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Abstract

In this research article, we explore the use of a design process for adapting existing cyber risk assessment standards to 
allow the calculation of economic impact from IoT cyber risk. The paper presents a new model that includes a design 
process with new risk assessment vectors, speci�c for IoT cyber risk. To design new risk assessment vectors for IoT, the 
study applied a range of methodologies, including literature review, empirical study and comparative study, followed 
by theoretical analysis and grounded theory. An epistemological framework emerges from applying the constructivist 
grounded theory methodology to draw on knowledge from existing cyber risk frameworks, models and methodologies. 
This framework presents the current gaps in cyber risk standards and policies, and de�nes the design principles of future 
cyber risk impact assessment. The core contribution of the article therefore, being the presentation of a new model for 
impact assessment of IoT cyber risk.

Keywords Cyber risk · Internet of Things cyber risk · Internet of Things risk vectors · Standardisation of cyber risk 
assessment · Economic impact assessment

1 Introduction

There is a strong interest in industry and academia to 
standardise existing cyber risk assessment standards. 
Standardisation of cyber security frameworks, models and 
methodologies is an attempt to combine existing stand-
ards. This has not been done until present. Standardisation 
in this article refers to the compounding of knowledge 
to advance the e�orts on integrating cyber risk standards 
and governance, and to o�er a better understanding of 
cyber risk assessments. Here we combine literature analy-
sis [1] with epistemological analysis, and an empirical [2] 
with a comparative study [3]. The empirical study is con-
ducted with �fteen national high-technology (high-tech) 
strategies, seven cyber risk frameworks and two cyber risk 

models. The comparative study engages with �fteen high-
tech national strategies. The epistemological analysis and 
an empirical study seek to probe the current understand-
ing of cyber risk impact assessment.

To adapt the current cyber security standards, �rstly the 
speci�c IoT cyber risk vectors need to be identi�ed. By risk 
vectors, we refer to Internet of Things (IoT) attack vectors 
from particular approach used, to exploit big data vulner-
abilities [4]. Subsequently, these speci�c risk vectors need 
to be integrated in a holistic cyber risk impact assessment 
model [5].

Documented process represents a new design for map-
ping and optimising IoT cyber security and assessing its 
associated impact. We discuss and expand on these fur-
ther in the remainder of this article. The research article is 

 * Petar Radanliev, petar.radanliev@oerc.ox.ac.uk | 1Department of Engineering Sciences, Oxford e-Research Centre, University of Oxford, 
7 Keble Road, Oxford OX1 3QG, UK. 2School of Computing, University of Kent, Kent, UK. 3Cisco Research Centre, Research Triangle Park, 
Durham, NC 27709, USA. 4School of Computer Science and Informatics, Cardi� University, Cardi�, UK. 5WMG Cyber Security Centre, 
University of Warwick, Coventry, UK.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1931-0&domain=pdf
http://orcid.org/0000-0001-5629-6857


Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:169 | https://doi.org/10.1007/s42452-019-1931-0

structured in the following format. In Sect. 2 we present 
the research methodology. In Sect. 3 we conduct litera-
ture review. In Sect. 4 we propose the IoT cyber risk vec-
tors by conducting a comparative study of national high-
tech strategies and initiatives. In Sect. 5 we propose the 
design principles for impact assessment of IoT cyber risk 
by conducting empirical study cyber security frameworks, 
methods and quantitative models. In Sect. 6 we evaluate 
the design principles by conducting theoretical analysis 
to uncover the best method to de�ne a uni�ed cyber risk 
assessment. In Sect. 7 we propose a new epistemologi-
cal framework for cyber risk assessment standardisation 
and we discuss the new impact assessment principles. In 
Sect. 8 we present the conclusions and limitations of the 
research.

2  Literature review

Literature review of academic and industry literature from 
several di�erent countries is undertaken to advance the 
epistemological framework into a design model.

2.1  Recent literature on this subject

The increasing number of high-impact cyber-attacks has 
raised concerns of the economic impact [6–9] and the 
issues from quantifying cyber insurance [10]. This triggers 
questions on our ability to measure the impact of cyber 
risk [11–15]. The literature review is focused on de�ning 
the IoT risk vectors which are often overlooked by cyber 
security experts. The IoT risk vectors are investigated in 
the context of Social Internet of Things [16], the Industry 
4.0 (I4.0) and the Industrial Internet of Things (IIoT). In the 
Social Internet of Things, the IoT is autonomously estab-
lishing social relationships with other objects, and a social 
network of objects and humans is created [17, 18]. The I4.0 
is also known as the fourth industrial revolution and brings 
new operational risk for connected digital cyber networks 
[19]. Finally, the IIoT represents the use of IoT technologies 
in manufacturing [20].

