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Abstract

The objective of this work is to assess the downscaling projections of climate change over

Central America at 8-km resolution using the Eta Regional Climate Model, driven by the

HadGEM2-ES simulations of RCP4.5 emission scenario. The narrow characteristic of conti-

nent supports the use of numerical simulations at very high-horizontal resolution. Prior to

assessing climate change, the 30-year baseline period 1961–1990 is evaluated against dif-

ferent sources of observations of precipitation and temperature. The mean seasonal precipi-

tation and temperature distribution show reasonable agreement with observations. Spatial

correlation of the Eta, 8-km resolution, simulations against observations show clear advan-

tage over the driver coarse global model simulations. Seasonal cycle of precipitation con-

firms the added value of the Eta at 8-km over coarser resolution simulations. The Eta

simulations show a systematic cold bias in the region. Climate features of the Mid-Summer

Drought and the Caribbean Low-Level Jet are well simulated by the Eta model at 8-km reso-

lution. The assessment of the future climate change is based on the 30-year period 2021–

2050, under RCP4.5 scenario. Precipitation is generally reduced, in particular during the

JJA and SON, the rainy season. Warming is expected over the region, but stronger in the

northern portion of the continent. The Mid-Summer Drought may develop in regions that do

not occur during the baseline period, and where it occurs the strength may increase in the

future scenario. The Caribbean Low-Level Jet shows little change in the future. Extreme

temperatures have positive trend within the period 2021–2050, whereas extreme precipita-

tion, measured by R50mm and R90p, shows positive trend in the eastern coast, around

Costa Rica, and negative trends in the northern part of the continent. Negative trend in the

duration of dry spell, which is an estimate based on evapotranspiration, is projected in most

part of the continent. Annual mean water excess has negative trends in most part of the con-

tinent, which suggests decreasing water availability in the future scenario.
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Introduction

Central America region holds several countries (Honduras being the first, Nicaragua and Gua-

temala) within the top ten in the long term climate risk index [1] and is already suffering the

effects of climate change as a result of historical warming and increased precipitation intensity

trends [2]. Future climate scenarios also indicate general warming and reduced precipitation

trends [3] with increased extremes [4]. The vulnerability to climate extremes in the region is

high due to the strong dependence of the economy on agriculture and hydropower. Small-

holder farmers are a vulnerable group in case of extreme changes of climate conditions [5].

The narrow land area of the continent across this region, where the distance between the

Pacific and Atlantic Ocean can be less than a hundred kilometres is combined with complex

topography in some areas that may reach the heights of about 4000 m in a few kilometres of

horizontal distance. Long-term climate simulations using coarse horizontal resolution may

have difficulty in describing surface conditions of this narrow continent. Therefore, high-reso-

lution future scenarios are required to provide appropriate climate change information for

impact, vulnerability and design of adaptation responses.

The effects of regional long-term variabilities are shown in the annual north-south displace-

ment of the Intertropical Convergence Zone (ITCZ), the intensity of the subtropical high-pres-

sure system over the Caribbean Sea, the strength of the trade winds and of the Caribbean Low-

Level Jet (CLLJ) [6]. Central America has a well-defined rainy season fromMay to October

[7]. However, the rainy season is characterized by two rainfall maxima (May/June and Septem-

ber/October) separated by a relative dry period (July/August) that is termed mid-summer

drought (MSD) [8]. This bimodal distribution is more clearly defined over southwestern

Mexico, Central America, and the eastern Pacific warm pool, where the ITCZ is active during

summer [9]. The MSD has a socioeconomic importance because the agriculture and hydro-

power production are linked with seasonal cycle of precipitation. According to [10], CMIP5

models are capable of simulating the MSD over much of the Inter-Americas. [11] investigated

howMSDmay change in a warming climate projected by CMIP5 models. The results show

that CMIP5 multi-model mean projects a strengthening of the MSD related to present climate

similar to CMIP3 runs [12]. The region is also affected by El Nino variability.

