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Abstract
Past assessments of coupled climate models have indicated that precipitation extremes are expected
to intensify over Southeast Asia (SEA) under the global warming. Here, we use outputs from 15
climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to evaluate
projected changes in precipitation extremes for SEA at the end of the 21st century.
The results suggest that CMIP6 multi-model ensemble medians show better performances in
characterizing precipitation extremes than individual models. Projected changes in precipitation
extremes linked to rising greenhouse gas (GHG) emissions (represented by the latest proposed
Shared Socioeconomic Pathways) increase significantly over the Indochina Peninsula and the
Maritime Continent. Substantial changes in the number of very heavy precipitation days (R20mm)
and the intensity of daily precipitation (SDII) indicate that such locally heavy rainfall is likely to
occur over a short time and that more precipitation extremes over SEA are probable in a warmer
future. This is consistent with projections from the Coordinated Regional Downscaling
Experiment and CMIP5 models. The present study reveals the high sensitivity of the precipitation
extremes over SEA, and highlights the importance of constrained anthropogenic GHG emissions
in an ambitious mitigation scenario.

1. Introduction

How fast is too fast? The global mean temperature in
2019 was around 1.1 ± 0.1 ◦C above pre-industrial
levels, which may have been the second warmest year
on record (WMO 2019). Latest reports confirm that
the global mean temperature is warming at a rate of
0.1 ◦C–0.3 ◦C per decade. Restricting global warming
to below 2 ◦C (or the preferred lower limit of 1.5 ◦C)
is the committed target of the United Nations Frame-
work Convention on Climate Change (UNFCCC)
Paris Agreement (UNFCCC 2015). To achieve this
ambitious target under current anthropogenic green-
house gas (GHG) emissions seems like a race against
time. However, while the present fossil fuel invest-
ments and mitigation strategies do not support the
strategy to keep global warming below 1.5 ◦C, the
coronavirus disease 2019 (COVID-19) pandemic has
dramatically led to a temporary reduction of both

GHG emissions and air pollutants around the world
since February 2020 (Smith et al 2019, Forster et al
2020, Le Quéré et al 2020). Despite this, looking
ahead, the global cooling response to the pandemic is
likely to be sudden and small, and would not drastic-
ally alter future increases in climate extremes.

It has been well demonstrated that the current
rapid global warming has tended to intensify precip-
itation extremes in tropical regions through changes
in atmospheric water vapor content, circulation pat-
terns, and moisture supply, which in turn signific-
antly influence natural ecosystems, water manage-
ment, and agriculture in less-developed countries
(Allen and Ingram 2002, Zhai et al 2005, Held and
Soden 2006, Vecchi et al 2006, Hulme 2016, Marotzke
et al 2017, Sillmann et al 2017, Chen and Sun 2018,
Nikulin et al 2018). Southeast Asia (SEA), an area
characterized by a large coastal population in complex
terrains, is generally considered to be one of the
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Table 1. Summary of the 15 CMIP6 models used in this study.

No. of atmospheric grid points
No. Model Institution/Country (lon. × lat.)

1 BCC-CSM2-MR BCC-CMA/China 320 × 160
2 CanESM5 CCCMA/Canada 128 × 64
3 CESM2-WACCM NCAR/USA 288 × 192
4 CNRM-CM6-1 CNRM-CERFACS/France 256 × 128
5 CNRM-ESM2-1 CNRM-CERFACS/France 256 × 128
6 FGOALS-g3 LASG-IAP/China 180 × 90
7 GFDL-ESM4 GFDL-NOAA/USA 360 × 180
8 INM-CM4-8 INM/Russia 180 × 120
9 INM-CM5-0 INM/Russia 180 × 120
10 IPSL-CM6A-LR IPSL/France 144 × 143
11 MIROC6 MIROC/Japan 256 × 128
12 MPI-ESM1-2-HR MPI/Germany 192 × 96
13 MPI-ESM1-2-LR MPI/Germany 192 × 96
14 MRI-ESM2-0 MRI/Japan 192 × 96
15 UKESM1-0-LL MOHC/UK 192 × 144

