is also the ability of this method to

identify the sequence of the junction of the fusion tran-

script using the full read length. This valuable informa-

tion allowed us to detect and then experimentally

confirm the simultaneous presence of multiple fusion

isoforms within a single cancer tissue. Moreover, it

enables the experimentalist to narrow the genomic

region to look at for the subsequent validation of the

fusion candidate. All validated fusions in this data set

have breakpoints lying at the exon boundary. This

might indicate that, in case of genomic rearrangement,

the splicing machinery is still active and removes the

intronic regions harboring the actual genomic break-

points. Hence, we speculate that insertions or deletions

that typically occur at genomic breakpoints might not

affect the junction of the fusion transcript.

Figure 5 Expression values of the exons of TMPRSS2 and ERG. The RPKM values computed on each exon of ERG (isoform NM_004449.4) and

TMPRSS2 (isoform NM_005656.3) are shown as stacked bars for the four samples with TMPRSS2-ERG fusion. For illustration purposes, the exons

included in the most common fusion isoforms are labeled as ‘FUSED’.
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Scoring the candidates

One of the novel features introduced by FusionSeq is

the computation of scores to assign a ‘confidence value’

to the fusion candidates. We propose a classification

and scoring approach to prioritize the selection of can-

didates for experimental validation (see Materials and

methods).

We envision that researchers seeking gene fusions can

use this tool to focus their efforts on the candidates

with the top scores. Validation typically includes seeking

confirmation of the putative fusion sequence using stan-

dard PCR assays and traditional sequencing as well as

exploring for a corresponding genomic rearrangement at

the DNA level using such approaches as fluorescence in

situ hybridization (FISH).

Sample set

One important aspect of this study is that we tested

FusionSeq on data generated from cancer samples

derived from human tumors and not only cell lines.

Clearly these types of samples are more challenging

given their heterogeneity as they may include tumor,

stromal, and endothelial cells. We have used a set of

prostate cancer samples with and without the

TMPRSS2-ERG fusion transcript to calibrate FusionSeq.

This well-characterized gene fusion was not only

detected where present, but the junction sequence iden-

tifier also detected the correct junctions, thus enabling

the determination of the specific isoform variants. More-

over, we observed that one sample had multiple variants.

Understanding the complexity of isoform splicing in

cancer may not only add insight into biology, but may

also provide useful prognostic information as it has

been suggested that some TMPRSS2-ERG isoforms play

a distinct role in prostate cancer development [46,47].

Furthermore, FusionSeq identified two novel events

(ERG-GMPR and PIGU-ALG5), demonstrating that our

procedure is able to find new fusions in addition to

well-characterized ones.

Reporting the results

FusionSeq also includes tools to access and display the

results of the analysis through a web-browser by seam-

lessly integrating the UCSC Genome Browser. More-

over, to display inter-chromosomal events, which is

currently not possible in the UCSC Genome Browser,

we developed SeqViz, a visualization tool based on Cir-

cos [48], an open source software particularly suited for

this purpose (see Materials and methods). These web-

based interface tools enable the user to quickly access

the information provided by FusionSeq, an aspect that

greatly increases its applicability in comparison to other

related tools [32,33].

Future directions

Although we demonstrated the feasibility of this

approach using several cancer tumor samples, there are

some limitations to the current approach. The fusion

transcript detection module is based on a gene annota-

tion set that provides the information of the genes and

their isoforms. Although the framework is flexible and

the choice of which annotation to use is left to the user,

the identification of the candidate fusion is of course

limited to this set. We employed the UCSC Known

Genes set, which contains 66,803 isoforms. We believe

that this is a reasonable choice and that the use of a dif-

ferent annotation set would not dramatically change our

results.

Although FusionSeq is independent from the mapping

strategy adopted, it is likely that different mapping

approaches would make use of the filtration cascade dif-

ferently. As an example, if the alignment procedure

explicitly excludes repetitive regions, the filter using

RepeatMasker will impact on the final list of candidates

to a lesser extent. This is why the modularity of Fusion-

Seq allows the users to adapt the framework to their

specific goals (Figure S9 in Additional file 1).