The Atlas of projections included in the IPCC 5th Assessment Report [13] shows decrease

in the median precipitation in most of Central America under the RCP4.5 scenario. These pro-

jections are generated by global climate models with strong agreement among the simulations

for Central America. However, most of global climate models available from the CMIP5 have

resolutions of about a few hundreds of kilometres and give little spatial detail of the climate

changes in the region that features narrow continent, high mountains of steep slopes. [14]

downscaled climate change scenarios to 50 km horizontal resolution using PRECIS in the

region under A2 SRES scenarios [15] and showed the reduction of precipitation during both

wet and dry periods. [4] used the MRI-AGCM3.1 model to downscale future scenarios with a

global 20-km horizontal resolution model to estimate precipitation extremes. They showed an

increase of the consecutive five-day accumulated precipitation exceeding 80% of Central

America, which agreed with previous studies [16–18]. Studies using high resolution downscal-

ing of climate change have shown some added value over the coarser model simulations [19].

Therefore, the main objectives of this work are to evaluate the high-resolution downscaling

simulations over Central America and to assess climate change projections under RCP4.5 sce-

nario. The uncertainty analysis and variability possible in the system are not carried out since

this study is based on a single model projection.
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Methodology

The future climate scenario providing boundary conditions for the simulations is initially

described, followed by the description of the Regional Climate Model that provides the down-

scaled simulations. The present climate, or baseline, is taken as the 30-year period between

1961 and 1990 and the future 30-year period between 2021 and 2050. The model evaluation

presented is based on mean monthly and seasonal climate.

The climate change scenario

The HadGEM2-ES model provides the boundary conditions [20]. This is a global model of

earth system category, with horizontal resolution of about 200 km x 150 km. The detailed char-

acteristics of this model are summarized in Table 9.A.1 in [21].

The model captures the general pattern of temperature and precipitation around Central

America, ranking the 55th position out of 107 global models evaluated by [22]. However, for

nesting purposes, the quality of the state variables of HadGEM2-ES, such as three-dimensional

wind, temperature, and moisture are more relevant than precipitation or surface temperature,

as the latter variables do not drive the regional model.

The RCP4.5 scenario considers a future climate of medium to low emission of greenhouse

gases to the atmosphere [23]. This scenario stabilizes radiative forcing at 4.5 Wm−2 in the year

2100, which is about 650 ppm CO2-equivalent, without ever exceeding that value. Simulations

extended until 2050 when the range in radiative forcing across RCPs is small compared to

their dispersion in 2100 [24].

The Regional Climate Model

The long-term climate simulations are produced by the regional climate version of the Eta

Model [25,26]. The model has been used for weather forecasts [27], seasonal forecasts [28],

and climate change studies [29–31] over South America. The eta coordinate [32] of the Eta

model reduces the problem of calculation of horizontal pressure gradient near steep mountain

regions. This is a common problem in numerical models. Therefore, the eta coordinate makes

the model suitable to run over the regions aroung the Andes Cordillera. A description and

refinement of the vertical coordinate was introduced further by [25]. Evaluation of the model

long-term simulations [26,19] and assessment of future climate change projections [30,31,33]

have been carried out over South America at different horizontal resolutions and different

domains. Assessment of climate change in South America under RCP4.5 and RCP8.5 scenar-

ios are shown in [31].

The regional model is nested directly to the HadGEM2-ES state variables. These lateral

boundary conditions are updated every 6 hours. The preparation for long-term integrations

include tests of configuration by choosing the appropriate number of points, domain area, and

number of vertical atmospheric levels. To allow the regional model to develop high-resolution

atmospheric structure, a large domain is chosen. The model is set up at 8-km horizontal reso-

lution and 50 vertical levels. Fig 1 shows the model topography, vegetation map [34], and soil

map [35] at 8-km horizontal resolution in the model domain over Central America.

The simulation of the present climate period starts on 1st January 1960 and ends in 31st

December 2005. The initial soil moisture and monthly mean sea surface temperature is taken

from HadGEM2-ES. The monthly mean sea surface temperature from HadGEM2-ES is inter-

polated to daily values during the Eta model integration. The first year of simulation is dis-

carded, and the baseline period is taken as the 30-year period between 1961 and 1990.

Projections for the future climate start on the 1st January 2006 and end in the 31st December

Climate change in Central America
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2050. The future climate changes are assessed in the 30-year period 2021–2050. Equivalent

CO2 concentrations are updated every 3 years according to the RCP4.5 scenario values.

