
Futility Scaling: High-Associativity Cache Partitioning

Ruisheng Wang Lizhong Chen
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA

ruishenw,lizhongc@usc.edu

Abstract—As shared last level caches are widely used in
many-core CMPs to boost system performance, partitioning
a large shared cache among multiple concurrently running
applications becomes increasingly important in order to reduce
destructive interference. However, while recent works start
to show the promise of using replacement-based partitioning
schemes, such existing schemes either suffer from severe
associativity degradation when the number of partitions is high,
or lack the ability to precisely partition the whole cache which
leads to decreased resource efficiency.

In this paper, we propose Futility Scaling (FS), a novel
replacement-based cache partitioning scheme that can precisely
partition the whole cache while still maintain high associativity
even with a large number of partitions. The futility of a
cache line represents the uselessness of the line to application
performance and can be ranked in different ways by various
policies, e.g., LRU and LFU. The idea of FS is to control the size
of a partition by properly scaling the futility of its cache lines.
We study the properties of FS on both associativity and sizing
in an analytical framework, and we present a feedback-based
implementation of FS that incurs little overhead in practice.
Simulation results show that FS improves performance over
previously proposed Vantage and PriSM by up to 6.0% and
13.7%, respectively.

I. INTRODUCTION

In contemporary chip multiprocessors (CMPs), large
shared last-level caches (LLCs) are often used to close
the performance gap between the need of processors for
fast data access and the high latency of main memory.
While sharing LLCs among multiple concurrently executing
threads is generally beneficial for increasing resource uti-
lization, unregulated sharing can compromise performance
isolation and thus violate per-thread QoS requirements. In
order to avoid potentially destructive interference induced by
uncontrolled sharing, cache capacity partitioning has been
proposed for LLC management [1–10].

A complete solution for partitioning shared cache capacity
consists of an allocation policy that decides the size of each
partition in order to satisfy specified QoS objectives [6, 7]
and an enforcement scheme that decides how to actually
enforce those sizes [9, 10]. While various allocation policies
have been studied extensively [1–8], it is still challenging
to design an efficient and effective enforcement scheme,
particularly for supporting hundreds or thousands of fine-
grained partitions. In this work, we focus on designing a
cache partitioning enforcement scheme.

An ideal cache partitioning enforcement scheme should
support (1) smooth resizing: a partition can be ex-
panded/shrunk smoothly without incurring large overhead
(i.e., no data flushing or migrating); (2) precise sizing: each
partition should occupy the exact (i.e., no less and no more
than) amount of cache space allocated to it; and (3) high
associativity: the associativity of a partition should not be
reduced as the number of partitions increases.

Generally, there are two approaches to enforce the parti-
tioning of a cache: partitioning by constraining cache line
placement and partitioning by controlling cache line re-
placement. Placement-based partitioning schemes (e.g., way-
partitioning [11], reconfigurable caches [12] and molecular
caches [13]) are unable to resize smoothly due to the
inherent resizing penalty caused by line migration. Re-
cently, replacement-based partitioning schemes are gaining
increasing attention because they incur little resizing penalty
and can scale to CMPs with a large number of fine-grain
partitions. However, the existing replacement-based parti-
tioning schemes either suffer diminishing cache associativity
as the number of partitions increases (e.g., CQVP [4] and
PriSM [10]) or cannot precisely partition the whole cache
(e.g., Vantage [9]).

In this paper, we propose Futility Scaling (FS), a
replacement-based partitioning scheme that can precisely
partition the whole cache while still maintain high associa-
tivity even with a large number of partitions. The futility of a
cache line represents how useless a line is to its application’s
performance and can be ranked in different ways by various
policies (e.g., LRU, LFU or OPT [14]). By scaling the
futility of cache lines belonging to different partitions, FS
can adjust the evictions of different partitions and thereby
control the sizes of those partitions. By always evicting
cache lines with the largest scaled futility from a full list
of candidates, FS can retain a large amount of useful lines
and hence, maintain high associativity.

Our contributions are summarized as follows:
1) We study the associativity degradation problem in a

replacement-based partitioning scheme for the first
time. A Partitioning-First (PF) scheme is used as a
baseline to show how seriously associativity can be
degraded in a replacement-based partitioning scheme
as the number of partitions increases (Section III).

2) We propose a novel Futility Scaling (FS) scheme and

studied its properties on both associativity and sizing
in an analytical framework. Our analysis shows that
the associativity of each partition in FS is independent
of the number of partitions and the actual size of each
partition in FS is statistically very close to its target
size (Section IV).

3) We propose a practical feedback-based design for
implementing FS. Our design largely maintains the
analytical properties of FS while incurring little stor-
age overhead, i.e., five registers per partition be-
sides the 1.5% overall state overhead for implement-
ing previously proposed coarse-grain timestamp-based
LRU [9] (Section V).

4) We evaluate the proposed FS scheme on a QoS-
enabled 32-core CMP. Simulation results show that,
due to its properties of both high associativity and
precise sizing, FS improves performance over previ-
ously proposed Vantage [9] and PriSM [10] by up to
6.0% and 13.7%, respectively (Section VIII).

II. BACKGROUND

A. Allocation Policy and Enforcement Scheme
Generally, cache capacity management has two compo-

nents: an allocation policy and an enforcement scheme. An
allocation policy (often implemented in software) translates
high-level QoS objectives into cache capacity resource as-
signments. An enforcement scheme (often implemented in
hardware) controls the actual low-level fine-grained hard-
ware resource to guarantee that each thread occupies the
amount of cache space assigned by the allocation policy [7,
15]. Many cache capacity allocation policies have been
proposed, including “Utilitarian” policies [2] that maximize
throughput [3], “Communist” policies [2] that improve fair-
ness [1, 8], and “Elitist” policies [5] that guarantee QoS
requirements for high-priority threads [6, 7]. However, the
efficacy of those allocation policies is largely determined by
the underlying cache partitioning enforcement schemes. For
example, even when a thread is allocated the exact amount
of space in a shared context as it has used in a private
context, the performance of this thread could still decrease,
either because the partitioning enforcement scheme cannot
actually guarantee this thread to occupy the exact amount
of assigned cache space, or the associativity of the partition
for this thread is largely reduced.

Ideally, a cache partitioning enforcement scheme should
have the following three properties:

1) Smooth Resizing: This means that the size of each
partition can be dynamically adjusted with little per-
formance penalty, i.e., no cache data flushing or line
migration. Smooth resizing enables high flexibility
for an allocation policy to change cache assignments
according to applications’ dynamic behaviors in short
intervals.

2) Precise Sizing: This indicates that the actual size of
each partition should be close to its target size and

the whole cache can be managed at fine-granularity.
Precise sizing allows an allocation policy to precisely
control cache capacity resource so that it can make
more efficient assignments of limited on-chip cache
capacity resource.

3) High Associativity: This refers to that each partition
should have high associativity even on a very large-
scale CMP (i.e., having hundreds or thousands of
partitions). High associativity improves the utility of
cache capacity and can yield significant performance
improvement for associativity-sensitive applications.

The objective of this work is to design a cache partitioning
enforcement scheme that maintains all three above men-
tioned properties.