2.1.1  Cyber risk in shared infrastructure from autonomous 

IoT

The cyber risk challenges [21] from IoT technological 
concepts, mostly evolve around the design [22] and the 
potential economic impact (loss) from cyber-attacks 
[23, 24]. IoT revolves around machine-to-machine [25, 
26] and cyber-physical systems (CPS) [27]. Similarly, the 
IoT is based on intelligent manufacturing equipment 
[28–32], creating systems of machines capable of inter-
acting with the physical world [33]. The integration of 

such technologies creates new cyber risk, for example 
from integrating less secured systems [34]. Incorporat-
ing the cyber element in manufacturing, for instance, 
also bring an inherent cyber risk [35]. There are multiple 
attempts in literature where existing models are applied 
understand the economic impact of cyber risk [36]. How-
ever, these calculations largely ignore the cyber risk of 
sharing infrastructure [37], such as IoT infrastructure [11, 
12, 38], [39–46]. Understanding the shared risk is vital for 
risk assessment [47], but the cyber risk estimated loss 
range can vary significantly [48]. Furthermore, there is no 
direct correlation between cyber ranking [49] and digital 
infrastructure [49], thus contradicting the argument that 
cyber risk is related to integrating new technologies [30]. 
It seems more likely that the cyber challenges are caused 
by the adoption and implementation [50] and the cost 
of smart manufacturing technologies [51].

2.1.2  Cyber risk and IoT cloud technologies

If the Cloud architecture is properly engineered, the 
security of the cloud instance is adequately maintained 
and the connectivity from cloud to Thing can be assured, 
then cyber risks can be reduced with cloud technologies 
[52]. To ensure cyber risk is reduced, cloud technologies 
should be supported with: internet-based system, ser-
vice platforms [53], processes, services [54], for machine 
decision making [55]. Creating cyber service architecture 
[56] and cloud distributed manufacturing planning [57]. 
Cyber risk mitigation also require compiling of data, pro-
cesses, devices and systems [58]. IoT technologies need 
to be supported with a life cycle process for updating 
the list of assets that are added to the network across 
multiple time-scales [59–61]. IoT cyber risk is also pre-
sent in components modified to enable a disruption 
[37, 62]. One option by which such risk could be miti-
gated is to consider the standardisation of the IoT design 
and process [47]; unfortunately however, such system 
security is complex [5] and risk assessing IoT systems is 
still a key problem in research [13]. Nevertheless, cyber 
networks need to be secure [63], vigilant [64], resilient 
[65] and fully integrated [66–68]. Therefore, the IoT need 
to encompass the security and privacy [69], along with 
electronic [70] and physical security of real-time data 
[71, 72].

The IoT consists of heterogeneous cloud technolo-
gies and varying lifecycle of the IoT devices, the question 
of value [73–75] in inheriting outdated data [76] where 
machines store knowledge and create a virtual living rep-
resentation in the cloud [27]. The access to existing knowl-
edge could be of value to design more resilient systems 
and processes in the future.
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2.1.3  Cyber risk from social machines and real‑time 

technologies

Cyber risk emerges from the Web [77], but also from any 
interface to a digital processing component, wired and 
wireless and the entire Web can be perceived as a social 
machine [78]. The term social machines in the context of 
this paper is used in relation to systems that depend on 
interaction between humans and technology and enable 
real time output or action, such as Facebook and Twitter. 
Social machines [66] are vulnerable to cyber risks, because 
of the connection between physical and human networks 
[65] operating as systems of systems [79] and mechanisms 
for real-time feedback [64]. Cyber risk from real-time IoT 
technology [80] requires information security for data in 
transit [57]. In addition, access control is required for grant-
ing or denying requests for information and processing 
services [81]. Despite expectations that information secu-
rity and access control for social machines exists, the busi-
ness of personal data has triggered many privacy concerns 
for social machines such as Facebook and Google [82]. 
Some of these concerns have already materialised [83, 84]. 
IoT brings inherent cyber risks which require appropriate 
cyber recovery plans. The relationship between IoT cyber 
risk assessment and recovery planning emerges from new 
processes, such as machine learning, that can be used to 
patch known vulnerabilities in real-time.

2.2  IoT cyber risk vectors from the literature review

The IoT cyber risk vectors relate to the overall aim of de�n-
ing the design principles for cyber risk impact assessment. 
Prior to assessing the impact, we required an understand-
ing of the IoT risk.

A list of IoT cyber risk vectors derive from the literature 
review.

• The cloud technologies enhance cyber security but 
amplify IoT cyber risk [31, 52, 66, 85, 86].

• IoT depends on real-time data, but real-time data 
ampli�es IoT cyber risk [71, 72].

• IoT cyber risk mitigation needs autonomous cognition, 
but autonomous machine decisions amplify IoT cyber 
risk [28, 53, 87–89].

• These IoT cyber risk vectors are not clearly visible and 
focus should be on the communications risk; whether 
conventional wired (broadband or IP networks) or wire-
less (W-Fi, Bluetooth and 3G/4G/5G)—the connectivity 
is one of the weak spots [70].