Evaluation of the baseline simulations

Various observational datasets were used for evaluating the downscaled simulations. Four

datasets are used to evaluate mean precipitation: the Global Precipitation Climatology Project

(GPCP) [36], taken for the period 1979–1990, the University of East Anglia-Climate Research

Unit (CRU) [37], taken for the period 1961–1990, provided at 0.5o latitude-longitude resolu-

tion grid, the NOAA CPCMorphing Technique (CMORPH) [38], taken for the period 1998–

2013, at 8-km resolution grid, and the high spatial-resolution Climate Hazards Group Infra-

Red Precipitation with Stations Data from the University of California in Santa Barbara

(CHIRPS) [39], taken for the period 1970–1999, at 0.05˚ latitude-longitude resolution grid.

These are 30-year period datasets, except for CMORPH data. Two temperature datasets, from

CRU and produced by [40], are used to evaluate temperature. The average temperature

derived by [40] will be referred to as Tavg from now on. All data are converted to monthly

values.

Results

We evaluated the baseline period to quantify the reliability of the downscaling projections for

the region before assessing the future climate scenarios. After that, projections of climate

change is assessed in terms of mean changes with respect to the baseline period and future

Fig 1. (a) Model topography (metres), (b) vegetation types, and (c) soil types at 8-km resolution.

https://doi.org/10.1371/journal.pone.0193570.g001
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tendencies of extreme climatic indicators. This is shown in the second part of the results. Two

major features of Central American climate, simulation and projections for Mid-Summer

Drought (MSD) and the Caribbean Low-Level Jet (CLLJ) are particularly analysed.

Baseline

Seasonal mean. Fig 2 shows the seasonal climatological precipitation for the period 1961–

1990. The top row shows the CHIRPS observations and the middle row shows the Eta model

8-km resolution (Eta-8km) downscaling driven by HadGEM2-ES global model simulations.

The major feature of the observations is a wide band of high rainfall, which spans along the

Caribbean lowlands from the east coast of Honduras up to Costa Rica and over central Guate-

mala. This feature is present throughout the year, being more intense during the rainy season

fromMay to October. The Eta-8km model is able to simulate most of the precipitation charac-

teristics, particularly during JJA. The intense precipitation region over the Caribbean coast,

which mainly occurs during the winter (DJF) and summer (JJA), is well represented by the

model. However, in general, simulated precipitation is underestimated with respect to obser-

vations in all seasons. Precipitation is overestimated on the east coast of Costa Rica and Pan-

ama, which may be associated with simulated precipitation over the ocean as the ITCZ

approaches this region. The position and latitudinal displacement of the precipitation band

associated with the ITCZ is well reproduced by the model along the year.

Fig 2. Mean precipitation (mm/day), CHIRPS (top row), Eta-8km simulations (middle row) and differences between CHIRPS and Eta-8km (bottom row).
Average for the period 1961–1990 except CHIRPS (1970–1999), and for the seasons DJF, MAM, JJA, and SON (from left to right).

https://doi.org/10.1371/journal.pone.0193570.g002

Climate change in Central America

PLOSONE | https://doi.org/10.1371/journal.pone.0193570 April 25, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0193570.g002
https://doi.org/10.1371/journal.pone.0193570


Table 1 shows the spatial correlation between the simulated precipitation pattern by the

Eta-8km model and CHIRPS observations and the driver model, HadGEM2-ES. MAM is the

season when the Eta-model precipitation exhibits the highest correlations. Results indicate

that higher spatial resolution provides added value to the simulations over the coarse global

model simulations.

The mean 2-metre temperature from the Tavg observations and Eta-8km simulations are

shown in Fig 3. The model represents well the spatial patterns of 2-metre temperature for all

Table 1. Pattern correlations between the Eta simulations and observations and between HadGEM2-ES simula-
tions and observations, for DJF, MAM, JJA, and SON trimesters.

Precipitation

Models\trimestre DJF MAM JJA SON

Eta 8km 0.70 0.57 0.58 0.52

HadGEM2-ES 0.47 0.54 0.35 0.61

2-m Temperature

Models\trimestre DJF MAM JJA SON

Eta 8km 0.84 0.81 0.86 0.85

HadGEM2-ES 0.51 0.22 0.46 0.50

Precipitation observations used CHIRPS data and temperature observations used Tavg dataset.

https://doi.org/10.1371/journal.pone.0193570.t001

Fig 3. Mean 2-metre temperature (˚C) from Tavg [40] dataset (top row), Eta-8km simulations (middle row) and differences between CHIRPS and Eta-8km
(bottom row).Average for the period 1961–1990 except Tavg (1970–1999), and for the seasons DJF, MAM, JJA, and SON (from left to right).