B. Placement- and Replacement-based Partitioning

Broadly, cache partitioning enforcement schemes can be
categorized into two groups: placement-based partitioning
and replacement-based partitioning. Placement-based parti-
tioning schemes [11, 13, 16] partition a cache by placing the
cache lines from different partitions into disjoint physical
cache regions. For example, way-partitioning or column
caching [11] statically assigns physical cache ways to each
partition. Although way-partitioning is straightforward to
implement, it cannot support fine-grained partitioning, and
cache associativity reduces rapidly as the number of parti-
tions increases. To address these problems, reconfigurable
caches [12] and molecular caches [13] are proposed to
partition caches by sets instead of ways. Page Coloring [16]
is another placement-based partitioning that maps the phys-
ical pages of different applications to different cache sets.
However, all these placement-based partitioning schemes
have a common problem: there is a large overhead to resize
partitions, i.e., cache data has to be flushed or moved when
a partition changes its size.

Replacement-based partitioning schemes [4, 9, 10] par-
tition a cache by adjusting the line eviction rate of each
partition at replacement. For instance, Cache Quota Viola-
tion Prohibition (CQVP [4]) sets the quota for each partition
and always chooses the cache lines from the partition that
exceeds its quota to evict. Similarly, Probabilistic Shared-
cache Management (PriSM [10]) controls the partitioning
by adjusting the eviction probability of each partition based
on its insertion rate and size deviation from its target. Van-
tage [9] stabilizes the size of each partition via controlling its
“aperture”, where a larger “aperture” incurs a higher eviction
rate. In general, if a cache controller evicts lines from a
partition at a rate that is higher (lower) than its insertion rate,
the size of the partition will shrink (expand). Since partition
sizes are changing in the process of replacement, they can
be controlled at the granularity of a single line and there is
little cost for resizing. However, the existing replacement-
based partitioning schemes either suffer from associativity
degradation as the number of partitions increases [4, 10], or
cannot precisely partition the whole cache [9, 10]. In this

paper, we present a replacement-based partitioning scheme
that achieves both high associativity and precise sizing.

III. PARTITIONING-INDUCED ASSOCIATIVITY LOSS

A. Cache Model and Definitions
To facilitate the analysis of our proposed design through-

out this paper, we use a similar cache model described in [9,
17] but extend it with the notion of cache futility ranking.
A cache consists of the following three components.

• Cache Array: This implements associative lookups and
provides a list of replacement candidates on each evic-
tion.

• Futility Ranking: This maintains a strict total order of
the uselessness of cache lines within each partition.

• Replacement Policy: This identifies the victim from the
list of replacement candidates based on their futility
and partitioning requirements.

The cache array could be a common set-associative cache,
skew-associative cache [18] or zcache [17]. It provides a
list of replacement candidates on each eviction. The futility
of a cache line is used to assess how useless keeping this
line in the cache would be. For a partitioned cache, the
uselessness of cache lines within each partition is strictly
ordered by a specific futility ranking scheme. For example,
in LRU, LFU and OPT [14] futility ranking schemes, cache
lines are ranked by the time of their last accesses, their
access frequencies, and the time to their next references,
respectively. A cache line with a higher rank is less useful.
To make the rest of the analysis independent of cache size,
we define a line’s futility to be its rank normalized to [0,1],
i.e., for a cache line ranked as the rth place in a partition with
a size of M lines, its futility is f = r/M , f ∈ [0,1]. Given
the total number of cache lines is very large, we assume
the futility of cache lines is continuously and uniformly
distributed over the range of [0,1] in the following analysis.

Conventionally, cache associativity is considered as the
number of ways for a set associative cache. A set associative
cache with a larger number of ways has a better ability
to evict lines that are less useful. Previous work [17] has
generalized the concept of associativity based on the insight
that associativity does not rely on the number of allowed
block locations but instead, on the number of replacement
candidates available on an eviction. In this paper, in order to
compare associativity across different partitioning schemes
regardless of cache organizations, futility ranking schemes,
and actual workloads, we follow the universal associativity
concept descried in [17]. The cache associativity is con-
sidered as the ability of a cache to evict a useless line on
a replacement, i.e., the ability to retain useful lines in the
cache. The less useful the evicted lines are, the higher the
associativity.

B. Partitioning-induced Associativity Loss
Generally, cache associativity is subject to two factors: (1)

the “quality” (i.e., the futility) of replacement candidates that

1

2

Most useful

Partition 1

Partition 2

Least useful

replacement candidates

irreplaceable blocks

Figure 1: Associativity and sizing dilemma in a replacement-
based partitioning scheme

a cache can provide and (2) the ability of a cache to evict
a “high-quality” line (i.e., the line with large futility) from
the list of replacement candidates. There are two common
ways to improve the “quality” of replacement candidates.
One is to use good hash functions to index the cache [19,
20] in order to spread out accesses and, thus, avoid the worst
case that the “quality” of all replacement candidates are
low (i.e., the futility of all candidates is small). The other
is to increase the number of replacement candidates, e.g.,
add more ways or use zcache [17]. The more replacement
candidates a cache can provide, the higher chance for the
cache to include a “high-quality” line in its candidate list.
However, improving the “quality” of replacement candidates
does not necessarily increase associativity if the replacement
policy cannot choose a “high-quality” candidate to evict. In
a non-partitioning cache, the replacement policy is always
able to choose the least useful candidate (i.e., the candidate
with best “quality”) to evict. However, this is not true when
a cache needs to be partitioned.

In a shared cache with replacement-based partitioning, a
replacement policy needs to perform two roles: to improve
the associativity within a partition and to maintain the
size ratios among partitions. The first role requires the
replacement policy to evict the most useless of candidates as
possible, which is the same requirement for the replacement
policy in a non-partitioning context. The second role re-
quires the replacement policy to prioritize cache replacement
candidates from the oversized partitions over those from
undersized ones in victim selection, which is not addressed
in a non-partitioned cache. These two criteria often conflict
with each other.

For a list of replacement candidates provided on an
eviction, the least useful candidate may not come from an
oversized partition. For example, as is shown in Figure 1,
assume there is a cache with ten cache lines in total. The
cache needs to be partitioned equally, i.e., each partition
should have five cache lines. However, the current sizes of
the two partitions are four and six, respectively. Assume an
incoming line that belongs to the second partition invokes
the replacement process, and the cache array provides two
replacement candidates: one is the least useful line in the first
partition, and the other is the most useful line in the second
partition. In this scenario, a dilemma arises. On the one hand,
from the perspective of improving associativity, the first
candidate should be evicted since it is less useful. However,
this would lead to the sizes of both partitions straying even

Table I: Notations used in this paper

Term Meaning
N Total number of partitions
Si Fraction of cache space for Partition i,

∑N
i=1 Si = 1

Ii Fraction of total misses/insertions from Partition i ,
∑N

i=1 Ii = 1

Ei Fraction of total evictions from Partition i,
∑N

i=1 Ei = 1
NA

i Actual number of cache lines of Partition i
NT

i Target number of cache lines of Partition i
R Number of replacement candidates on an eviction

farther away from their target sizes. On the other hand,
from the perspective of enforcing the desired size ratio, the
second candidate should be evicted since it belongs to the
oversized partition. However, evicting the most useful cache
line would inevitably hurt the associativity of the second
partition. Therefore, how to enforce the partitioning while
still largely maintaining the associativity of each partition
becomes a challenging problem.

C. Partitioning-First Scheme

To further illustrate the previously described associativity
degradation problem, we analyze a partitioning-first scheme.