While there are many more cyber risk vectors, analys-
ing every single risk vector was considered beyond the 
scope of this study and the focus was placed on the most 

prominent vectors as identi�ed in the literature. The idea 
was to identify a risk assessment process that can be 
applied by future researchers to many di�erent risk vec-
tors. The IoT risk vectors outlined above are analysed in the 
following section through comparative analysis of cyber 
risk in high-tech strategies.

3  Methodology

The methods applied in this study consist of literature 
review, comparative study, empirical analysis, theoretical 
and epistemological analysis and case study workshops. 
The selection of methodologies is based on their �exibility 
to be applied simultaneously to analyse the same research 
topic from di�erent perspectives. We use practical stud-
ies of major projects in the I4.0 to showcase recent devel-
opments of IoT systems in the context of I4.0 high-tech 
strategies. We need practical studies to bridge the gaps, 
to assess the impact and overcome some of the cyber risk 
limitations and to construct the relationship between IoT 
and high-tech strategies. The proposed design principles 
support the process of building a holistic IoT cyber risk 
impact assessment model.

3.1  Theoretical analysis

The methodology applies theoretical analysis through 
logical discourse of knowledge, also known as epistemo-
logical analysis. An epistemological analysis enables an 
investigation on how existing knowledge is justi�ed and 
what makes justi�ed beliefs justi�ed [90], what does it 
mean to say that we understand something [91] and how 
do we understand that we understand.

The methodology reported here has two objectives. 
The �rst objective is to enable an up-to-date overview of 
existing and emerging cyber risk vectors from IoT advance-
ments, which includes cyber-physical systems, the indus-
trial Internet of things, cloud computing and cognitive 
computing [53, 92, 93]. If we were performing a vector 
speci�c analysis of risk for the Internet of Things, we would 
include examining risk vectors related to consumer IoT and 
speci�c high-risk verticals like eHealth and Smart Cities. 
But this study is focused on the developing an economic 
impact assessment of IoT cyber risk as a component in the 
context of other emerging technologies. This methodo-
logical approach proposes a new design for assessing the 
impact of cyber risk and promotes the adaptation of exist-
ing cyber risk frameworks, models and methodologies. The 
second objective is to enable the adaptation of the best 
cyber security practices and standards to include cyber 
risk from IoT vectors.
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The methodology begins with an academic and indus-
try literature review on IoT cyber risk. A comparative study 
[3] classi�es the cyber risk vectors, speci�c to the IoT, based 
on the current technological trends. An empirical study 
[2] categorises cyber risk frameworks, methodologies, sys-
tems, and models (particularly those that are quantitative). 
Afterwards, the compounded �ndings are compared with 
the existing standards through a grounded theory assess-
ment method. This is followed by a theoretical analysis to 
uncover the best method to de�ne a uni�ed cyber risk 
assessment. The objective of the methodology is to syn-
thesise and to build upon knowledge from existing cyber 
risk standards.

4  Comparative study on IoT cyber risk 
in high-tech strategies

This section represents a comparative study [3] of national 
high-tech strategies, because the IoT is strongly repre-
sented in the Industry 4.0. The selection of high-tech strat-
egies—sources for analysis is based on the richness of the 
documented processes. The comparative study is applied 
on a range of IoT high-technology strategies to enhance 
the framework and to build upon previous literature on 
this subject [24]. De�ning the most prominent IoT cyber 
risk vectors is of crucial importance to understanding IoT 
cyber risk, because IoT cyber risk is often invisible to cyber 
security experts. In this section, the study intent is to ana-
lyse Industry 4.0 and present it as an example of how risk 
assessment takes place at the national level.

4.1  Understanding IoT cyber risk in national 
high-tech strategies

The current direction of impact assessment from IoT cyber 
risk, seems to be decided by assessment activities, e.g. 
workgroups [94] or testbeds [20], supported by economic 
assessments [95]. In some strategies, impact is decided by 
assessing key projects in the digital industry, e.g. Fabbrica 
Intelligente [96] and Industrie 4.0 [97].

The di�erent approaches to impact assessment, could 
be resulting from the di�erences in IoT focus. The Indus-
trial Internet Consortium [20, 98] focuses on promoting 
core IoT industries; while the New France Industrial (NFI) 
[99], the High Value Manufacturing Catapult (HVM) [100] 
and the National Technology Initiative [101], all focus on 
promoting the development of key IoT technologies. 
Another high-tech strategy, Made in China 2025 [102], 
promotes tech sectors, while the Made Di�erent [103] 
promotes key IoT transformations.

The diversity of the approaches can also be identi�ed in 
the less evolved in identifying IoT cyber risk vectors (e.g. The 

Netherlands—Smart Industry [104]; Belgium—Made Di�er-
ent [103]; Spain—Industrie Conectada [92]; Italy—Fabbrica 
Intelligente [96]; G20—New Industrial Revolution [105]). This 
could be because some high-tech strategies lack documen-
tation and appear disorganised. Such arguments are present 
in literature [106].