https://doi.org/10.1371/journal.pone.0193570.g003
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seasons. The temperature gradient, the regional characteristics, and the seasonal variations are

well reproduced by the model. The Eta-8km simulations captures well the areas of cold tem-

peratures, such as in south Guatemala and south Costa Rica, and the areas of warmer tempera-

tures such as in north Guatemala and coastal areas east of Honduras and Nicaragua. However,

the model tends to underestimate temperatures almost everywhere in the domain, especially

on high topography regions. The cold bias of temperature may be contributing to the underes-

timate of precipitation in the elevated areas as the convection trigger criterion in the Eta model

depends on the near-surface air temperatures.

The pattern correlation between the simulated and the observed 2-metre mean temperature

for the entire Central America is shown in Table 1. In all seasons, the spatial pattern of temper-

ature is better reproduced by the regional model than by the global model used as lateral

boundary conditions. The pattern correlation between the Eta model temperature simulations

and Tavg observations starts from 0.86, whereas the correlation for HadGEM2-ES temperature

starts from 0.51. JJA is the season when the Eta model 2-metre temperature simulations exhibit

the highest correlations, but the skill in other seasons is comparable. The pattern correlation

between Eta model simulations and CHIRPS observations are lower for precipitation than for

temperature, but these correlations are still much higher than with HadGEM2-ES simulations,

except for SON when the HadGEM2-ES correlates better with precipitation observations.

Annual cycle. Fig 4 shows the annual cycle of the observed and simulated precipitation

for the capitals of Central America countries, Guatemala, Belize, Honduras, El Salvador, Nica-

ragua, Costa Rica, and Panama. The annual cycle is shown for two observational datasets, the

CRU and CHIRPS, and for three model simulations, from the Global HadGEM2-ES, the Eta

model at 20-km resolution, and the Eta model at 8-km resolution. The HadGEM2-ES serves as

driver for both Eta runs as the global model output is used as boundary conditions. It is worth

pointing to the large differences among the observational datasets.

During the driest months (DJF), the Eta simulations approach the CHIRPS observations.

However, during the rainy season, the Eta simulations underestimate the precipitation with

respect to CHIRPS observations, on almost all cities. The Eta model of higher resolution, 8

km, best reproduces the intensity of the precipitation annual cycle, which is compared against

the Eta model at 20 km, and the driver HadGEM2-ES simulations. Therefore, in general, the

higher resolution simulations added improvement over the coarser driver model simulations.

The annual cycle of precipitation of the capital cities, which are located in the western portion

of the continent, show a bimodal cycle of precipitation, with the two maximum rainfall peaks

usually observed in June and September [41] and the reduction in rainfall between the two

peaks, known as mid-summer drought (MSD) [42]. This variability is better reproduced by

the Eta model at higher resolution, the 8 km. At this resolution, in general, the model captures

the intensity of the two peaks of rainfall in most of the points. Similarly, for the capital cities to

the eastern portion of the continent, the Eta model at 8 km best represents the annual cycle of

precipitation. The onset of the rainy season, which usually occurs in June, is captured by the

model simulations using higher resolution. In addition, the amount of rainfall is also well sim-

ulated by the Eta-8km simulations. In general, the first precipitation peak in the year seems

better simulated than the second peak, which shows underestimated values.

The mean annual cycle of 2-metre temperature for the capital cities is shown in Fig 5. The

two observations show large differences in particular in Honduras’ capital. Honduras might be

the capital with the most complex terrain The Eta-8km and Eta-20km simulations systemati-

cally show cold bias with respect to the CRU and Tavg from [40], resulting in an underestimate

of the seasonal temperature cycle. The CRU is generally colder than the Tavg dataset. The tem-

perature absolute errors in the Eta-8km simulations do not exceed 3˚C on average. Despite the

cold biases, the Eta-8km simulations are closer to the temperature observations than the Eta

Climate change in Central America

PLOSONE | https://doi.org/10.1371/journal.pone.0193570 April 25, 2018 7 / 21

https://doi.org/10.1371/journal.pone.0193570


20-km simulations. The shape of the annual cycle of the Eta model simulations follows closely

the driver global model HadGEM2-ES temperature cycle. The HadGEM2-ES simulations

reproduces the temperature better when compared with the regional model simulations,

although some underestimate also occurs in some points.