Some of the common terms used throughout this paper
are defined below (also listed in Table I). N is the total
number of partitions. Si is the fraction of total cache
space for Partition i. Ii and Ei represent the fractions of
total insertions and evictions that belong to Partition i,
respectively. R is the number of candidates provided for
each replacement. NA

i and NT
i denote the actual and target

number of cache lines for Partition i, respectively.
Algorithm 1 represents a Partitioning-First (PF) scheme

which focuses on enforcing partitioning rather than improv-
ing associativity. This approach always evict lines from the
partition that exceeds its target size most. The algorithm
has two steps: Partition Selection (PS) and Victim Iden-
tification (VI). In the PS step, the algorithm chooses the
partition whose current actual size (NA

i) most exceeds its
target size (NT

i) among all the candidates’ partitions. Then
in the VI step, it evicts the line with the largest futility among
the candidates belonging to the partition chosen by the PS
step.

This algorithm first does its best effort to ensure the size
of a partition as close to its target as possible in the PS step,
and then in the VI step, it aims to achieve best possible
associativity by evicting the most useless cache line from a
reduced list of candidates.

Figure 2 compares the PF scheme with different number
of partitions (N = 1, 2, 4, 8, 16, 32) in a 16-way set
associative cache. The cache is equally partitioned with the
size of 512kB for each partition. Each workload for an N -
partition configuration is constructed by duplicating a SPEC
CPU2006 benchmark N times. To ignore any undesirable
properties of a particular futility ranking scheme (e.g.,
increasing associativity decreases performance), we use the
OPT [14] scheme to rank the futility of each line. More
detailed information about system configuration is present in

Algorithm 1 Partitioning-First Scheme
Require: The ith candidate is from partition pi and has a futility of fi,

1 ≤ i ≤ R, 1 ≤ pi ≤ N , 0 ≤ fi ≤ 1
Step 1: Partition Selection (PS)

1: max over ← −∞
2: chosen partiton← none
3: for i← 1 to R do
4: if max over <

(
NA

pi
−NT

pi

)
then

5: max over ←
(
NA

pi
−NT

pi

)
6: chosen partition← pi

Step 2: Victim Identification (VI)
7: max futility ← −∞
8: chosen victim← none
9: for i← 1 to R do

10: if pi = chosen partition then
11: if max futility < fi then
12: max futility ← fi
13: chosen victim← i
14: return chosen victim

Section VII. We only report the result of the first partition
in each workload. The result for the rest of partitions in
the workload are similar since they are homogeneous, i.e.,
having the same size and occupied by the same benchmark.

To assess the quality of associativity, we use an Associa-
tivity Distribution as defined in [17], which is the probability
distribution of evicted lines’ futility. For a fully-associative
cache, it always chooses to evict the line with the largest
futility, fFA

evict = 1.0. In general, for a partitioning scheme,
the more skewed the distribution of a partition is towards
fevict = 1.0, the higher the associativity. Figure 2a shows
cumulative associativity distributions of the first partition for
the workloads constructed by the mcf benchmark. From the
figure, we can see that, when there is only one partition, its
associativity is high, i.e., its average eviction futility (AEF)
reaches 0.95. However, as the number of partitions increases,
its associativity decreases (i.e., the associativity CDF curve
is skewed farther away from fevict = 1.0). This is because,
in the PF scheme, as the number of partitions increases,
the list of replacement candidates available for the VI step
is shortened by the PS step. As the number of replace-
ment candidates decreases, the probability of this reduced
candidate list including a high-futility line becomes lower,
which leads to a lower average eviction futility and, thus,
worse associativity. In the worst case (N � R), there is
always only one cache line in the candidate list that belongs
to the chosen partition. The VI step has no option other
than to evict this line regardless of its futility (this is very
similar to a direct-mapped cache that can only provide
one replacement candidate on an eviction). In such case,
the futility of evicted lines becomes random, and thus the
associativity CDF curve becomes a straight diagonal line
FWC (x) = x (AEF = 0.5). This results in the futility
ranking becoming irrelevant as cache lines with different
futility have the same probability of being evicted. As shown
in Figure 2a, when the number of partitions (N) reaches 32,
the associativity CDF (AEF = 0.56) of the first partition
is very close to the worst case. Figure 2b and 2c show
the number of misses and IPCs, respectively, of the first

0.0 0.2 0.4 0.6 0.8 1.0

Eviction futility

0.0

0.2

0.4

0.6

0.8

1.0

A
ss
oc
ia
tiv
ity
 C
D
F
of
 1
st
 p
ar
tit
io
n 1P(AEF=0.95)

2P(AEF=0.82)
4P(AEF=0.74)
8P(AEF=0.66)
16P(AEF=0.60)
32P(AEF=0.56)
FWC(x) =x

(a) Associativity CDF for mcf

mcf
omnetpp

gromacs
h264ref

astar
cactusADM

libquantum
lbm

1 2 4 8 16 32

Number of partitions (N)

1.0

1.2

1.4

1.6

1.8

2.0

N
um

be
r o

f m
is
se

s
of
 1
st
 p
ar
tit
io
n

(n
or
m
al
iz
ed

 to
 N

=1
)

(b) Number of misses of 8 benchmarks

1 2 4 8 16 32

Number of partitions (N)

0.75

0.80

0.85

0.90

0.95

1.00

IP
C

 o
f 1

st
 p

ar
tit

io
n

(n
or

m
al

iz
ed

 to
 N

=1
)

(c) IPCs of 8 benchmarks with PF scheme

Figure 2: Comparisons of the PF scheme in a cache with different number of partitions (N = 1, 2, 4, 8, 16, 32)

application in each workload under the PF scheme. All
the results are normalized to the results of the workloads
with N = 1. From the figures, we can see that, due to
the degradation of associativity as the number of partitions
increases, the number of misses of each application increases
and its IPC decreases correspondingly. Different applications
have different sensitivities to associativity, e.g., associativity
degradation has negligible effect on lbm’s performance since
it has a very low rate of cache reuses but mcf has more than
37% increase in cache misses and correspondingly 24% drop
in IPC decrease as the number of partitions goes from 1 to
32. Hence, the PF scheme is not scalable for large-scale
CMPs due to its associativity degradation.

IV. FUTILITY SCALING

A. Overview

The basic idea of Futility Scaling (FS) is to control the
size of each partition by scaling the futility of its cache
lines. FS works as follows. Each partition has a scaling
factor of αi. On each eviction, the futility of a replacement
candidate (fcand) belonging to Partition i will be scaled by
αi, i.e., fscaledcand = fcand × αi and the candidate with the
largest scaled futility will be evicted. By scaling up/down the
futility of lines in a partition, cache lines belonging to this
partition will be evaluated as less/more useful in the view of
the whole cache. Since FS always chooses the least useful
replacement candidate (i.e., the candidate with the largest
scaled futility) to evict, the more useless lines a partition has,
the fewer number of lines belonging to this partition will be
kept in the cache. Therefore, by increasing or decreasing the
scaling factor of a partition, FS can shrink or expand its size
correspondingly.

In the rest of this section, we study the associativity and
sizing properties of the FS scheme with two partitions in an
analytical framework proposed in [17]. The properties of FS
in a more general scenario (i.e., more than two partitions)

are summarized at the end of the section. The framework is
based on two assumptions below.

1) (Uniformity Assumption) On each eviction, the re-
placement candidates are independent and uniformly
distributed.
While this assumption is not strictly true, it is statis-
tically close enough in a practical cache indexed by
good random hash functions [17].

2) On each eviction, the exact futility of each candidate
is given.
Although tracking exact futility would be very ex-
pensive, we present a practical feedback-based futility
scaling design without knowledge of exact futility in
Section IV.

Note that even though the quantitative results derived from
this analytical framework are not accurate for real caches due
to the above two assumptions, the qualitative conclusions
drawn from our analysis provide some guiding principles
in designing FS, especially for a real cache with good hash
indexing, e.g., set associative cache with H3 hashing, skewed
associative cache and zcache [17].