The Industrie 4.0 [86, 107]; the report by Department for 
Culture, Media and Sport (DCMS) [108], and the Industrial 
Value Chain Initiative (IVI) [94, 109] promote di�erent risk 
vectors than the Russian National Technology Initiative (NTI) 
[101].

In some strategies, e.g. the Advanced Manufacturing Part-
nership [110], these di�erences are understandable, because 
one strategy would have evolved into a new high-the strat-
egy, e.g. IIC [20], or are very narrowly focused on futuristic 
IoT technologies, e.g. New Robot Strategy [111]; Robot Revo-
lution Initiative [112]; and the IoT technologies do not yet 
exist. Hence, we can only speculate on the expected cyber 
risks [11, 12].

The Table 1 summarises the analysis of the comparative 
study. The most prominent IoT cyber risk vectors derive from 
the analysis and are presented in a comparative decompo-
sition approach. The aim of the comparative analysis and 
decomposition is to show the IoT cyber risk vectors and 
areas not covered (gaps) in national high-tech strategies. 
Secondly, the comparative analysis and decomposition ena-
bles visualising how the areas not covered in one high-tech 
strategy, have been addressed in other high-tech strategies. 
Therefore, the comparative study enables standardisation 
of approaches. The Table 1 enables policy makers to �rstly 
identify the gaps and secondly to identify the best approach 
to address individual risk vectors. However, the analysis in 
Table 1 is limited to the most prominent vectors as identi�ed 
in existing literature previously in Sect. 3.1.

To provide clarity on the areas not covered (gaps), the IoT 
cyber risk vectors are used as reference categories (Table 1), 
for decomposing the IoT cyber risk into sub-categories. The 
sub-categories are used for de�ning various IoT cyber risks 
vectors and for clarifying di�erent and sometimes contrast-
ing understanding of IoT cyber risks. The comparative study 
in Table 1, follows the grounded theory approach [113], 
and categorises the areas not covered in IoT risk vectors, 
to construct the cyber assessment design principles. In 
the following sections, a more general assessment is being 
presented and the national plans analysed are presented in 
a broader sense that take in more of the landscape of IoT 
implementation.
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Table 1  Analysis of IoT cyber risk vectors in high-tech national strategies

Most prominent IoT cyber risk vectors

Vectors Vector 1 Vector 2 Vector 3 Vector 4

Risk vectors Cloud Real-time Autonomous Recovery

IoT cyber risk vectors in documented and evolved high-tech strategies

High-tech strategies Vector 1 Vector 2 Vector 3 Vector 4

USA—
(1) Industrial internet 

consortium [20]

Cloud-computing plat-
forms

Operational models in real 
time

Customised products in 
real time

Fully connected and auto-
mated production line

Highly automated envi-
ronments

Disaster recovery

(2) Advanced manufactur-
ing partnership [110]

Not covered Not covered Not covered NIST

UK—(1) UK digital strategy 
[108]

Cloud technology skills
Cloud computing tech-

nologies; Cloud data 
centres

Cloud-based software
Cloud-based computing
Cloud guidance

Digital real-time and inter-
operable records

Platform for real-time 
information

Robotics and autonomous 
systems

Support for robotics and 
arti�cial intelligence

Automation of industrial 
processes

Active cyber defence

Not covered

(2) Catapults [100] Not covered Not covered Automation Economic impact

Japan—(1) industrial value 
chain initiative [94]

Cloud enabled monitoring
Integration framework in 

cloud computing

Not covered Factory automation
Robot program assets

Not covered

(2) New robot strategy 
(NRS) [111]

Not covered Not covered Robots innovation hub; 
Robot society; Robotics 
in IoT

Not covered

Robot revolution initiative 
(RRI) [112]

Society 5.0 Connected industries IoT in robotics Not covered

Germany—Industrie 4.0 
[97]

Cloud computing; cloud-
based security networks

CPS systems Automated production
Automated conservation 

of recourses

Not covered

Russia—National technol-
ogy initiative (NTI) [101]

Not covered Not covered Arti�cial intelligence and 
control systems

Not covered

France—New france 
industrial (NFI) [99]

Not covered Not covered Automation and robotics Impact assessment

IoT cyber risk vectors in emerging and less evolved high-tech strategies

Risk vectors Vector 1 Vector 2 Vector 3 Vector 4

Nederland—Smart indus-
try; or factories of the 
future 4.0 [104]

Not covered Not covered Not covered SWAT analysis

Belgium—Made di�erent 
[101]

Not covered CPS Not covered Not covered

Spain—Industrie Conec-
tada 4.0 [92]

Not covered CPS Linking the physical to the 
virtual to create intel-
ligent industry

HADA—advanced self-
diagnosis tool

Italy—Fabbrica Intelli-
gente [96]