Mid-Summer Drought. [43] developed an objective algorithm for the detection and esti-

mating the strength of MSD. This algorithm uses monthly climatological precipitation data

and does not assume a priori which months are maxima and which months represent the

MSD. The algorithm is applied at every point of the dataset. Here, the algorithm is tested for

GPCP, CRU, CMORPH, and CHIRPS observational datasets and these results are compared

against HadGEM2-ES and Eta-8km baseline simulations (Fig 6). A Central America dry corri-

dor, the ‘corredor seco’, starts in the north of Costa Rica and extends into Nicaragua, Hondu-

ras and Guatemala on the Pacific side and also includes a portion of the central Pacific coast of

Panama, the Panama dry arch. CMORPH does not capture the dry arc over Pacific coast,

Fig 4. Mean annual cycle of precipitation (mm/day), averaged over the baseline 30-year period.Observations from CRU (dash-dot) and CHIRPS (dash) are plotted,
as well as model simulations: Eta-8km (blue), Eta-20km (green), and HadGEM2-ES (red). The curves refer to the model grid-point that contains the capital city of the
countries that identify each box: Guatemala (GUA), Belize (BEL), Honduras (HON), Nicaragua (NIC), Panama (PAN), Costa Rica (COS), and El Salvador (ELS).

https://doi.org/10.1371/journal.pone.0193570.g004
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which is clear over El Salvador. This area, with high intensity in MSD, is captured by the Eta-

8km. All datasets miss the “dry arc” in Panama, except for HadGEM2-ES. The observational

dataset show disagreement in some areas. This corroborates the large uncertainties in the

observational datasets. In general, the spatial patterns of MSD estimated by Eta-8km and Had-

GEM2-ES simulations are reasonably well reproduced. The Eta-8km simulation shows better

agreement in the intensity and position of observed MSD than HadGEM2-ES.

Caribbean Low-Level Jet. The vertical profile of zonal wind is a suitable feature to investi-

gate the model ability to represent atmospheric circulation in Central America. Fig 7 shows

the annual cycle of the vertical profile of mean zonal wind over CLLJ area (80–70˚W and 12–

16˚N) averaged over 1979–2008 period using CFSR reanalysis data [44] and over 1961–1990

period using Eta-8km simulations. The reanalysis shows the strongest jet in July and a second-

ary maximum in February. April and October are the weakest CLLJ months. This semi-annual

Fig 5. Mean annual cycle of 2-metre temperature (˚C) averaged over the baseline 30-year period.Observations from CRU (dash-dot) and Tavg (dash) are plotted, as
well as model simulations from Eta-8km (solid line and cross), Eta-20km (solid line and circle), and HadGEM2-ES (solid line and diamond). The curves refer to the
model grid-point that contains the capital city of the countries that identify each box: Guatemala (GUA), Belize (BEL), Honduras (HON), Nicaragua (NIC), Panama
(PAN), Costa Rica (COS), and El Salvador (ELS).

https://doi.org/10.1371/journal.pone.0193570.g005
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Fig 6. Mid-Summer Drought strength (mm/day) calculated using different precipitation observational datasets: (a) GPCP, (b) CRU, (c) CMORPH and (d)
CHIRPS precipitation data, and using the baseline period (1961–1990) precipitation simulations from (e) Eta-8km and (f) HadGEM2-ES.

https://doi.org/10.1371/journal.pone.0193570.g006

Fig 7. Annual cycle (repeated twice) of the vertical (1000–600 hPa) profile of zonal wind (m/s). Average over the CLLJ area (80–70˚W, 12–16˚N), for (a) CFSR
Reanalysis data, and for (b) the Eta-8km simulation. Negative values refer to easterly winds.

https://doi.org/10.1371/journal.pone.0193570.g007

Climate change in Central America

PLOSONE | https://doi.org/10.1371/journal.pone.0193570 April 25, 2018 10 / 21

https://doi.org/10.1371/journal.pone.0193570.g006
https://doi.org/10.1371/journal.pone.0193570.g007
https://doi.org/10.1371/journal.pone.0193570


feature of CLLJ is consistent with meridional gradient of sea surface temperature and the sea

level pressure [45] The Eta-8km is able to capture the CLLJ semi-annual feature. The core of

the jet at 925 hPa, with maximum in July and minimum in October, is also well reproduced by

the high-resolution simulations. However, Eta-8km simulations show positive bias, about 2 m/

s, in zonal wind velocity in comparison with CFSR in the layer between 950 and 900 hPa

throughout the year, but show negative bias, about -2 m/s, above 700 hPa in July. The simu-

lated CLLJ is not as deep as in the reanalysis data. The strength of the jet may have resolution

dependency, as the errors are even larger when compared against the ERA40, a coarser reanal-

ysis data.