We anticipate that FusionSeq will benefit from the

availability of longer sequence reads and deeper sequen-

cing, with an increased ability to identify and score

novel fusion events from RNA-Seq data.

Materials and methods

Prostate cancer selection and RNA extraction

All the prostate cancer samples were collected under an

IRB (Institutional Review Board) approved protocol.

Hematoxylin and eosin (H&E) slides were prepared

from frozen tissue blocks and evaluated for cancer

extent and tumor grade by the study pathologist (MAR).

To ensure high purity of cancer cells and minimize

benign tissue, tumor isolation was performed by first

selecting for high-density cancer foci (< 10% stromal or

other non-tumor tissue contamination) and then taking

1.5 mm biopsy cores from the frozen tissue block for

RNA extraction using TRIzol Reagent (Invitrogen, Carls-

bad, CA, USA). The RNA extract was then subjected to

DNase treatment using a DNA-free™ Kit (Applied Bio-

systems/Ambion, Austin, TX, USA). The quality of RNA

was assessed using the RNA 6000 Nano Kit on a Bioa-

nalyzer 2100 (Agilent Technologies, Santa Clara, CA,

USA). Up to 10 μg of RNA with RIN (RNA integrity

number) ≥7 was determined suitable for sample

preparation.

Sample preparation

The samples were prepared in accordance with the Illu-

mina RNA sample preparation protocol (Part # 1004898

Rev. A September 2008). Briefly, mRNAs were fragmen-

ted at elevated temperature using divalent cations and

transcribed into cDNA, thereby generating a library of

cDNA fragments. RNA-Seq adapters were then ligated

to the blunt ends of the cDNA fragments. The library of
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cDNA fragments subsequently underwent a size-selec-

tion step in which cDNAs were first electrophoresed

through a 2.5% agarose gel in TAE buffer. Then, the

desired fragment size products (200 or 300 nt) were

retrieved from the gel and subjected to PCR amplifica-

tion using universal primer sites present at the end of

the ligated adapters. The library was then subjected to

quality control steps such as verification of fragment

size and concentration measurements using the DNA

1000 Kit (Agilent Technologies) on an Agilent 2100

Bioanalyzer.

All samples were sequenced using one lane of an Illu-

mina Genome Analyzer II (GAII) flowcell, except for

GM12878 and 99_T, which were sequenced using two

lanes. Since the experiments were performed over sev-

eral months as Illumina introduced advances to the

GAII platform, the total number of reads and the read

length vary (Table 1). However, all samples were pre-

pared following the same protocol.

Validation of TMPRSS2-ERG fusion isoforms with PCR

Aliquots from the same RNA stock were used for both

RNA-Seq and PCR validation by conventional reverse-

transcription PCR. RNA was reverse transcribed using a

High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA, USA). The TMPRSS2-ERG

PCR was performed using Platinum Taq DNA Polymer-

ase (Invitrogen) with 1 mM MgCl2, 0.1 μM of each pri-

mer (forward, TMPRSS2 exon 1 - TAGGCGC

GAGCTAAGCAGGAG; reverse, ERG exon 5 -

GTAGGCACACTCAAACAACGACTGG; as published

by Tomlins et al. [23]) and 50 ng cDNA at an annealing

temperature (Ta) of 63°C for 35 cycles and the PCR

products were separated on a 2.5% agarose gel. For

TMPRSS2-ERG isoform IV, the PCR was performed,

using a reverse primer specifically designed for the

detection of isoform IV (TGCATTCATCAGGA-

GAGTTCCTGC), under the same conditions but with

Ta 55°C and 40 cycles. The obtained products were iso-

lated from the gel using the MinElute™ Gel Extraction

Kit (Qiagen, Valencia, CA, USA) and subsequently sent

for Sanger sequencing at the Core facility of Cornell

University (Ithaca, NY, USA).