Not covered Not covered Not covered Not covered

IoT cyber risk vectors in elusive and roughly de�ned high-tech strategies

Risk vectors Vector 1 Vector 2 Vector 3 Vector 4

China—Made in China 
2025 [102]

Not covered Not covered Automated machine tools 
and robotics

Financial and �scal state 
control

G20—New industrial revo-
lution (NIR) [105]

Not covered Not covered Not covered Not covered
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5  Empirical study of cyber security 
standards

A key part of understanding the risks and issues facing 
the IoT involves reflecting on the standards and mod-
els present today. In what follows, we reflect on seven 
cyber risk standards and two cyber risk models. The 
design initiates with integrating best practices. Through 
empirical analysis [2], we compare existing cyber secu-
rity measures and standards (e.g. FAIR and NIST cyber 
security frameworks) to propose a new and improved 
design principles for calculating the economic impact 
of IoT cyber risk.

The analysis presented in this section emerge from 
the analysis in this study, but also represent a stand-
alone piece of work because the nature of security 
frameworks and assessment tools is quite diverse. What 
is presented in this section is an attempt to apply com-
parative analysis to synthesize a common, best practice 
approach that pulls the best features from each of the 
frameworks into a single, theoretical approach.

5.1  Empirical analysis of cyber security frameworks, 
models and methodologies

A majority of the cyber security frameworks today 
apply qualitative approaches to measuring cyber risk 
[114–118]. Some of the frameworks propose diverse 
qualitative methods, such as OCTAVE, which stands for 
Operationally Critical Threat, Asset, and Vulnerability 
Evaluation [115] and recommends three levels of risk 
(low, medium, high). Methodologies, such as the Threat 
Assessment and Remediation Analysis (TARA) [116] are 
also qualitative and apply a standardised template to 
record system threats. There also systems that combine 
qualitative and quantitative approaches. The Common 
Vulnerability Scoring System (CVSS) [119] provides 
modified base metrics for assigning metric values to 
real vulnerabilities. The CVSS applies expert’s opinions, 
presented as statements, where each statement is allo-
cated a level of cyber risk and the calculator assesses the 
overall level of risk form all statements.

Considering the lack of more precise methods, the 
modified base metrics represent the state of the art at 
present. The supply chain cyber risks are also assessed 
with qualitative approaches [39, 46, 120–127]. The 
Exostar system [128], which represent a qualitative 
approach, provides guidance points for assessing the 
supply chain cyber risk. The overall current state of cyber 
maturity can be verified with the Capability Maturity 
Model Integrated (CMMI) [118], which integrates five 

levels of the original Capability Maturity Model (CMM) 
[129]. To reach the required cyber security maturity level, 
the current cyber state can be transformed into a given 
a target cyber state by applying the National Institute 
of Standards and Technology’s (NIST) [114] cyber secu-
rity framework implementation guidance [130]. The risk 
assessment approach is based on the framework for 
improving cybersecurity of critical infrastructure [131] 
and follows recommendations for qualitative risk assess-
ments e.g. standards based approach, or internal con-
trols approach.

Slightly different approach to understanding risk is 
the use of emerging quantitative cyber risk models, such 
as the Factor Analysis of Information Risk Institute (FAIR) 
approach [132]. In effect, quantitative approaches are 
mostly present in the cyber security models [133, 134]. The 
FAIR approach is complementary to existing risk frame-
works that are deliberately distanced from quantitative 
modelling (e.g. NIST) and applies knowledge from exist-
ing quantitative models, e.g. RiskLens [133], and Cyber VaR 
(CyVaR) [134]. In a way, FAIR is complementing the work of 
NIST and the International Organisation for Standardisa-
tion (ISO) [135], which is the international standard-setting 
body and includes cyber risk standards. For example, the 
ISO 27032 is a framework for collaboration that provides 
specific recommendations for cyber security, and ISO 
27001 sets requirements for organisations to establish an 
Information Security Management System (ISMS).

Notable for this discussion, only ISO 27031 and NIST 
[114] provide recommendations for recovery planning, 
which some of the other frameworks and models have 
focused on less. A key point to note here is that risk esti-
mation is used for recovery planning, and as such quan-
titative risk impact estimation [136] is needed for making 
decisions on topics such as cyber risk insurance [137]. The 
quantitative risk assessment approaches e.g. FAIR [132], 
RiskLens [133], and CyVaR [134], are still be in their infancy. 
Hence, the state of the art in current risk estimation (also 
known as risk analysis) is based on the high, medium, low 
scales (also known as the tra�c lights system or colour 
system).