hot spots of global warming (IPCC 2013). SEA has
already suffered from intensified climate extremes
with increased occurrences of widespread flooding
and drought during the past decades, events that
are likely to continue in the future (IPCC 2014,
Villafuerte and Matsumoto 2015, Tangang et al 2019,
2020, Supari et al 2020, Zhu et al 2020b). Interannual
and interdecadal variations of climate in SEA have
a significant relationship with the El Niño/Southern
Oscillation (ENSO, Manton et al 2001, Wang et al
2001, Mcbride et al 2003; Takahashi and Yasunari
2008, Zhou et al 2011, Ge et al 2017) and the Asian–
Australian monsoon regime (He et al 1987, Mat-
sumoto 1992,Webster et al 1998, Lau et al 2000,Wang
et al 2000, Zhu 2018). Simulating the past and present
climate over SEA is therefore a scientific challenge.
It is also crucial for providing information on future
changes in precipitation extremes that can be used by
local governments to implement adaptation and mit-
igation.

Reliable projections are of great importance in
projecting future climate change. The CoupledModel
Intercomparison Project Phase 6 (CMIP6) uses the
new scenarios, named Shared Socioeconomic Path-
ways (SSP), which are combined with the Repres-
entative Concentration Pathways (RCP) of CMIP5
(Eyring et al 2016). These new combinations enable
several ways to examine the future projected changes
in precipitation extremes over SEA. Current state-
of-art climate models are more robust than previ-
ous CMIP ensembles and have shown the effective
improvements in reproducing large-scale patterns of
climate variables (Akinsanola et al 2020; Gusain et al
2020, Ha et al 2020, Jiang et al 2020, Wang et al
2020, Zhai et al 2020, Chen et al 2020b). However,
to the best of our knowledge, there is still a lack of
information regarding the projections of SEA precip-
itation extremes under the new CMIP6 scenarios. In
this study, we aim to provide a comprehensive picture
of the changing magnitude of precipitation extremes

over SEA, and also to address the following questions:
(a)Howdo the CMIP6multi-models perform in sim-
ulating precipitation extremes over SEA? (b) What
are the dominant roles of the projected precipitation
extremes under CMIP6 scenarios in the long-term
future?

2. Data andmethods

2.1. Simulation data from the CMIP6 archive
The daily precipitation data are obtained from 15
CMIP6 model ensembles (table 1) for the first real-
ization that are available at the time of initializing
this study (up to August 2020). The future changes in
precipitation extremes are projected under four SSP
scenarios. For CMIP6, the four SSPs are categorized
as SSP1-2.6 (sustainability), SSP2-4.5 (middle-of-
the-road), SSP3-7.0 (regional rivalry) and SSP5-8.5
(fossil-fueled development) (O’Neill et al 2016). The
historical simulations for the reference period of
1985–2014 are used in this study, while a future
period of 2071–2100 is selected for the analysis of cli-
mate projection. The model outputs are interpolated
to a regular geographical grid of 1◦ × 1◦, consist-
ent with the observational precipitation dataset intro-
duced in the following subsection.

2.2. Observational data and index representation
of extremes
The daily gridded precipitation data from the
Southeast Asian Climate Assessment and Dataset
(SACA&D) covering the period of 1981–2017 are
used in this study. This high-resolution dataset with a
resolution of 1◦ × 1◦, called SA-OBSv2.0, has under-
gone strict quality control procedures, including data
homogenization and time consistency, to improve
reliability. SA-OBSv2.0 dataset includes several met-
eorological variables, such as daily precipitation
amount, daily mean temperature, daily maximum
temperature and daily minimum temperature. The
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Figure 1. The orography (unit: m) of SEA and the geographical locations of the five main regions (ICP: Indochina Peninsula; PH:
Philippines; SUM: Sumatra; KAL: Kalimantan; SUL: Sulawesi).