Mapping

We employed ELAND to map the PE reads against the

Human Reference Genome (March 2006 Assembly -

hg18). We allowed for up to two mismatches of the

alignment and selected reads that passed the quality fil-

ter from ELAND. In case of pairs mapped to the same

chromosome, we selected reads aligned to opposite

strands. We also employed bowtie to map the reads to

the human genome sequence [49]. Since bowtie does

not allow PE reads to be mapped on different chromo-

somes, we adopted the following strategy: the two ends

were mapped separately to the genome and the best

alignment was selected among the top ten candidates in

the case of mapping to multiple locations. Two mis-

matches were allowed for bowtie too. Then, the two

ends were paired together, if both ends were aligned.

Moreover, for comparison purposes, we mapped the

reads to a splice junction and a ribosomal library in

addition to the genome (see Additional file 1 for details).

Filtration cascade

Large scale sequence similarity filter Two paralogous

genes resulting as fusion candidates are discarded

because their homology can potentially cause a misa-

lignment. We use TreeFam to identify and remove these

candidates [36,37]. TreeFam is a database of phyloge-

netic trees of animal genes with the aim of providing a

curated list of orthologs and paralogs.

Small scale sequence similarity filter The small scale

sequence similarity filter seeks broad similarities

between two transcripts. However, it may be possible

that there is high similarity between small regions

within the two genes where the reads actually map.

Hence, to search for similar sequences within the two

candidate genes, we employ a two-step strategy. We

first perform a fast search of the reads aligned to one

gene against the full transcriptome, represented by all

composite models, using bowtie [49]. If more than a

user-defined threshold (default of 1%) of the reads map

to one gene ‘hit’, the partner gene, the candidate is dis-

carded. This approach removes candidates where the

reads have high similarity, since bowtie allows up to

three mismatches only. For those candidates not filtered

out by this approach, a second, more refined compari-

son is performed. We align the reads mapped to one

gene to its partner’s sequence by using BLAT [50]. If

the fraction of reads that have similarities to the corre-

sponding partner is higher than a user-defined threshold

(default of 1%), then the pair is discarded. In order to

call a hit - that is, similarity to the partner gene - we

require that at least 75% of the read has similarity to the

corresponding gene.

Repetitive regions filter Some reads may be aligned to

repetitive regions in the genome due to the low

sequence complexity of those regions, which may result

in artificial fusion candidates. We thus remove reads

mapped to repetitive regions using RepeatMasker to

identify these regions [51,52].

Abnormal insert size filter The PE RNA-Seq experi-

mental protocol requires sequencing of the ends of

cDNA molecules of a determined length: the fragment

size. If we mapped those sequenced reads to the tran-

scriptome (which we do not know exactly), we would

obtain an insert-size distribution - the distance between

the two reads - similar to the fragment size. However,
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since the reads are aligned to the reference genome, the

insert-size distribution can be rather skewed (Figure S1b

in Additional file 1). Using a splice junction library does

not help in this context. Besides having potential biases

given by the incomplete knowledge of the junctions, it

cannot determine to which isoform the two ends belong.

The composite model allows use of the concept of the

insert-size also for RNA-Seq data (Figure 2a). The com-

posite model is the union of all the exons from all

known transcripts of a gene. This ensures that all exonic

nucleotides are considered. The insert-size distribution

computed using the composite model as reference

should thus be comparable to the nominal fragment size

selected during sample preparation (if there is more

than one isoform, the insert size distribution computed

with the composite model will be slightly shifted

towards higher values because of the inclusion of all

possible exonic regions in the composite model).

We then extend this concept to distinguish potentially

real chimeric transcripts from artifactual ones. We gen-

erate a minimal fusion transcript fragment by using all

the PE reads bridging two different genes (Figure 2b).

The rationale is that the insert size distribution com-

puted on this minimal fusion transcript fragment of a

real chimeric transcript is similar to the insert size dis-

tribution of normal transcripts. This is because we

expect inter-transcript PE reads to connect the regions

around the junction only. Conversely, a fusion transcript

generated by random chimeric pairing would have a

rather long minimal fusion transcript because paired

reads would randomly join different regions of the two

genes. This, in turn, would yield a much higher insert-

size distribution compared to that of the real case; that

is, it would be abnormal.