The diversity of approaches for cyber risk impact assess-
ment, reemphasises the requirement for standardisation 
of cyber risk assessment approaches. The diversity and 
the gaps in the proposed approaches, become clearly 
visible in Table 2. This diversity presents con�ict in risk 
assessment, e.g. qualitative versus quantitative. To enable 
the standardisation design, in Table 2, core cyber impact 
assessment concepts are extracted to de�ning the design 
principles for cyber risk impact assessment from IoT vec-
tors. The design principles initiate with de�ning how to 
measure, standardise and compute cyber risk and how to 
recover. These are de�ned as:
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• Measure—calculate economic impact of cyber risk.
• Standardise—international cyber risk assessment 

approach.
• Compute—quantify cyber risk.
• Recover—plan for impact of cyber-attacks, e.g. cyber 

insurance.

Beyond these issues, the empirical research outlined 
in Table 2 has highlighted other challenges in adopting 
existing cyber risk frameworks for dynamic and connected 
systems, where the IoT presents great complexities. For 
example the increasing ability of risk to propogate given 
the high degrees of connectivity in digital, cyber-physical, 
and social systems, and challenges pertaining to the lim-
ited knowledge that risk assessors have of dynamic IoT 
systems [13].

6  Theoretical analysis to uncover the best 
method to de�ne a uni�ed cyber risk 
assessment

The above empirical and comparative analysis correlated 
academic literature with government and industry cyber 
security frameworks, models and methodologies. In this 
section, epistemological analysis is applied to probe the 

existing understanding of cyber risk assessment. Such an 
approach was considered appropriate for our purposes 
because most cyber security frameworks and method-
ologies propose answers to a quantitative question with 
qualitative assessments. The analysis in this study exam-
ines how the current cyber risk assessment approaches 
are based on conventional abstractions, for instance, the 
colour coding in the NIST framework tra�c light protocol 
[138], or the mathematical approximation in CVSS [119]. 
In quanti�ed cases, we may have a modi�ed attack vec-
tor allocated to a numerical value of 0.85 for a network 
metric value, and a numerical value of 0.62 for adjacent 
network metric value [117]. The question is why 0.85 and 
why 0.62 and why red represents information not for dis-
closure [138]. These measurements represent conven-
tional abstractions that when expressed, become impor-
tant units of measurement. These units of measurement 
in e�ect represent symbols with a de�ned set of rules in 
a conventional system, where truths about their validity 
can be derived from expert opinions, hence proven to be 
correct. These units of measurement do not, however, rep-
resent quantitative units based on statistical methods for 
predicting uncertainty.

Knowledge requires ‘truth, belief and justi�cation’ as 
individual conditions [90]. Knowledge that a numerical 
value of 0.62 is ‘true’ metric value for adjacent network, 

Table 2  Empirical analysis of cyber risk frameworks, methodologies, systems and models

Frameworks ISO NIST FAIR

Measure ISO 27032 Categorising Financial

Standardise ISO 27001 Assembling Complementary

Compute Compliance Compliance Quantitative

Recover ISO 27031 Compliance Level of exposure

Methodologies TARA CMMI OCTAVE

Measure Threat matrix Maturity models Workshops

Standardise Template threats ISO 15504—SPICE Repeatability

Compute Qualitative Maturity levels Qualitative

Recover System recovery Refers to other standards Impact areas

Systems Exostar system CVSS calculator

Measure ISO 27032 Base metrics

Standardise ISO 27001 Mathematical approximation

Compute Compliance Qualitative

Recover ISO 27031 Not included

Models RiskLens CyVaR

Measure BetaPERT distributions VaR

Standardise Adopt FAIR World economic forum

Compute Quantitative risk analytics with Monte Carlo 
and sensitivity analysis

Quantitative risk analytics with Monte 
Carlo

Recover Not included Not included
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as the related CVSS approach ‘believes’, needs to be ‘justi-
�ed’ to con�rm it does not represent just a guess of luck. 
Since a numerical value. Justi�cation needs to be based on 
evidentialism [139, 140], where a proposition e.g. numeri-
cal value of 0.62, is epistemically justi�ed as determined 
entirely by evidence. The debate whether cyber risk stand-
ards can be epistemically justi�ed, must be based on the 
facts and evidence currently available. In evidentialism, 
epistemic evaluations are separate from moral believes 
and practical assessments, as epistemically justi�ed evalu-
ations might con�ict with moral and practical estimations 
[139].

7  Epistemological framework

The integration of the theoretical analysis, with the empiri-
cal study of existing models with the comparative study of 
national strategies leads to a new epistemological frame-
work consistent of sets of techniques for impact assess-
ment of IoT cyber risk. Subsequently, a grounded theory 
approach is applied on the results of the epistemological 
framework with the output of the case study research into 
IoT cyber trends and technologies. The case study research 
is not applied to identify new, or the most prominent risk 
vectors. It would be challenging to argue that there is 
no bias if the vectors came from a limited population of 
stakeholders. The case study research simply represents 

an example of how the epistemological framework could 
be applied in a step by step process.