Projections

The assessment of future climate change are based on the projections produced by the down-

scaling of the Eta model at 8-km resolution, for the 30-year period between 2021 and 2050,

under RCP4.5 scenario. In addition to mean features, we analyse trends of extreme climatic

indicators.

Change in seasonal mean. Fig 8 shows projections of precipitation rate averaged for the

future period, 2021–2050, and for each season under RCP4.5 emission scenario. The spatial

distribution of projected precipitation is similar to the climatological pattern of the baseline

period, 1961–1990 (Fig 2). However, precipitation decrease is projected over most of the conti-

nent in all seasons, but particularly in the rainy season. An analysis of end-of-the-century pro-

jections also show this drier signal over northern Central America with high agreement

between GCM, and show disagreement over the southern part of the region over Panama and

Costa Rica. An increase in precipitation is projected in MAM in some areas on the western

part of the continent, such as south El Salvador up to Costa Rica and adjacent Pacific Ocean,

and in JJA in southeast Nicaragua and along the eastern coast of Costa Rica and Panama.

Between June and November, in JJA and SON seasons, precipitation is projected to decrease

over most of the continent and adjacent Pacific and Atlantic Oceans, except near the eastern

coast of Costa Rica and Panama, where a positive change in rainfall is expected. Over the

Atlantic Ocean off the coast of Panama, the precipitation increase is projected to reach about 4

mm/day during JJA.

Fig 9 shows projections of 2-metre temperature averaged over the future period, 2021–

2050, and for each season under RCP4.5 emission scenario. Temperatures increase throughout

the area, including the adjacent oceans. In comparison with the baseline period (Fig 3), stron-

ger temperature increase is projected in the northernmost part of the region, where changes

can range from about 1.8o to 2.4˚C. In the southern part of Central America, temperature

increase ranges from about 1.6o to 2.0˚C. More intense warming is projected to occur in the

SON season.

Changes in annual cycle. Fig 10 shows the annual cycle of precipitation and 2-m temper-

ature simulated by the model for the baseline period (1961–1990) and future (2021–2050) for

the capital city points. Although in some months it Is projected an increase in rainfall in the

future period, projections for all model grid points that contain the capital cities show reduc-

tion of precipitation, especially between the months of June to October, when the mid-summer

drought events generally occur. This reduction in future precipitation during mid-summer

drought period is clearly seen in the annual cycle of Costa Rica and Guatemala. In addition,

the annual cycle of future precipitation remains close to the present, such that the future wet-

test and driest months remain the same as in the baseline climatic period. Similar to precipita-

tion, the annual cycle of future temperature remains close to the present. However, a mean

increase in temperature of about 2˚C is projected in all city points.
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Changes in the Mid-Summer Drought. Projected changes in Mid-Summer Drought

(MSD) for the future period 2021–2050 are shown in Fig 11. The downscaling projections

under RCP4.5 scenario of the MSD shows similar spatial pattern to the present climate simula-

tion. However, the MSD intensifies over Guatemala, northwest Belize, east Honduras, north-

east Nicaragua and a narrow strip along the Atlantic coast of Panama. [12] finds a similar

trend over northern Central America over most of El Salvador, Honduras and southern Guate-

mala based on GCM ensemble analysis. These regions already exhibit strong MSD in the pres-

ent climate simulations, but the projected MSD strength increases from about 2 mm/day to 6

mm/day in RCP4.5 scenario. The increase in MSD strength is mostly due to stronger precipita-

tion reduction in the months of minimum precipitation within the MSD season as shown in

Fig 8. Mean precipitation (mm/day) changes projected for the period 2021–2050, under RCP4.5 scenario, for (a) DJF, (b) MAM, (c) JJA, and (d) SON.

https://doi.org/10.1371/journal.pone.0193570.g008
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the annual cycle of precipitation (Fig 10). Some grid points, where MSD do not occur during

the baseline period, may develop an MSD under RCP4.5 scenario.