B. Calculation of Scaling factors

Assume a cache with R replacement candidates has two
partitions with insertion rates of I1 and I2, and target
size fractions of S1 and S2, respectively. Without losing
generality, we assume that I1 < S1 and thus I2 > S2.
Naturally (i.e., without scaling), a partition’s size fraction
tends to be proportional to its insertion rate. In order to
reduce the size of Partition 2 from I2 to S2, we scale up the
futility of cache lines belonging to Partition 2 by a factor of
α2 (α2 > 1) and keep Partition 1 unscaled, i.e., α1 = 1.

Based on the analytical framework and the condition for a
stable partitioning (i.e., the insertion rate of a partition equals
its eviction rate, Ii = Ei), we can obtain the analytical form

of α2 with the following 1:

α2 = S2

(R−1)
√

I1
S1

−S1

(1)

Figure 3 shows the calculated scaling factors of Parti-
tion 2 (α2) with different insertion rates (I2 = 0.6, 0.7, 0.8,
0.9) and size fractions (S2 = 0.2, 0.25, 0.3, 0.35, 0.4). The
number of replacement candidates R is 16. From the figure
(and also from Equation (1)), we can see that, for Partition 2,
as its insertion rate I2 increases and its size fraction S2

decreases, its scaling factor α2 becomes larger. In general,
in order to constrain a partition with high insertion rate I to
a small size S, FS needs to scale up its cache lines’ futility
more (i.e., with a large scaling factor).

From Equation (1), we can see that, when I1 < SR
1 , there

is no valid α (i.e., α becomes negative), which indicates
that there is no way to enforce such partitioning. This
partitioning bound is not just for FS but for all replacement-
based partitioning schemes. This is because the minimum
eviction rate of Partition 1 (Emin,1) is SR

1 since on an
eviction, the probability of all R candidates belonging to
Partition 1 is SR

1 , in which case a line from Partition 1 has
to be evicted. When the insertion rate of Partition 1 is always
smaller than its eviction rate (i.e., I1 < SR

1 = Emin,1 ≤ E1),
the size of Partition 1 will eventually shrink and the desired
partitioning cannot be enforced. In practice, when R = 16,
Partition 1 with a very small insertion rate, e.g., I1 = 0.01,
can occupy about 16

√
0.01 ≈ 75% of the total cache size,

which is reasonably good in most scenarios.

C. Associativity

Figure 4 compares the associativity CDF of the FS and
PF schemes with S1/S2 = 9/1, 6/4 when I1/I2 = 1. For
all the experiments in the rest of this section, the results
are collected from a trace-driven simulator running two mcf
threads on a 2MB “random candidates” cache [17] (i.e., the
cache follows the Uniformity Assumption) with the number
of candidates R = 16 and the insertion rate of each partition
is controlled by adjusting the speed of the trace feeding (i.e.,
the probability of next insertion that belongs to Partition i
is equal to the pre-configured insertion rate Ii). As can be
seen from the figure, for the PF scheme, as the partition’s
size decreases, its associativity reduces, e.g., the average
eviction futility (AEF) of Partition 2 decreases from 0.86 to
0.63 when its size reduces from 0.4 to 0.1. This is because,
as the partition size shrinks, the number of replacement
candidates belonging to this partition becomes smaller on
each eviction, which reduces the probability to evict high-
futility cache lines at the VI step of the PS scheme (as
mentioned above in Section III-C). For the FS scheme, the
associativity of Partition 1 always stays the same, while the
associativity of Partition 2 reduces as its size decreases. For
example, when the size fraction of Partition 2 reduces from

1A brief derivation of this analytical expression is provided in a technical
report [21].

0.4 to 0.1, its scaling factor (α2) increases from 1.031 to
1.624 and correspondingly its AEF decreases from 0.94 to
0.81. This is because the associativity of a partition in FS
depends on its scaling factor. When a partition has a larger
scaling factor α, a cache line of this partition with original
futility of x is evaluated as less useful (i.e., higher scaled
futility) compared to the lines with the same original futility
of x in other partitions that have smaller scaling factors,
and correspondingly has a higher probability to be evicted.
Therefore, the AEF of this partition becomes lower and
thus its associativity is degraded. When a partition’s line
futility is unscaled (α = 1), its associativity will be fully
preserved (i.e., the same associativity as a private cache with
the same size). Note that the associativity degradation in FS
is not caused by the increasing number of partitions, but
rather determined by its scaling factor and thus its I/S ratio.
If all the partitions have the same I/S ratio (i.e., Ii/Si = 1
), they will have the same scaling factor (i.e., αi = 1)
and the associativity of all partitions will be fully preserved
regardless of the number of partitions, i.e., the same as a
non-partitioned cache. Overall, for both Partition 1 and 2,
FS maintains much better associativity than PF.

D. Sizing

Figure 5 compares the cumulative distributions of Par-
tition 1’s size deviation from its target with the FS and
PF schemes. The data are sampled at every eviction. The
insertion rates of Partition 1 are I1/I2 = 9/1, 5/5 and the cache
is equally partitioned (S1/S2 = 1). From the figure, we can
see that PF has the near ideal sizing property that the actual
size of a partition is close to its target size (i.e., its mean
absolute deviation (MAD) is smaller than 1). Statistically,
FS also enforces the partitioning properly, i.e., the average
size of each partition equals its target. The actual size of
each partition in FS can be temporally deviated from its
target (i.e., having more or less cache lines). The temporal
deviation is smaller if its curve is more skewed towards
x = 0. On an eviction, the probability that the actual size of
Partition 1 increments by one line is I1 × (1− I1), i.e., the
probability of the insertion belonging to Partition 1 (i.e.,
I1) multiplies the probability of the eviction not from
Partition 1 (i.e., 1 − E1 = 1 − I1, where E1 = I1 at
a steady state). Similarly, the probability that the size of
Partition 1 decrements by one line is also I1 × (1− I1).
Therefore, the size of Partition 1 with a smaller I1×(1− I1)
will have less possibility to be deviated away from its target
and, hence, its size deviation distribution curve will be more
skewed towards x = 0, which is better. The size deviation
distribution for Partition 1 becomes worst when I1 = 0.5,
where I1×(1− I1) is the largest, i.e., 0.25. From this figure,
we can see that, even in the worst case, the deviation is
relatively small, i.e., its MAD is smaller than 68, which is
less than 0.5% deviation for a partition of 1MB (i.e., 16K
lines with each line of 64B).

0.20 0.25 0.30 0.35 0.40

Size fraction of Partition 2 (S2)

1.0

1.5

2.0

2.5

3.0
S
ca

lin
g
fa
ct
or
 (α

)

I2=0.6
I2=0.7
I2=0.8
I2=0.9

Figure 3: Scaling factors with differ-
ent insertion rates and size fractions

0.0 0.2 0.4 0.6 0.8 1.0

Eviction futility

0.0

0.2

0.4

0.6

0.8

1.0

A
ss
oc

ia
tiv
ity
 C
D
F

FS(S1 =0.9)
FS(S2 =0.1)
FS(S1 =0.6)
FS(S2 =0.4)
PF(S1 =0.9)
PF(S2 =0.1)
PF(S1 =0.6)
PF(S2 =0.4)

Figure 4: Associativity CDF of FS
and PF with different size ratios

−300 −200 −100 0 100 200

Deviation from the target size (# of lines)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

C
D

F

FS(I1 =0.1)
MAD=59.8

FS(I1 =0.5)
MAD=67.4

PF(I1 =0.1)
PF(I1 =0.5)

Figure 5: Size deviation of FS and PF
with different insertion rates

E. Summary

Compared to the PF scheme, FS trades some small
temporal size deviations for preserving high associativity.
When facing the associativity and sizing dilemma described
in Figure 1, FS may evict the least useful line in the first
partition (as long as its scaled futility is larger than the scaled
futility of the most useful line in the second partition) and
thereby preserve the associativity. Although the actual size
of each partition may be deviated further away from its target
temporally, FS is still able to maintain the partition’s actual
size statistically close to its target, as explained above in this
section.