daily precipitation series are collected from the met-
eorological agencies of Australia, Indonesia, Malay-
sia, Philippines, Singapore, Thailand, and Vietnam.
Additionally, precipitation series from the Global
Historical ClimateNetwork forAmerican Samoa, Fiji,
Kiribati, the Federated States of Micronesia, Papua
New Guinea, Samoa, and the Solomon Islands are
also involved (van den Besselaar et al 2017, Ge et al
2019a). As a result, 1393 rain gauge stations distrib-
uted over the whole SEA contribute to derive the
SA-OBSv2.0 gridded dataset. We focus on the period
of 1985–2014 to match the timescale of the CMIP6
historical runs. The SEA domain is located between
10◦ S to 23◦ N and 95◦ E to 140◦ E (figure 1) and
comprises five subregions: the Indochina Peninsula
(ICP; 6◦ N–23◦ N, 95◦ E–110◦ E), the Philippines
(PH; 5◦ N–20◦ N, 118◦ E–130◦ E), Sumatra (SUM;
8◦ S–6◦ N, 95◦ E–108◦ E), Kalimantan (KAL; 4◦ S–6◦

N, 109◦ E–118◦ E) and Sulawesi (SUL; 6◦ S–3◦ N,
118◦ E–126◦ E).

Following the Expert Team on Climate Change
Detection and Indices (ETCCDI, Zhang et al 2011,
Sillmann et al 2013a, 2013b), six indices are selected
to represent the precipitation extremes, as displayed
in table 2. These are Rx1day (maximum consecut-
ive 1 d precipitation), Rx5day (Maximum consecut-
ive 5 d precipitation), SDII (Simple daily intensity),
R20mm (very heavy precipitation days), CDD/CWD
(Consecutive dry/wet days), PRCPTOT (Total pre-
cipitation of wet days) and R95pTOT (Precipitation

of very wet days). More detailed information on the
indices can be found on the ETCCDI website of
http://etccdi.pacificclimate.org/indices.shtml.

2.3. Model performance metrics
The most common method to evaluate a climate
model is the quantitative assessment of ‘model-fit’;
that is, howwell themodel resultsmatch observation-
based data and results of other models or model ver-
sions. Here, we use the relative root mean squared
error (RMSE′) and signal to noise ratio (SNR) to
quantify the empirical accuracy and the robustness of
the ensemble results, which have been shown skillful
in climate projections and multi-model assessment
(Han et al 2018, Ge et al 2019b).

Given the substantial uncertainties of projected
changes in precipitation, the RMSE′ used to evaluate
the climate simulation capability of each individual
CMIP6 model is defined as follows (Gleckler et al
2008, Dong et al 2015). First, the RMSE is calcu-
lated for eachmodel indexwith respect to the SA-OBS
observations:

RMSE =

√

(X−Y)2.

With X being the model climatology of an extreme
precipitation index and Y the corresponding index of
the observation. All RMSEs are then used to derive the
RMSE′ of each model:

RMSE′ = (RMSE−RMSEMedian) /RMSEMedian

3
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Table 2. List of the used extreme precipitation indices (recommended by the ETCCDI).

Label Description Index definition Units

Rx1day Maximum consecutive 1 d precipitation Annual maximum consecutive 1 d
precipitation

mm

Rx5day Maximum consecutive 5 d precipitation Annual maximum consecutive 5 d
precipitation

mm

SDII Simple daily intensity The ratio of annual total precipitation
to the number of wet days (⩾1 mm)

mm day−1

R20mm Very heavy precipitation days Annual count of days when
precipitation ⩾20 mm

days

CWD Consecutive wet days Maximum number of consecutive
days when precipitation ⩾1 mm

days

CDD Consecutive dry days Maximum number of consecutive
days when precipitation <1 mm

days

PRCPTOT Total precipitation of wet days Annual total precipitation from days
⩾1 mm

mm

R95pTOT Very wet days precipitation Annual total precipitation from days
>95th percentile

mm

where RMSEMedian is the ensemble median of all
model RMSEs. Generally, a negative (positive) RMSE′

indicates a better (worse) performance than half
(50%) of the models.