Changes in the Caribbean Low-Level Jet. The changes in CLLJ projected by the Eta

model simulations at 8 km are shown in Fig 12. In general, the climate change causes little

impact on the CLLJ. The projections suggest some weakening in the CLLJ in the layer between

1000 hPa and 600 hPa from November to February, and some strengthening in the layer

between 800 hPa and 600 hPa from June to August (Fig 12B). The wind in 925 hPa, where the

core of CLLJ is located, weakens during the entire year in these projections for the period

2021–2050. However, toward the end of the century, [46] assessed the CLLJ at this same level,

925 hPa, and found strengthening of the winds fromMay to November based on PRECIS pro-

jections for A2 and B2 scenarios. This disagreement in the trends of the CLLJ strength leads to

Fig 9. Change in seasonal mean 2-metre temperature (oC) projected for the period 2021–2050, under RCP4.5 scenario, for (a) DJF, (b) MAM, (c) JJA, and (d) SON.

https://doi.org/10.1371/journal.pone.0193570.g009
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little confidence on the possible changes on the CLLJ. [47] showed using ERA-40 reanalyses

that when the CLLJ is strong, precipitation is reduced in the Caribbean Basin. However, the jet

is slightly weaker and precipitation in the Caribbean region has reduced in these projections.

Trends in climatic extremes. The linear trends of the extreme climatic indicators are

shown in Fig 13. The positive/negative trend indicates increase/decrease within the 30 years,

between 2021 and 2050, in extreme climatic conditions.

The trends of temperatures of warm nights and warm days, indicated by TNx and TXx,

respectively, are projected to increase everywhere in the domain in the future period of 2021–

2050. Stronger warming rates are shown over the northern portion of the continent, in partic-

ular over the eastern slopes of the mountains in Guatemala, Honduras, and Nicaragua. Simi-

larly, the trends of temperatures of the cold days, indicated by TXn, increase everywhere, but

at stronger warming rate over the Pacific coast of Nicaragua, El Salvador, Honduras and

Guatemala.

Fig 10. Annual cycle in precipitation (mm/day) and 2-metre temperature (oC) for the capital cities in Central America.Historical period (in red), 1961–1990, and
future period (in blue), 2021–2050, under RCP4.5 scenario. The three initial letters of the country of the respective capital city identify each box: Guatemala (GUA),
Belize (BEL), Honduras (HON), Nicaragua (NIC), Panama (PAN), Costa Rica (COS), and El Salvador (ELS).

https://doi.org/10.1371/journal.pone.0193570.g010
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The trend of R50mm index provides information on precipitation exceeding 50 mm/day,

which represents heavy rains. The positive trends of R50mm are mostly found in the Atlantic

coast of Costa Rica and northern parts of Panama, whereas negative trends are more clearly

found along the Pacific coast of El Salvador and Guatemala. The R50mm shows some similar-

ity with 90th percentile of precipitation index, R90p, but this latter has much stronger signal.

Fig 11. (a) Mid-Summer Drought (MSD) strength (mm/day) projected for 2021–2050 by Eta Model at 8km and (b) MSD difference (mm/day) between 2021–2050 and
1961–1990.

https://doi.org/10.1371/journal.pone.0193570.g011

Fig 12. Annual cycle (repeated twice) of the vertical (1000–600 hPa) profile of zonal wind (m/s). Average over the Caribbean Low-Level Jet area (80–70˚W, 12–
16˚N) projected for (a) 2021–2050 and (b) difference of zonal wind between 2021–2050 and 1961–1990 period. Negative values in (a) refer to easterly winds, whereas
negative values in (b) indicate strengthening (orange shading) of easterly wind velocity.

https://doi.org/10.1371/journal.pone.0193570.g012
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R90p refers to extreme precipitation, rains heavier than R50mm, which occur less frequently.

The R90p indicator shows strong increase in the Atlantic coast of Panama, Costa Rica, and

Nicaragua. The Pacific coast of Panama and Costa Rica also shows some increasing rate, but

smaller. In the Pacific coast of El Salvador, Honduras, and Guatemala we found a decreased

tendency of extremely heavy precipitation, indicated by R90p, maybe related to the decrease of

winds or hurricane activity.