The scaling factors of FS with more than two partitions
can be derived in a similar way [21]. Due to space limita-
tions, the results are not presented here. However, our exper-
imental results show that FS with more than two partitions
share similar qualitative properties on both associativity and
sizing as FS with two partitions, which we summarize as
follows.

1) (Associativity): FS can maintain high cache associa-
tivity regardless of the number of partitions. In FS, a
partition with a higher I/S ratio will have a larger scal-
ing factor α and, thus, worse associativity. However,
this associativity degradation is not determined by the
number of partitions but by the partition’s I/S ratio.

2) (Sizing): FS can enforce the size of a partition statis-
tically very close to its target size. The partition with
a higher Ii × (1− Ii) will have a higher probability
to be temporally deviated away from its target size.
However, even in the worst case (i.e., Ii = 0.5), the
deviation is still reasonably small.

V. FEEDBACK-BASED FUTILITY SCALING

As shown in the previous section, the Futility Scaling (FS)
scheme has good properties on both associativity and sizing.
However, it is not practical to implement it by using only
the analysis above for the following two reasons. For one, it

is not robust. The prior analysis is based on the Uniformity
Assumption which is not exactly true in a real cache (though
it is very close in a cache with good hash indexing [17]).
Moreover, the exact insertion rate of each partition is hard to
be predicted accurately as an application’s behavior changes
over time. Those imprecisions could cause the actual size
of a partition shifted away from its target size. Second, it
requires knowledge of the exact futility of every line. This
would incur a large implementation overhead in practice.

In this section, we present a practical FS implementation
to address these problems. Futility is estimated by a simple
coarse-grain timestamp-based LRU [17], and the required
scaling factor of each partition is dynamically adjusted
through a feedback mechanism.

A. Feedback-based Scaling Factor Adjustment

We use a coarse-grain timestamp-based LRU (proposed
in [17]) as the base futility ranking scheme for each partition.
Each partition has an 8-bit counter for its current timestamp.
An incoming cache line is tagged with the current timestamp
of its partition and a partition’s current timestamp counter
is incremented by one every K accesses (K = 1/16 of this
partition’s size).

In a coarse-grain timestamp-based LRU, the timestamp
of a cache line having a longer distance from the current
timestamp of its partition indicates this line is less recently
used. We estimate the futility of a cache line by the distance
between its timestamp and the current timestamp of its
partition. The timestamp-based futility (fts) of a cache line
belonging to Partition i tagged with timestamp of x is
calculated as fts = (CurrentTSi + 256 − x)%256, which
is just an unsigned 8-bit subtraction in hardware.

We use a feedback-based approach to adjust the scaling
factor of each partition dynamically. In general, enlarging
or reducing the scaling factor of a partition will increases
or decreases its eviction rate and shrinking or expanding its
size correspondingly. Algorithm 2 describes how the scaling
factor of each partition should be adjusted.

Algorithm 2 Feedback-based scaling factor adjustment

Require: NE
i : number of evictions. NI

i : number of insertions. NA
i : actual

number of cache lines occupied by Partition i. NT
i : target number of

cache lines assigned to Partition i. l: interval length. ∆α: changing
ratio.
For each partition

1: if NE
i ≥ l or NI

i ≥ l then
2: if NI

i ≥ NE
i and NA

i > NT
i then

3: αi ← αi ∗∆α
4: else if NI

i ≤ NE
i and NA

i < NT
i then

5: αi ← αi ÷∆α

6: NI
i ← 0

7: NE
i ← 0

The scaling factor of each partition is adjusted every l
insertions or evictions (whichever is achieved first) for the
partition in the following fashion. For each partition, every
time that the insertion or eviction counter reaches l (i.e.,
the interval length), if the partition is oversized (i.e., current
actual partition size NA

i is greater than its target size NT
i ,

NA
i > NT

i) and has a tendency to grow (i.e., number of
insertions N I

i is greater than number of evictions NE
i in

the last interval, N I
i ≥ NE

i), the scaling factor αi of this
partition will be scaled up by a factor of ∆α. Similarly,
If NA

i < NT
i and N I

i ≤ NE
i , the scaling factor αi of

Partition i will be scaled down by ∆α. At the end of each
interval, both NE

i and N I
i are then reset to zero. The interval

length (l) is determined by both the number of insertions
N I

i and evictions NE
i of a partition so that the scaling

factor adjustment process can respond promptly to both the
increasing (i.e., N I

i reaches l first) and decreasing (i.e., NE
i

reaches l first) of a partition’s size. By checking the tendency
of size changing in the last interval (i.e., N I

i ≤ NE
i or

N I
i ≥ NE

i), FS controller can avoid over-scaling line futility
of a partition in the transient period of resizing, e.g., if a
partition has a tendency to shrink its size, FS controller will
stop increasing the scaling factor of this partition even if its
current actual size is still above its target size.

In our FS implementation, we find that the interval length
l = 16 is a sensible value. For hardware implementation
efficiency, we set ∆α to 2 so that the scaling factor will
always be the power of two and the multiplication of a
timestamp-based futility and a scaling factor can be done
by a simple bit-shift operation in hardware.

B. Implementation

The feedback-based FS scheme uses a coarse-grain
timestamp-based LRU as the underlying futility ranking
scheme, which incurs around 1.5% storage overhead of
the total cache (as described in [9]). Besides the cost
of implementing a coarse-grain timestamp-based LRU, the
FS cache controller only needs additional five registers
per partition: 16-bit ActualSize and TargetSize, 4-bit
InsertionCounter and EvictionCounter, and a 3-bit
ScalingShiftWidth. The TargetSize registers are set by
an external allocation policy. We explain how to update the
rest of registers in the following.

On a hit, the timestamp of the accessed cache line
will be updated to the current timestamp of this partition
obtained from the coarse-grained timestamp-based LRU
procedure [9].

On a miss, the controller calculates the scaled futility for
all the candidates, chooses the candidate with the largest
scaled futility to evict, and inserts the incoming line.

• The timestamp-based futility for a cache line belong-
ing to Partition i and tagged with timestamp x is
calculated by one 8-bit hardware operation as fts =
(CurrentTSi + 256 − x)%256. The scaled futil-
ity (fscaledts) of a candidate from Partition i is obtained
through left shifting fts by ScalingShiftWidthi bits,
i.e., fscaledts = fts<<ScalingShiftWidthi. Then the
candidate with the largest scaled futility will be evicted.
The EvictionCouteri and ActualSizei of the evicted
line’s partition increments and decrements by one,
respectively.

• The incoming line is inserted with the current
timestamp of this partition obtained from the
coarse-grained timestamp LRU procedure [9]. Both
InsertionCounteri and ActualSizei of the incoming
line’s partition increments by one.