To express the credibility of the projection
ensemble results, the SNR is defined as follows
(Zhu et al 2020a):

SNR = |xe|/

√

√

√

√

1

n

n
∑

i=1

(xi − xe)
2

where xi represents the variable or index simulated
by an individual model, xe denotes the correspond-
ing ensemble result, and n is the ensemble size; the
numerator and denominator refer to signal and noise,
respectively. Therefore, SNR > 1 implies that signal is
greater than noise, indicating relatively reliable pro-
jections.

3. Results

3.1. CMIP6model validation
The RMSE′ of individual models in simulating
precipitation extremes compared with the SA-OBS
observations are summarized in figure 2. The results
indicate that models vary considerably in their abil-
ity to simulate precipitation extremes. Three models,
MPI-ESM1-2-HR, MPI-ESM1-2-LR and UKESM1-
0-LL, perform fairly well with mainly negative RMSE′

values for different indices. The latest evaluation
is consistent with our results, suggesting the MPI-
ESM1-2-HR, MPI-ESM1-2-LR and UKESM1-0-LL
could well capture the mean precipitation distribu-
tions over the SEA due to the reduced sea surface tem-
perature biases (Pincus and Stevens 2013, Milinski
et al 2016, Müller et al 2018, Sellar et al 2019).
While FGOALS-g3 and IPSL-CM6A-LR show relat-
ively weak performances because they overestimate
the mean precipitation over the Maritime Continent

(Boucher et al 2020, Li et al 2020). That is, the simu-
lations are model-dependent and exhibit substantial
uncertainty, which confirms the necessity of a model
ensemble in investigating the climate simulations and
projections.

The RMSE′ of the ensemble medians are shown
in the last column of figure 2. The model ensemble
median is chosen to represent the deterministic
ensemble result rather than the mean value, to
avoid results influenced by abnormally large model
errors (outliers). It is demonstrated that the ensemble
median results perform better than any individual
models for all indices, which eliminates the struc-
tural model uncertainties to a great extent and so
can be considered to reasonably represent the future
projections in the study.

3.2. Projected changes in precipitation extremes
Figure 3 presents the projected changes of CMIP6
ensemblemedians of precipitation-based indices over
SEA during the long-term future at the end of the
21st century (2071–2100). Most of the extreme pre-
cipitation indices (i.e. Rx1day, Rx5day, SDII, R20mm
and R95pTOT) increase significantly across the ICP
and Maritime Continent for all scenarios. However,
for the SSP1-2.6 scenario, decreases in CDD are com-
bined with the increases in CWD and SDII over parts
of ICP, indicating a generally wetter future in this
region. The opposite patterns in CDD and CWD are
projected over the Maritime Continent in this scen-
ario, while the other four indices show prominent
increases, especially over SUM and KAL. This non-
uniform phenomenon suggests the intensification of
both wet and dry conditions over SEA, which is con-
sistent with the earlier projected changes in CMIP5
under the RCP 2.6 scenario (Sillmann et al 2013b).
The pronounced increase of total precipitation of wet
days (PRCPTOT) is projected overmost of SEAunder
all SSP scenarios. Over some regions of the south-
ern SUM, the projected changes showdecreases under
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Figure 2. Portrait diagram of relative RMSEs (RMSE′) of precipitation extreme indices simulated by CMIP6 models versus the
observation data during the period of 1985–2014.

the SP3-7.0, and SSP5-8.5 scenarios, however, the
decreasing signals aremostly not significant. This is in
agreement with the projected changes for the end of
21st century in the CMIP5 GCMs ensemble, suggest-
ing the decreasing tendency over the southern SUM
in total precipitation under both RCP4.5 and RCP8.5
scenarios (Kang et al 2018, Giorgi et al 2019, Supari
et al 2020). Reduced PRCPTOT is consistent with the
increased CDD over southern SUM, while indices of
extremes frequency (R20mm) and extremes intens-
ity (Rx5day and SDII) show a significant and robust
increase over the entire SEA, implying a potential risk
of intensified precipitation extremes in natural eco-
systems under the accelerated emission scenarios.