7.1  Proposed epistemological framework for cyber 
risk assessment standardisation

To de�ne a standardisation framework, �rstly the Pugh 
controlled convergence [141] is applied with a group of 
experts in the �eld. The Pugh controlled convergence is a 
time-tested method for concept selection and for valida-
tion of research design. The results from the comparative 
study and the empirical analysis were presented, includ-
ing the Fig. 1, to a group of experts. The Pugh controlled 
convergence [141] was applied to organise the emerging 
concepts into de�nitions of the design principles. The 
resulting de�nition of design principles for a standardi-
sation framework are derived from four workshops that 
included 18 distinguished engineers from Cisco Systems, 
and 2 distinguished engineers from Fujitsu. The work-
shops with Cisco Systems were conducted in the USA in 
four di�erent Cisco research centres. The Fujitsu workshop 
was conducted separately to avoid those experts being 
in�uenced or outspoken by the larger group from Cisco 
systems. 

This approach to pursuing validity follows existing liter-
ature on this topics [40, 142] and provides clear de�nitions 
that specify the units of analysis for IoT cyber risk vectors. 
The reason for pursuing clarity on the units of analysis for 

Fig. 1  Design principles for assessing IoT cyber risks vectors in national strategies
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IoT cyber risk, was justi�ed by existing literature, where 
these are identi�ed as recommended areas for further 
research [143]. The IoT risk units of analysis from individual 
high-tech strategy are combined into standardisation vec-
tors. The process of de�ning the standardisation vectors 
followed the Pugh controlled convergence method, where 
experts were asked to con�rm the valid concept, merge 
duplicated concepts, and delete con�icting concepts.

In the assessment and transcription process, discourse 
analysis is applied to interpret the data [144] and for rec-
ognising the most profound concepts in the data [145]. 
The �ndings from the workshops are summarised in the 
table below (Table 3). The �ndings are presented in Table 3 
after the controlled convergence was performed on all �ve 
workshops. The controlled convergence resulted with 
some units of analysis being merged to avoid duplication, 
such as Cloud-based computing [108]; and Cloud com-
puting [86]. Or the concepts of CPS, which was identi�ed 
as vector 2 in multiple high-tech strategies [86, 92, 103]. 
Similarly, the units of analysis of cyber risk standards are 
presented as merged de�nitions of the design principles, 
as categorised on the controlled convergence workshops.

The Table 3 below presents an epistemological frame-
work of the knowledge and understanding, gathered 
from the comparative empirical analysis. The episte-
mological framework in Table  3 presents a narrowed 
framework of current understanding of IoT cyber risk, 
which is analysed and verified with the Pugh controlled 

convergence method for concept selection and for vali-
dation of research design.

The epistemological framework in Table 3 defines the 
IoT cyber risk vectors and relates the risk vectors with 
units of analysis. Defining the IoT cyber risk vectors and 
the related units of analysis, represents a crucial mile-
stone in defining the design principles for cyber risk 
assessment of IoT. The epistemological framework in 
Table 3 proposes the design principles for measuring, 
standardising, computing and recovering from IoT risk. 
An example of how the epistemological framework in 
Table 3 can be applied:

• Measure the ‘vector 3’: economic impact of cyber risk 
from autonomous ‘robotics in IoT’—calculate economic 
impact of cyber risk with ‘BetaPERT distributions’.

• Standardise the ‘vector 3’—international cyber risk 
impact from autonomous ‘robotics in IoT’—assessment 
approach with ‘Mathematical approximation’.

• Compute the impact from ‘vector 3’: economic impact 
of cyber risk from autonomous ‘robotics in IoT’—quan-
tify cyber risk with ‘Quantitative risk analytics with 
Monte Carlo and sensitivity analysis’.

• Recovery planning for the ‘vector 3’: calculate �nancial 
cost from cyber risk from autonomous ‘robotics in IoT’ 
and determine maximum acceptable ‘level of exposure’ 
for ‘system recovery’—plan for cyber insurance for the 
determined ‘level of exposure’.

Table 3  Epistemological framework for standardisation of cyber risk impact assessment

IoT cyber risk

Cyber risk vectors Vector 1 Vector 2 Vector 3 Vector 4

Cloud Real-time Autonomous Recovery

Vector units of analysis Cloud-computing 
platforms; technol-
ogy skills;

data centres;
software;
guidance;
monitoring;
Integration in cloud 

computing;
Society 5.0;
security networks

Operational models 
in real time;

Customised products 
in real time;

Digital real-time 
and interoperable 
records;

Platform for real-time 
information;

Connected industries;
CPS

Automated environ-
ments;

Robotics and Autono-
mous Systems;

Robotics and arti�cial 
intelligence;

Active cyber defence;
Robots innovation; 

Robot society; Robotics 
in IoT;

Arti�cial intelligence and 
control systems

Economic impact; Impact assessment; 
SWAT analysis; HADA—Advanced 
self-diagnosis tool; Financial and 
�scal state control

Standardisation framework for cyber risk assessment

Measure ISO 27032; Categorising; �nancial; threat matrix; maturity models; workshops; ISO 27032; base metrics; BetaPERT 
distributions; VaR