Additionally, to implement the scaling factor adjust-
ment scheme described in Algorithm 2, the scaling fac-
tor of Partition i is adjusted when InsertionCounteri
or EvictionCounteri crosses 0. If AcutalSizei >
TargetSizei and InsertionCounteri = 0 (This
means InsertionCounteri reaches l = 16 first
and thus there are more insertions than evictions in
the last interval), ScalingShiftWidthi increments by
one. Similarly, if AcutalSizei < TargetSizei and
EvictionCounteri = 0, ScalingShiftWidthi decre-
ments one. Otherwise, ScalingShiftWidth stays the
same. A ScalingShiftWidth register is a 3-bit saturation
counter (i.e., the range of its value is from 0 to 7) so
that the timestamp-based futility fts can be scaled up by
a factor of 27 = 128 at most. After each adjustment, both
InsertionCounteri and EvictionCounteri are reset to
zero.

The FS controller only needs a few narrow adders and
comparators to implement required counter updates and
comparisons. Operations on hits are all about coarse-grain
timestamp-based LRU updates, which are fairly simple
without increasing the critical path [9]. On misses, for the
cache with R replacement candidates, the controller needs to
calculate the timestamp-based futility of each candidate (i.e.,
R subtraction operations), scale them (i.e., R shift opera-
tions) and then identify the candidate with the largest scaled
futility (i.e., R−1 comparisons). So, in total, there are 3R−1
simple operations that can be easily paralleled and pipelined
in hardware. Those operations for the replacement process
can be implemented over multiple cycles since they are off
the critical path.

mcf
omnetpp

gromacs
astar

cactusADM
lbm

1/8 1/4 1/2 1 2 4 8

Size (MB)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

S
pe

ed
up

 o
ve

r D
ire

ct
 M

ap
pi
ng

(a) OPT

1/8 1/4 1/2 1 2 4 8

Size (MB)

0.90

0.95

1.00

1.05

1.10

1.15

S
pe

ed
up

 o
ve

r D
ire

ct
 M

ap
pi
ng

(b) LRU

Figure 6: Speedups of 6 benchmarks on fully-associative
versus direct-mapped caches with different sizes

VI. DISCUSSION

While FS can increase associativity, the impact of this
increase in associativity on a real application’s performance
largely depends on the sensitivity of the application to
associativity. The associativity sensitivity of an application
could be reflected by the speedup of the application running
on a fully-associative cache versus a direct-mapped cache.
The higher speedup an application has, the more sensitive to
associativity an application is. An application’s associativity
sensitivity is subject to two factors. One is the access pattern
of an application itself. For example, if the access pattern of
an application is streaming, improving cache associativity
will have no effect on its performance. Figure 6a shows
the speedups of 6 SPEC CPU2006 benchmarks running
on fully-associative caches versus direct-mapped caches
with the OPT ranking scheme. The cache sizes vary from
128KB to 8MB. As can be seen in the figure, different
applications have different sensitivities to associativity. With
full associativity, mcf achieves speedups of at least 25% on
all sizes of caches, while lbm has little improvement. An
application’s associativity sensitivity also varies with cache
sizes. For example, gromacs has more than 35% speedup on
a 128KB cache but negligible speedup when the cache size
is over 1MB. The second factor that affects an application’s
associativity sensitivity is a futility ranking scheme. An ideal
futility ranking scheme based on OPT ranks a cache line
with high re-reference potential as less futile. However, a
practical futility ranking scheme may not always achieve
this effect. Figure 6b shows the speedups of 6 benchmarks
on fully-associative caches versus direct-mapped caches with
LRU ranking scheme. As shown in the figure, compared to
OPT, the associativity sensitivity of those benchmarks with
the LRU has been dramatically reduced. For example, mcf
only achieves 10% speedup at most with LRU (compared to
at least 25% speedup with OPT) on fully-associative caches
versus direct-mapped caches. In some scenarios, when cache
lines with high re-reference potential are mistakenly ranked
as useless, it could cause ill-effects for high-associativity

caches, i.e., increasing associativity could hurt performance.
As shown in Figure 6b, cactusADM loses 6% performance
on a 4MB fully-associative cache compared to its perfor-
mance on a direct-mapped cache with the same size.

Our FS partitioning scheme is conceptually independent
of a futility ranking scheme. In this paper, we use a prac-
tical coarse-grain timestamp-based LRU ranking scheme to
demonstrate the feasibility of our feedback-based FS design.
We also report the results of the FS scheme working with an
ideal OPT ranking scheme to show the performance head-
room that can be obtained from the increased associativity
in FS if a potential better ranking scheme is available.

VII. METHODOLOGY

A. System Configuration

Table II: System Configuration

Cores 2 GHz in-order, x86-64 ISA, 32 cores

L1 $s split I/D, private, 32KB, 4-way set associative
1-cycle latency, 64B line

L2 $

16-way set associative, non-inclusive, unified, shared
8-cycle access latency, 64B line
8 MB NUCA, 4 banks, 4-cycle average L1-to-L2 latency
Futility Ranking: coarse-grain timestamp-based LRU/ OPT

MCU 200 cycles zero-load latency, 32 GB/s peak memory BW

Our simulator models a shared last-level (L2) cache, a
mesh network and an off-chip memory. The simulator is fed
with L2 access traces collected from Sniper simulator [22]
that models an in-order core, on-chip L1 caches and a
perfect L2 cache (i.e., no L2 misses). During the trace-
driven simulation, network and memory access latency will
be fed back into trace timing and, thus, delay future L2 cache
accesses accordingly. The system is configured with 32KB
private split I/D L1s for each core and an 8MB unified
shared 16-way set associative L2 cache with an XOR-based
indexing [19]. The detailed configuration of the system is
shown in Table II.

B. Schemes
We compare five cache partitioning schemes with both

coarse-grain timestamp-based LRU and the ideal OPT rank-
ing schemes.

PF: This scheme first chooses the most oversized parti-
tion among all the candidates’ partitions and then evicts the
candidate with the largest futility from the chosen partition,
as described in Algorithm 1.

PriSM [10]: This scheme first selects a partition in
accordance to the pre-computed eviction probability distri-
bution and then evicts the least useful replacement candidate
belonging to the selected partition.

Vantage [9]: This scheme controls the size of each parti-
tion by adjusting its “aperture”. In our experiment, Vantage
is configured in the same way as it in [9] on a 16-way set
associative cache, i.e., an unmanaged region u = 10% , a
maximum aperture Amax = 0.5 and slack = 0.1.

FullAssoc: This scheme is referred to as the PF scheme
on a fully-associative cache. It always evicts the least useful
cache line from the partition that exceeds its target size
most. FullAssoc scheme is an ideal partitioning scheme that
provides exact partitioning and full associativity for each
partition.

Feedback-based FS: This is our proposed scheme that
controls the size of each partition by scaling its line futility.
In our experiment, we set the changing ratio ∆α = 2 and
the interval length l = 16 by default.

C. Workloads

We mix multiprogrammed SPEC CPU 2006 benchmarks
with reference input for our evaluation. For each benchmark,
we use SimPoint [23] to select a representative region of
250M instructions. The simulation runs until 250M instruc-
tions have been executed for each thread.

VIII. EVALUATIONS

The proposed FS scheme is first compared with four other
partitioning schemes (i.e., PF, Vantage [9], PriSM [10] and
FullAssoc) in a QoS enabled environment. We then focus
on the FS scheme itself, showing its sensitivity to two
configuration parameters.