Compared with the SSP1-2.6 scenario, more pro-
nounced increases in Rx1day, Rx5day, SDII, R20mm
and R95pTOT are projected over all of SEA under the
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. In addi-
tion, it is noteworthy that spatial patterns of CDD
and CWD have gradually extended northward to the
ICP from lower- to higher-emission scenarios. Larger
high-confidence areas of increasing CDD (decreasing
CWD) can be particularly observed under the SSP3-
7.0 and SSP5-8.5 scenarios. This spatial evolution
implies more heavy and extreme precipitation events
(Rx5day, R20mm and SDII) are expected to occur
with increased emissions, and extended dry spells
(CDD) and shortened wet spells (CWD) could be
mainly attributed to enhanced locally heavy rainfall
over a short time scale.

Generally, precipitation extremes are becoming
more intense over SEA which is supported by future

projections from CORDEX climate model ensembles
(Ge et al 2019b). This suggests that increases in
extreme precipitation are closely related to enhanced
tropical convective precipitation, further concentrat-
ing rainfall in a very short period over SEA. This
would have critical impacts on local water resources,
food security, agricultural production etc, especially
for those developing countries with large coastal pop-
ulation densities.

3.3. Dominant roles of precipitation extremes
in different scenarios
To identify the regional response to the different scen-
arios, we highlight here the CMIP6 projected per-
centage changes in precipitation extremes (averaged
over the land area within SEA) in figure 4. In general,
the CMIP6 models exhibit a distinctly large spread
in different scenarios. However, it is notable that the
ensemble medians of the index changes are all greater
than 0 except CWD, implying increasing trends of
precipitation extremes compared with the reference
period of 1985–2014.

The most significant increases in R20mm and
R95pTOT are projected with magnitudes of 22% and
102% for the SSP5-8.5 scenario (figures 4(a) and (h)),
while the ensemble median changes of Rx5day and
SDII show consistent increases, with magnitudes of
16% and 11%, respectively (figures 4(b) and (c)).
The increasing magnitudes of Rx1day range from
7% (SSP1-2.6) to 21% (SSP5-8.5) and PRCPTOT
shows a similar increase with the magnitude about
4% in SSP1-2.6, SSP2-4.5 and SSP3-7.0 scenarios, but

5
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Figure 3. Projected CMIP6 ensemble median changes in precipitation extreme indices during 2071–2100 under the SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, relative to the climatology in 1985–2014. The black dots indicate where at least
two-thirds of the models agree on the sign of change. All SNRs are greater than 1 over the area.
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Figure 4. Projected changes (unit: %) in percentage of precipitation extreme indices (2071–2100 minus 1985–2014). The black
line indicates the ensemble median of 15 models over SEA.

is 7% in SSP5-8.5. On the other hand, the projec-
ted changes in CDD and CWD are nearly 0 under
SSP1-2.6 scenario. However, CDD is projected to
increase by 3%, 10% and 8% under the scenarios
of SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively,
whereas the CWD is suggested to experience a pro-
nounced decrease by −3% in SSP2-4.5 and by −7%
in SSP3-7.0 and SSP5-8.5. In addition, we noticed
that the non-uniform spatial patterns in CDD and
CWD are projected under the SSP1-2.6 and SSP2-
4.5 scenarios. To examine the climate responses to
the lower GHG emission scenarios in more regional
details, percentage changes of these two indices aver-
aged over each subregion are presented in figure 5.
The ensemble median changes in CDD indicate an
increase over the PH, SUM and KAL, with mag-
nitudes of 3%, 10% and 8% under the SSP1-2.6
scenario, while CWD shows a slight decrease over
the SUM, KAL and SUL by −2%, −1% and −4%,
respectively. For projections under the SSP-4.5 or
higher emission scenario, CDD indicates consistent
increases over the subregions, while it shows the
reversed case for CWD. It implies that almost the
entire area would be characterized by a moderate
change under the lower GHG emissions, suggesting
the importance of keeping the sustainability path-
way for climate stabilization. By contrast, with the
enhanced GHG pathways, the significant increase
of R20mm and SDII suggest that wet days become

wetter and intensified precipitation eventsmore likely
to occur frequently at the end of the 21st century,
emphasizing that daily precipitation intensity tends to
increase more abruptly than mean precipitation over
the land area in SEA under a warmer future.