Consecutive dry days indicator, CDD, could be used as a proxy for the extension of the dry

season, which helps to assess potential demand of water for irrigation or the needs for stricter

reservoir management in order to face long water deficit periods. The trends show no clear

change around Panama, Costa Rica and Nicaragua. Positive trend is found farther north,

mostly on the eastern slopes of the Andes Mountains. Negative trends are found over El Salva-

dor and along the Southern coast of Guatemala. Therefore, these areas are not likely to suffer

drier conditions than present time. These areas of decreasing CDD are not necessarily the

areas of increasing consecutive wet days, CWD. The positive trend in CWD is found in iso-

lated areas in Panama and Costa Rica where negative trend in CDD also occurs indicating

increased climate variability. Most of the negative trends in CWD are found in the interior of

Nicaragua, Honduras, and Guatemala.

Dry spells affecting vegetation growth can be assessed through the relationship between

actual (ET) and potential (ETP) evapotranspiration [48], which combines the effects of precip-

itation, temperature, soil moisture, and vegetation cover, among other atmospheric condi-

tions. Fig 14A shows the trends in the maximum number of consecutive days per year when

ET< = 0.5 ETP. Negative trends are shown for most of the areas in Panamá and Costa Rica

and for the Atlantic basin in Nicaragua and Honduras. On the other hand, over Pacific basin

in Nicaragua and El Salvador, and most of Belize and Guatemala trends are positive suggesting

an increment in water deficit events in these regions. This pattern of trends resembles the

Fig 13. Trend of climatic extreme indicators. (a) TNx (˚C), (b) TXx (˚C), (c) TNn (˚C) and (d) TXn (˚C), (e) R50mm (days), (f) R95p (mm), (g)
CDD (days), (h) CWD (days), within the period 2021–2050. The ocean areas are masked out.

https://doi.org/10.1371/journal.pone.0193570.g013

Fig 14. (a) Trends in dry spells, defined as annual largest number of consecutive days when ET< = 0.5�ETP and (b) trends in annual P-ETP in mm year-1, within the
period 2021–2050.

https://doi.org/10.1371/journal.pone.0193570.g014
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pattern of evapotranspiration changes shown by [49]. In addition, annual mean water excess,

P-ET, is shown as a proxy of water availability for runoff in the region. According to Fig 14B,

P-ET increases during the 2021–2050 period in the lower parts of the Atlantic basins of Costa

Rica, southeast Nicaragua and the Pacific basins of Panamá. [49] found a regional decrease in

water availability using an biogeography model under an ensemble of future GCM runs by the

end of the century.

Conclusions

Simulations of the present and future climate of Central America derived from the Had-

GEM2-ES were downscaled to 8-km resolution using the Eta Regional Climate Model. The

future simulations adopted the RCP 4.5 scenario. The simulations were carried for the period

between 1960 and 2050. The evaluation of the baseline climate simulations showed that the

general spatial patterns of precipitation and temperature are reasonably captured. However,

the simulations underestimate the precipitation during the wet season. Simulations also show

cold bias in the domain. The high-resolution clearly show advantage over the coarse driver

global model in simulating the baseline climate. Mean warming of about 1 and 1.5 oC are pro-

jected for the future period between 2021 and 2050 for the region. Precipitation reduction is

projected for the rainy season as well as the strengthening of the Mid-Summer Drought, which

can have implications to agriculture and energy production. High-resolution projections indi-

cate warming of extreme temperatures. Extreme precipitation in general shows decreasing

trend in the northern part of the continent and increasing trend in the southern parts, in par-

ticular in Costa Rica and Panama, for the future period. This resembles the dry spell trend. In

most of the countries in Central America, water availability shows negative trend in these pro-

jections, except in the eastern coast of Costa Rica and western coast of Panama. These trends

are in agreement with the general precipitation reduction projected for the region.

Despite the use of a single emission scenario, from a single global climate model, the results

shown here provide more detailed information than global models due to the high resolution

of these simulations. The narrowness of the continent with high mountains limits the use of

coarse resolution global model simulations for the region. This work provided a unique dataset

of very high resolution to investigate the impacts of climate on various socio-economic sectors

in the region.
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vic, Selena Georgiou.

Climate change in Central America

PLOSONE | https://doi.org/10.1371/journal.pone.0193570 April 25, 2018 18 / 21

https://ccafs.cgiar.org/donors
https://doi.org/10.1371/journal.pone.0193570
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