Specifically, for each of the candidate chimeras, the

insert-size distribution is computed using all paired

reads mapping to the composite model of that gene:

that is, the intra-transcript insert-size distribution. For

this purpose, only reads that are fully contained within

exons are considered. If a candidate has only intronic

reads, this filter is not applied. Similarly, the ‘anomalous’

reads - reads that bridge two different genes - are first

used to create a minimal fusion transcript (Figure 2b).

Note that from the PE data we cannot determine the

full fusion transcript, but only the region nearby the

actual junction of the two genes, that is, the minimal

fusion transcript fragment. Then, the insert-size distri-

bution of the minimal fusion transcript is computed

(inter-transcript insert-size distribution) and compared

with the intra-transcript insert-size distribution. If the

median of the inter-transcript insert-size distribution is

much higher than the median of the intra-transcript

insert-size distribution, it is likely due to misalignments.

A P-value is computed by randomly sampling the intra-

transcript insert-size distribution. Candidate fusion tran-

scripts having a P-value lower than a user-defined cutoff

are discarded as artifacts. Note that the candidates that

are ‘outliers’ with respect to the intra-transcript insert-

size distribution are discarded as artifacts, whereas, in

the DNA context, they are kept as potential insertions

or deletions (Figure S1a in Additional file 1).

For this analysis, we used a P-value cutoff of 0.01 (cor-

responding to approximately 2.5 standard deviations

from the transcriptome norm) for all samples, except

for 2621_D, for which we used a cutoff of 0.0001

because of the much tighter intra-transcript insert-size

distribution given by the smaller fragment size com-

pared to the other samples.

Ribosomal filter The vast majority of transcripts in the

cell are ribosomal RNA. Although the experimental pro-

tocol typically requires either selecting for non-riboso-

mal mRNA with polyA+ selection or depleting of

ribosomal RNAs, this process is imperfect. This trans-

lates into a high abundance of ribosomal transcripts

with a higher chance of generating random chimeras. If

misalignment occurs too, this would result in artifactual

candidates that appear to not involve ribosomal genes.

Hence, this filter compares the reads of the candidates

to the ribosomal genes sequence database using a more

sensitive alignment tool such as BLAT [50]. If the reads

align to ribosomal genes, the candidate is removed.

Specifically, in order to identify reads that bear simi-

larity to ribosomal genes but were mapped to another

region, we require a read to have more than 75% simi-

larity to a ribosomal gene to count it as a hit. If more

than 10% of reads map to the ribosomal library, the can-

didate is discarded (Additional file 1). Note that this

issue, although related, is independent of the mapping

strategy. Indeed, even if we employ a ribosomal library

during the alignment phase, there still may be reads

that, due to misalignment, will map best to other

regions of the genome.

Expression consistency filter Highly expressed genes

give rise to the same issue that occurs with ribosomal

genes. This filter compares the expression signal (that is,

number of reads) generated by the chimeric reads to the

signal of the individual genes. The rationale is that, in

the case of a real fusion transcript, the two genes would

be expressed at the same or higher levels than the ‘chi-

meric’ signal, whereas, in the case of an artifactual can-

didate, the signal would be generated only from the

chimeric reads and the signal of the two individual

genes would be much lower.

In more detail, the expression signal of the fusion can-

didate is computed by counting the number or inter-

transcript, that is, chimeric, reads mapped and normaliz-

ing by the length of the region covered by those reads.

The expression of the individual genes is computed as
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the number of reads normalized by the length of the

transcripts. If the chimeric reads have a higher signal

than that of the individual genes, the candidate is

discarded.

PCR filter To avoid artifacts resulting from the PCR

amplification step, we require the reads supporting a

candidate fusion transcript to independently cover at

least p nucleotides (default p = 5) in addition to the

read size on both ends, otherwise the candidate is dis-

carded. This ensures that several instances of the tran-

scripts were expressed in the cells. In the case of

sufficient coverage, it is also possible to compute the

entropy to identify these cases and remove them.