4. Conclusions and discussion

In this study, we have investigated future changes in
precipitation extremes over SEA under four scenarios
using current CMIP6 models. The results provide
latest information on the climate responses of SEA to
different emission scenarios at the end of the 21st cen-
tury. The major findings are summarized as follows:

(a) Precipitation indices of Rx1day, Rx5day,
SDII, R20mm and R95pTOT show consistent
increases across the ICP and Maritime Contin-
ent under the four CMIP6 scenarios. Changes
in annual total precipitation (PRCPTOT) indic-
ate a general increase over SEA, except over the
southern SUM under the SSP3-7.0 and SSP5-
8.5 scenarios. Projected changes in most of the
indices are more significant under higher emis-
sions than under the lower-emission scenarios.
On the other hand, the spatial evolution ofCDD
and CWD reveals that extended dry spells con-
current with shortened wet spells will gradually
appear over SEA with rapidly rising emissions.

7
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Figure 5. Projected changes (unit: %) in percentage of CDD and CWD averaged over each subregion of SEA (2071–2100 minus
1985–2014). The black line indicates the ensemble median of 15 models over each subregion.

(b) It is evident that the global mean temperature
warming will increase the occurrence of precip-
itation extremes in the future. The precipitation
over SEA is projected to be enhanced, while per-
sistent increases would mainly concentrate on
the tropical islands, suggesting the high sensit-
ivity of the precipitation extremes to the GHG
emissions. Most of the CMIP6 ensemble mod-
els agree with the sign of change, with SNRs all
greater than 1, although they exhibit a relatively
large spread in precipitation extremes.

(c) The averaged median changes of indices vary
considerably under different scenarios over
SEA. The most pronounced increases are pro-
jected in R20mm and R95pTOT, with mag-
nitudes of 22% and 102% under the SSP5-
8.5 scenario, while the changes in CWD are
projected to decrease, with the magnitude of
−7% in SSP3-7.0 and SSP5-8.5 scenarios. The
indices’ evolutions indicate an intense increase
in extreme precipitation events over this region
in a warmer future.

The SEA climate is strongly affected by the trop-
ical monsoon regime, and has been the subjected of
increasing concern due to the high climate stresses
of its exposure to global warming. Future projections
in monsoon rainfall from CMIP3 to CMIP6 scen-
arios show its intensification over the Asian region,
with a corresponding rise in precipitation extremes,

which has many implications for ecological impacts
and social risk throughout SEA (Scoccimarro et al
2013, Zhou et al 2014, Qi et al 2016, Zhang et al
2018, Chen et al 2020b, Grose et al 2020, Narsey
et al 2020, Scoccimarro and Gualdi 2020). It is very
disappointing that limiting warming to 1.5 ◦C seems
to be barely feasible, although in fact the Paris Agree-
ment target remains possible and could be attainable
with ambitious and immediate action (Smith et al
2019). Based on our results from CMIP6, we again
emphasize the necessity of restricting global warming
for the mitigation of climate extremes in the coun-
tries in SEA. Further possible efforts should never
be ignored and prompting actions would never be
untimely.

In addition, any subsequent research should not
only be conducted in terms of the frequency and
intensity of climate extremes, but should also con-
sider population exposure and local vulnerability
(Chen and Sun 2019, Chen et al 2020a). More work
remains necessarily to be conducted on compar-
isons between model ensembles with and without
bias correction (Maraun et al 2017, Guo et al 2018,
Sun et al 2019). High-resolution convection- per-
mitting models and the new generation of COR-
DEX experiment design for the dynamical down-
scaling of CMIP6 are fundamental for quantifying
and assessing changes of climatological means, vari-
ability and extremes. In conclusion, some evidence
has been shown in our present study using the

8
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currently released archive compared with the previ-
ous generation, which provides credible findings for
regionally relevant climate change projections over
SEA. However, we suggest that this result should be
further examined asmoremodels are added, since full
CMIP6 models will be available in the near future and
understanding the response to different global warm-
ing threshold is essential for eliminating the uncer-
tainties in SEA climate projections.
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