A. QoS Performance

We compare the associativity and sizing properties of
FS, PF, Vantage, PriSM and FullAssoc on a QoS enabled
CMP that provides cache space guarantees for 32 con-
currently executing threads. Each workload mix running
in this system is constructed by two types of application
threads: subject threads that require cache space guarantees
and background threads that have no QoS requirement. In
our experiment, each subject thread runs an associativity-
sensitive benchmark gromacs while each background thread
runs a memory-intensive benchmark lbm. Note that lbm has
a much higher miss rate than gromacs which would more
aggressively occupy the cache space if resource sharing is
unregulated. The system allocation policy assigns 256KB
cache capacity (i.e., 4096 cache lines) to each subject
thread and divides the rest of cache capacity equally among
background threads. To evaluate the efficacy of our proposal,
we generate 11 workloads mixes by varying the number of
subject threads (Nsubject) in each mix (i.e., Nsubject is from
1 to 31 in increments of 3), and accordingly the number of
background threads in each mix is 32 − Nsubject. Vantage
is not evaluated under the workload with 31 subject threads
(requiring 31/32 ≈ 97% of total cache space) as it can only
manage 90% of cache space.

Figure 7a compares the average occupancy of subject
threads with different partitioning schemes in each workload
mix. As shown in the figure, FullAssoc, PF and FS can
enforce the cache occupancy of each subject thread very
close to its target size. In Vantage, cache space is divided into
a managed region and an unmanaged region. Vantage can

provide strong isolation for partitions in the managed region
if all the evictions are only from the unmanaged region.
With strong isolation, Vantage can always over-provision
cache space to a thread, i.e., guarantee a thread the exact
amount of resource assigned by an allocation policy in the
managed region and meanwhile, allow the thread to borrow
more space from the unmanaged region. However, on a 16-
way set associative cache, 10% unmanaged region (u = 0.1)
is not large enough for Vantage to provide strong isolation,
i.e., there is 18.5% probability (Pev = (1−u)16 ≈ 0.185 [9])
that a line in the managed region is forced to be evicted. Due
to the relatively weak isolation, Vantage cannot enforce the
sizes of the partitions strictly above their targets. As can be
seen in the figure, although the average occupancy of parti-
tions in Vantage is relatively close to their targets, it can be at
most 3% below its target. Note that Vantage could provide a
higher degree of isolation on a cache that provides more re-
placement candidates (e.g., Z4/52 zcache [9]). In PriSM, the
replacement process has two steps: (1) Partition-Selection:
choose a partition according to the pre-calculated eviction
probability distribution and then (2) Victim-Identification:
choose the victim that belongs to the partition selected by
the partition-selection step. However, there is a possibility of
“abnormality” that no replacement candidate belonging to a
partition identified by the partition-selection step. PriSM is
designed to properly enforce the desired partition size only
when this “abnormality” is rare. However, in our experiment,
due to the large number of partitions (N = 32) and the small
number of replacement candidates (R = 16), the possibility
of this “abnormality” becomes very high (more than 70%)
and consequently PriSM loses the ability to properly enforce
the desired partitioning. As shown in the figure, in PriSM,
the average occupancy of subject threads is, on average,
20.9% and 9.9% with LRU and OPT, respectively, below
the target among all the workloads.

Figure 7b compares the average eviction futility (AEF)
of subject threads with different partitioning schemes in dif-
ferent workloads. As expected, FullAssoc always maintains
full associativity (i.e., AEF = 1). PF suffers from severe
associativity degradation, and its lowest AEF is less than
0.51 across all the workloads. FS provides consistent high
associativity, i.e., its AEF is, on average, 0.86/0.84 with
LRU/OPT across all the workloads. In Vantage, the lines
in a managed region have smaller futility than the ones
in an unmanaged region. Due to the high probability of
forced evictions from the managed region (i.e., forcing to
evict a line with a small futility), the associativity of the
partitions in Vantage is slightly degraded, i.e., its AEF is,
on average, 0.80/0.79 with LRU/OPT. PriSM partitions a
cache in a similar way to PF, i.e., first choosing a partition
(Partition-Selection) and then evicting from the selected par-
tition (Victim-Identification). Therefore, PriSM is supposed
to suffer from the associativity degradation the same way
as PF when the list of replacement candidates is shortened
in the Victim-Identification step. However, as shown in the

FullAssoc,LRU
FullAssoc,OPT

PF,LRU
PF,OPT

Vantage,LRU
Vantage,OPT

PriSM,LRU
PriSM,OPT

FS,LRU
FS,OPT

1 4 7 10 13 16 19 22 25 28 31

Number of subject threads (Nsubject)

2800

3000

3200

3400

3600

3800

4000

4200

Av
er
ag

e
oc

cu
pa

nc
y
(#
 o
f l
in
es

)

(a) Average occupancy of subject threads

1 4 7 10 13 16 19 22 25 28 31

Number of subject threads (Nsubject)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

ev
ic

tio
n

fu
til

ity
(b) Average eviction futility of subject threads

1 4 7 10 13 16 19 22 25 28 31

Number of subject threads (Nsubject)

0.85

0.90

0.95

1.00

1.05

1.10

Av
er
ag

e
sp

ee
du

p

(c) Average speedup of subject threads

Figure 7: Comparisons among five partitioning schemes with 11 workload mixes that require different cache space guarantees

figure, PriSM achieves a better associativity than PF (i.e., its
AEFs are above 0.73). This is due to the high occurrences of
“abnormality”, in which case, PriSM will choose a candidate
with large futility regardless of partitioning requirements and
thus improve associativity.

Figure 7c compares the average speedups (IPCshare

IPCalone
) of

subject threads in each workload. IPCalone refers to the
IPC achieved when a subject thread running on a 256KB
private 16-way set associative cache with LRU ranking. Full-
Assoc always achieves the best performance across different
mixes, i.e., achieve average speedup of 1.0 and 1.05 with
LRU and OPT, respectively. Due to the severe associativity
degradation, the average speedups with the PF scheme are
only 0.90 and 0.91 with LRU and OPT, respectively. In
Vantage, the average speedups of subject threads achieve
0.95 and 1.0 with LRU and OPT, respectively. Because of
the high occurrences of “abnormality” when the number of
partitions is large, PriSM generally has little control of cache
resources, and thus its average speedups are, on average,
only 0.90 and 0.98 with LRU and OPT, respectively. Owing
to its properties of high associativity and precise sizing, FS
has steady high speedups of, on average, 0.995 and 1.036
with LRU and OPT, respectively, across all workload mixes.

In summary, with a coarse-grain timestamp-based LRU
ranking, FS improves performance over PF, Vantage, and
PriSM by up to 11.2%, 6.0%, and 13.7%, respectively,
which is only 0.5% less than an ideal FullAssoc scheme.
With an ideal OPT ranking, the high associativity provided
by FS can further improve the performance, on average, by
4.1%, compared to the PF scheme.