Junction-sequence identifier module

The PE reads can identify the genes involved in a fusion

transcript, but cannot directly determine the junction

sequence because, typically, short read alignment tools

do not allow gapped alignment for the single read.

Hence, we developed this module to take advantage of

the fast short read alignment tools and identify the

sequence of the junction in an efficient way.

Let us assume we have some PE reads joining gene A

with gene B, thus suggesting a fusion event between

them. Those reads would connect regions around the

junction. For each gene, we thus select the region that

can include the junction sequence by first considering

all exons that can be potentially involved in the junction

as well as the intronic regions that are supported by chi-

meric PE reads. Those regions are extended considering

the flanking 150 nucleotides. We then cover them with

a set of ‘tiles’ that are spaced 1 nt apart and construct a

fusion junction library by creating all pairwise junctions

between these tiles. Since we do not know a priori what

the specific form of the fusion transcript is, we create

two libraries, one assuming gene A is upstream of gene

B and the other assuming gene B is upstream of gene A

(Figure 1c). This fusion junction library plays the same

role as a canonical splice junction library: it enables the

alignment of short reads, thus overcoming the need for

a computationally expensive gapped alignment for reads

bridging two exons or, as in this case, regions of differ-

ent genes.

All the reads, including the non-mapped ones, are

then mapped against this library. In this case we con-

sider the two ends independently. The rationale is that

the actual junction sequence will be described by a cer-

tain pair of tiles, and reads not previously mapped any-

where in the genome now can be aligned to this fusion

junction. Moreover, reads that previously mapped with

one or two mismatches to the reference genome may

now map perfectly to the fusion junction and thus

increase the evidence supporting the junction. The size

of these tiles depends on the read size as well as the

amount of overlap across the two joined tiles required

by the user. For example, for reads that are 36 nt long

and a required overlap of at least 10 nucleotides, each

fusion junction element is 52 nt long, that is, each tile is

26 nt long. This ensures that every 36-nt read, if

mapped to this junction element, will have at least 10

nucleotides mapped to the tile of each gene.

To select the true junction sequence, we determine

which fusion junction obtains the highest support, that

is, the junction with the highest number of reads aligned

to. In addition, we also require the set of single-end

reads to be uniformly distributed across the junction to

provide further evidence. Provided there is enough cov-

erage overall, we employ a Kolmogorov-Smirnov statisti-

cal test, otherwise we apply a simple heuristic by

requiring that at least n reads align to the junction with

at least m different starting positions on the junction

sequence. The latter parameter ensures that no PCR

artifacts affect the junction identification. Also, we

search for similarity of the identified junction elsewhere

in the genome using BLAT [50], in order to eliminate

potential spurious junctions.

From a computational viewpoint, let us assume that

we have about 1,000 virtual tiles for each gene. By creat-

ing all pair-wise combinations of these virtual tiles for

the two genes and considering both directions - gene A

upstream of gene B and vice versa - will result in 1,000

× 1,000 × 2 = 2 × 106 putative junctions. If we have

approximately 30 candidate fusion transcripts, the puta-

tive fusion junction library will thus contain approxi-

mately 6 × 107 = 60 million elements. Using fast

alignment tools, this analysis is feasible, although it

requires large-scale computational resources. Indeed, we

use bowtie to first create an index of the fusion library

and then map the reads against it [49]. To fully exploit

the parallelization of a multi-node computing cluster,

each fusion candidate is analyzed independently on dif-

ferent nodes. Moreover, the fusion junction library itself

is also split across multiple nodes in order to optimize

the generation of the indexes.

Sequencing depth and detection of fusion candidates

To assess the impact of sequencing depth on the detec-

tion of the fusion candidates, we randomly selected a

fraction of mapped reads from sample 2621_D. Specifi-

cally, we extracted 10%, 25%, 50%, 75%, and 90% of all

PE mapped reads (1.1 million, 3 million, 6 million, 9

million, and 10.8 million PE reads, respectively). The

number of fusion candidates with more than five PE

reads clearly correlates with sample size: 0, 1, 3, 4, and

7, respectively. The SLC45A3-ERG fusion was detected

as the top candidate, starting with 3 million mapped PE

reads, with a SPER of 4.7. The relatively low SPER for

this candidate is related to the smaller fragment size

that has been adopted for this sample (200 nucleotides

compared to 300 to 330 nucleotides for the others). The
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smaller fragment size limits the number of PE reads that

could span the junction. From this analysis, it appears

that 3 million reads are sufficient for detecting this

fusion in this context. However, this result is difficult to

generalize. It might be true only for fusion transcripts

that are expressed at a similar level to SLC45A3-ERG.

We cannot exclude the presence of less abundant fusion

transcripts that would have been uncovered by deeper

sequencing.

Scoring the candidates

We may take into account different types of information

to score the candidates. Potentially we could use the

number of PE reads bridging the two genes, the number

of reads supporting the main junction, and the ‘shape’

of the coverage as indicators of the reliability of the can-

didate. Practically, since it may be possible that the true

junction is not detected because of lack of coverage, the

more general quantities are based on the number of PE

reads supporting the fusion candidate. Hence, every

fusion transcript candidate is first scored using SPER,

the normalized number of supportive PE reads, the

most intuitive quantitative measure (see Results - Scor-

ing the candidates). One may argue that a ‘local’ score -

a score that takes into account the expression of the

genes involved in the fusion - might be a reasonable

choice. We defined LSPER (local SPER) as the number

of inter-transcript PE reads supporting the fusion

divided by the average gene expression value computed

as RPKM [3]. However, in many cases, only one allele

contributes to the fusion transcript. Hence, the expres-

sion of the fusion transcript (estimated by the number

of inter-transcript reads because the structure of the

whole fusion is unknown) may not correlate with the

expression of the genes generating it and thus this may

impair the correct ranking of the candidates (text and

Figure S6 in Additional file 1). After computing SPER

for each candidate, we need to assign a ‘confidence’ to

this number. We compare it with two expectations. The

first one, DASPER (the difference between the observed

and analytically calculated expected SPER), is based on

the observation that if two ends were randomly joined,

the probability that this occurs for gene A and gene B is

proportional to the product of the probability that the

two single-ends of the pair are mapped to gene A and

gene B:

P A B = P A P B∩( ) ( ) ∗ ( )

where P(A) and P(B) are the probabilities that a sin-

gle-end is mapped to gene A and B, respectively. Note

that this is a very conservative estimate because it does

not take into account that single ends should also be

within a certain distance, based on the fragment size, to

be joined in a pair. Nevertheless, as a first

approximation, the expected SPER can be estimated as

the ratio of the number of single-end reads mapped to

gene A and gene B and the total number of mapped sin-

gle-end reads. For the i-th candidate, involving gene A

and B, we have:

SPER =
m

N
=

N
N P A P B =

m m
i
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m apped m apped
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where <mAB> is the expected number of inter-tran-

script PE reads under the null hypothesis, and mA and

mB are the number of single end reads mapped to gene

A and B, respectively. By subtracting this number from

the observed SPER, we can rank the fusion candidates

according to DASPER score:

DASPER = SPER SPERi i i−

We chose to compute the difference between these

two quantities compared to a more traditional ratio or

log-ratio because it is more robust in cases of low cover-

age (that is, low number of reads) than computing a

ratio. More accurate estimations of the expected SPER

can certainly be devised for cases with low coverage,

although they would likely require the specific charac-

teristics of the sequencing platform and the mapping

approach adopted to be taken into account, thus redu-

cing the broader applicability of this method. Although

DASPER can reliably rank the candidates within a sam-

ple, it may be possible that when comparing candidates

from multiple samples DASPER may not properly

account for different fragment sizes. Indeed, smaller

fragment sizes decrease the likelihood of sequencing PE

reads bridging two genes, resulting in lower SPER, and

consequently, lower DASPER, affecting the comparison

among samples. To address this issue, for each fusion

transcript candidate i, we compute the ratio of its SPERi
to the average SPER of all candidates of a sample, that

is, RESPER:

RESPER =
SPER

M
SPER

i
i

j

j= M

1

1..