B. Parameter Sensitivity analysis

The feedback-based FS scheme has two configurable
parameters: the changing ratio of a scaling factor (∆α)
and the interval length for the scaling factor adjustment
procedure (l). Figure 8 compares the associativity CDFs and

∆α=1.1,l=16

∆α=1.1,l=128

∆α=2,l=16

∆α=2,l=128

∆α=4,l=16

∆α=4,l=128

0.5 0.6 0.7 0.8 0.9 1.0

Eviction futility

0.0

0.2

0.4

0.6

0.8

1.0
A
ss
oc

ia
tiv
ity
 C
D
F

(a) Associativity distribution

−40 −20 0 20 40

Deviation (# of lines)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

C
D

F
(b) Size deviation distribution

Figure 8: Comparisons of FS with different changing ratios
(∆α) and interval lengths (l)

the size deviation distributions of the first partition in FS
with different changing ratios (∆α = 1.1, 2, 4) and interval
lengths (l = 16, 128). The experiments are conducted on
a two-core system with a 2MB cache running mcf on each
core. As can be seen in Figure 8a, by increasing ∆α, the
associativity of FS is slightly degraded, i.e., AEF drops from
0.864 to 0.839 when ∆α goes from 1.1 to 4. This is because
with a larger ∆α, a partition has a higher chance of having
an overlarge scaling factor (i.e., the partition’s line futility is
over-scaled) and a larger scaling factor can lead to a worse
associativity, as we discussed in Section IV-C. Figure 8a also
shows that the FS associativity is not sensitive to the changes
of the interval length l, i.e., little associativity change when
l goes from 16 to 128. From Figure 8b, we can see that, a
larger ∆α leads to a worse size deviation distribution, i.e.,
the mean absolute deviation (MAD) increases from 20.9 to
29.6 as α goes from 1.1 to 4 at l = 128. This is because
a larger ∆α results in larger changes in scaling factors,
and consequently larger fluctuations in eviction rates and
partition sizes. However, the interval length l can restrict

the effect of ∆α on the sizing. Smaller l will make all
the ∆α configurations have a better sizing property (i.e.,
MAD < 11.8 at l = 16).

In summary, a smaller ∆α has better associativity and siz-
ing. Therefore, we choose to use a ∆α as small as possible.
Considering the efficiency of hardware implementation, we
set ∆α to 2 in order to convert multiplication operations (for
scaling line futility) to bit-shift operations. While the interval
length l has little impact on associativity, a smaller interval
length can reduce size deviations. Hence, we use a small
interval length (l = 16) to achieve a precise partitioning.

IX. CONCLUSION

We have presented Futility Scaling (FS), a novel
replacement-based partitioning scheme that can precisely
partition the whole cache while still maintain high associa-
tivity even with a large number of partitions. By scaling the
futility of its cache lines properly, FS precisely controls the
size of a partition. We have studied the properties of FS on
both associativity and sizing in an analytical framework, and
presented a feedback-based implementation of FS that incurs
little overhead in practice. Simulation results show that, due
to its properties of both precise sizing and high associativity,
FS provides significant performance improvement over prior
art.

ACKNOWLEDGMENTS

We gratefully acknowledge the contributions from Timo-
thy Pinkston in earlier stages of this work and the helpful
suggestions from reviewers which have improved the paper.
This research was supported, in part, by NSF grant CCF-
1321131.

REFERENCES
[1] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and

partitioning in a chip multiprocessor architecture,” in Proceedings
of the 13th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’04, Washington, DC, USA:
IEEE Computer Society, 2004, pp. 111–122.

[2] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist,
utilitarian, and capitalist cache policies on cmps: caches as a shared
resource,” in Proceedings of the 15th international conference on
Parallel architectures and compilation techniques, ser. PACT ’06,
Seattle, Washington, USA: ACM, 2006, pp. 13–22.

[3] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning:
a low-overhead, high-performance, runtime mechanism to partition
shared caches,” in Proceedings of the 39th International Symposium
on Microarchitecture, ser. MICRO ’39, Washington, DC, USA: IEEE
Computer Society, 2006, pp. 423–432.

[4] N. Rafique, W.-T. Lim, and M. Thottethodi, “Architectural support
for operating system-driven cmp cache management,” in Proceed-
ings of the 15th International Conference on Parallel architectures
and Compilation Techniques, ser. PACT ’06, Seattle, Washington,
USA: ACM, 2006, pp. 2–12.

[5] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y.
Solihin, L. Hsu, and S. Reinhardt, “Qos policies and architecture
for cache/memory in cmp platforms,” in Proceedings of the 2007
ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, ser. SIGMETRICS ’07, San Diego,
California, USA: ACM, 2007, pp. 25–36.

[6] F. Guo, Y. Solihin, L. Zhao, and R. Iyer, “A framework for providing
quality of service in chip multi-processors,” in Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchi-
tecture, ser. MICRO 40, Washington, DC, USA: IEEE Computer
Society, 2007, pp. 343–355.

[7] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J.
Smith, “Multicore resource management,” Micro, IEEE, vol. 28, no.
3, pp. 6–16, 2008.

[8] X. Zhou, W. Chen, and W. Zheng, “Cache sharing management
for performance fairness in chip multiprocessors,” in Proceedings
of the 2009 18th International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’09, Washington, DC, USA:
IEEE Computer Society, 2009, pp. 384–393.

[9] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient fine-
grain cache partitioning,” in Proceedings of the 38th International
Symposium on Computer Architecture, ser. ISCA ’11, San Jose,
California, USA: ACM, 2011, pp. 57–68.

[10] R Manikantan, K. Rajan, and R Govindarajan, “Probabilistic shared
cache management (prism),” in Proceedings of the 39th Interna-
tional Symposium on Computer Architecture, ser. ISCA ’12, Port-
land, Oregon: IEEE Computer Society, 2012, pp. 428–439.

[11] D. Chiou, P. Jain, S. Devadas, and L. Rudolph, “Dynamic cache par-
titioning via columnization,” in Proceedings of Design Automation
Conference, Citeseer, 2000.

[12] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable caches
and their application to media processing,” in Proceedings of the
27th annual international symposium on Computer architecture,
ser. ISCA ’00, Vancouver, British Columbia, Canada: ACM, 2000,
pp. 214–224.

[13] K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. Iyer,
S. Makineni, and D. Newell, “Molecular caches: a caching structure
for dynamic creation of application-specific heterogeneous cache re-
gions,” in Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 39, Washington, DC,
USA: IEEE Computer Society, 2006, pp. 433–442.

[14] L. A. Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Syst. J., vol. 5, no. 2, pp. 78–101, 1966.

[15] D. Sanchez and C. Kozyrakis, “Scalable and efficient fine-grained
cache partitioning with vantage,” Micro, IEEE, vol. 32, no. 3, pp. 26
–37, 2012.

[16] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan,
“Gaining insights into multicore cache partitioning: bridging the
gap between simulation and real systems,” in High Performance
Computer Architecture, 2008. HPCA 2008. IEEE 14th International
Symposium on, 2008, pp. 367–378.

[17] D. Sanchez and C. Kozyrakis, “The zcache: decoupling ways and
associativity,” in Proceedings of the 43rd International Symposium
on Microarchitecture, ser. MICRO 43, Washington, DC, USA: IEEE
Computer Society, 2010, pp. 187–198.

[18] A. Seznec, “A case for two-way skewed-associative caches,” in Pro-
ceedings of the 20th annual international symposium on computer
architecture, ser. ISCA ’93, San Diego, California, USA: ACM,
1993, pp. 169–178.

[19] A. González, M. Valero, N. Topham, and J. M. Parcerisa, “Eliminat-
ing cache conflict misses through xor-based placement functions,”
in Proceedings of the 11th International Conference on Supercom-
puting, ser. ICS ’97, Vienna, Austria: ACM, 1997, pp. 76–83.

[20] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using prime numbers
for cache indexing to eliminate conflict misses,” in Proceedings of
the 10th International Symposium on High Performance Computer
Architecture, ser. HPCA ’04, Washington, DC, USA: IEEE Com-
puter Society, 2004, pp. 288–299.

[21] R. Wang and L. Chen, “Futility scaling: high-associativity cache
partitioning (extended version),” University of Southern California,
Tech. Rep. CENG-2014-07, 2014.

[22] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis,
ser. SC ’11, Seattle, Washington: ACM, 2011, 52:1–52:12.

[23] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0:
faster and more flexible program analysis,” Journal of Instruction
Level Parallelism, 2005.