⋅ ∑

where M is the total number of fusion transcript candi-

dates for a sample. Since this quantity is independent of

the fragment size, it is more suitable for comparisons

across samples. Also, as long as the sequencing depth

increases, RESPER is expected to increase for a real fusion

transcript compared to an artifactual one (Figure 3b).

In the case of sufficient coverage, we can also inte-

grate the information related to the junction-sequence

identifier analysis, such as the number of single-end

reads supporting a junction as well as how evenly the

single-end reads cover it. Ideally, the entire fusion
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junction should be uniformly covered by the reads. If

this does not occur, the chimeric transcript might have

been generated during sample preparation and the PCR

amplification step resulted in an over-representation of

that transcript. However, definitive determination of

uniform coverage requires great sequencing depth.

Computational complexity

One of the main issues to address is the computational

complexity of processing RNA-Seq data. Computation-

ally, the three modules have different requirements. The

fusion transcript detection module depends on the total

number of mapped reads. Once the alignment is per-

formed, it takes about 15 minutes to run this module

on 20 million mapped PE reads using one core of a dual

2 Intel® Xeon® CPU E5410 at 2.33 GHz (four cores each,

for a total of eight cores), with 6 MB cache, 32 GB

RAM, and a 156 GB local disk. The filtration cascade

module takes about 15 to 30 minutes to run on the

same architecture. The difference depends on the num-

ber of candidates initially identified. A more intensive

effort is required for the junction-sequence identifier

analysis, the main bottleneck being the indexing of all

the virtual tiles. The time complexity also depends on

the size of the region being tiled. The alignment of the

reads after the indexing is much less computationally

demanding. In fact, the time to complete a junction-

sequence identifier analysis for a single candidate in

both directions, AB and BA, ranges from about 90 to

180 minutes if run on a single machine. However, by

splitting the fusion junction library in different files, it is

possible to run the indexing step in parallel, thus sub-

stantially decreasing the time complexity. Indeed, by

splitting the fusion junction library in files with 2 mil-

lion elements, it is possible to complete the indexing

and the mapping in about 15 minutes for both

orientations.

Report of the analysis results

We also developed a set of tools to report the analysis

results through a web interface and the UCSC Genome

Browser (text and Figure S7 in Additional file 1) [53].

All programs of FusionSeq take as input one of the

standard formats we defined (Additional file 1), and

additional tools convert them into files that can be

interpreted by the UCSC Genome Browser, such as

WIGGLE, BED or GFF. This integration is facilitated by

the use of a web interface to interrogate the samples.

The user selects the sample and the list of potential can-

didates is shown with the candidates sorted according to

DASPER (Figure S7a in Additional file 1). Information

regarding the genes involved, such as gene symbols

(including aliases), gene description and genomic

coordinates are also reported (Figure S7b in Additional

file 1). By clicking on the genomic coordinates the cor-

responding UCSC Genome Browser page is displayed.

Also, each candidate has a detailed page reporting

detailed information, including the junction-sequence

identifier analysis results (Figure S7c in Additional file

1).

Although we extensively rely on the data format of the

UCSC Genome Browser, it is not possible to show the

results for inter-chromosomal fusions (that is, those

between genes on different chromosomes) since it can

display only one chromosome at a time. In order to

address this issue, we developed SeqViz (Figure S8 in

Additional file 1), an application that is based on Circos,

an open source software that is particularly suited to the

display of genomic information by representing the full

genomes as a circle [54]. An example of a Circos image

can be found in Figure 4b. Among the main features of

Circos is the high flexibility in adding and showing

many types of information: connection between the two

ends of a PE read, gene annotation sets, expression

values, and so on.

Software and data availability

FusionSeq is available for download at [34]. Data sets

used in this study are available via dbGaP [55] (study

accession [phs000311.v1.p1]).
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