Standardise ISO 27001; assembling; complementary; template threats; ISO 15504—SPICE; repeatability; ISO 27001; math-
ematical approximation; adopt FAIR; world economic forum

Compute Compliance; quantitative; maturity levels; qualitative; quantitative risk analytics with Monte Carlo and sensitivity 
analysis

Recover ISO 27031; compliance; level of exposure; system recovery; impact areas
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This example covers only one risk vector and one unit 
of analysis. The example is appropriate for an enterprise 
that aims to deploy autonomous robotics in IoT. National 
high-tech strategies would need to perform all analysis, 
for all risk vectors, with all units of analysis provided in the 
epistemological framework in Table 3. It is surprising that 
national high-tech strategies have not until present per-
formed such analysis. Especially concerning are the �nd-
ings from the gap analysis in Table 1 which con�rms that 
many of the areas covered by the epistemological frame-
work in Table 3 are not covered in some of the national 
high-tech national strategies. An example of how such 
analysis could be performed in provided in Fig. 1 below. 
This design process follows recommendations from litera-
ture [146], and shows how individual cyber risk compo-
nents can be integrated into an impact assessment stand-
ardisation infrastructure. The epistemological framework 
is promoting the development of a generally accepted 
cyber security approach. This is also called for in current 
research work [11–13], because the IoT adoption requires 
standardisation reference architecture [53, 86, 147, 148] to 
encompass security and privacy [69].

7.2  De�ning the design principles for cyber risk 
assessment of IoT vectors

In the section above, we propose a new set of design prin-
ciples for assessing the cyber risk from IoT risk vectors. 
The principles had been tested through workshops and a 
comparative study to ensure the process can be applied 
in real-world practice. The comparative study shows that 
IoT trends have failed to implement the recovery planning. 
This is in contradiction with the �ndings from the second 
re�ection of the empirical study of cyber risk assessment 
standards, where the recovery planning is strongly empha-
sised (see: ISO, FAIR, NIST, OCTAVE, TARA). It seems that the 
IoT high-tech strategies may have overlooked the recom-
mendations from the cyber risk assessment standards. 
A standardisation approach for IoT impact assessment 
should firstly consider the new IoT cyber risk vectors 
derived from the comparative study. Secondly, a standardi-
sation approach should consider the recommendations 
from the empirical study. The empirical study recommends 
a decomposition process of assessment standards, con-
ducting grounded theory analysis. This was followed by 
a compounding of concepts to address individual gaps in 
cyber risk assessment standards.

The empirical and comparative study investigated the 
soundness of current cyber risk assessments. The theo-
retical analysis however, was applied to probe the sound-
ness of the qualitative versus quantitative assessment 
approaches. Theoretical analysis con�rmed that to iden-
tify the cost of recovery planning and/or the cost of cyber 

insurance, a new quantitative model is needed that would 
anticipate IoT risks. The empirical study analysed the lead-
ing quantitative cyber risk models (RiskLens, supported 
by FAIR; and CyVaR, supported by the World Economic 
Forum, Deloitte and FAIR). The unifying link between the 
two cyber risk models was identi�ed as the application of 
Monte Carlo simulations, for predicting cyber risk uncer-
tainty. A new impact assessment model for the IoT risk vec-
tors, should implement the guidance from RiskLense and 
CyVaR. The main guidance is that the application of Monte 
Carlo simulation would reduce the IoT cyber risk uncer-
tainty and enable the approximation and estimation of the 
economic impact of cyber risk from IoT devices. Such cal-
culation would enable companies to develop appropriate 
recovery planning and the insurance industry to provide a 
more realistic cost of cyber insurance.

At a higher analytical level, in Fig. 1 we propose a new 
set of design principles for assessing the cyber risk from 
IoT risk vectors. The comparative study of IoT in national 
high-tech strategies shows that I4.0 trends have failed to 
implement the recovery planning in the leading national 
initiatives. This is in contradiction with the �ndings from 
the second re�ection from the empirical study of the lead-
ing cyber risk frameworks, where the recovery planning 
is strongly emphasised (ISO, FAIR, NIST, Octave, TARA). 
It seems that the leading high-tech strategies initiatives 
have ignored the recommendations from the world lead-
ing cyber risk frameworks. A new model for IoT risk impact 
assessment should �rstly consider the �ndings from the 
comparative study of I4.0 trends, secondly the recom-
mendations from the empirical study of leading cyber risk 
frameworks. To identify the cost of recovery planning or 
the cost of cyber insurance, a new quantitative model is 
needed that would be applicable to IoT cyber risks. There 
are currently two leading quantitative cyber risk models. 
First is the RiskLens approach, promoted by FAIR. Sec-
ond is the Cyber VaR, promoted by the World Economic 
Forum, Deloitte and more recently by FAIR. The unifying 
link between the two cyber risk models is the applica-
tion of Monte Carlo simulations for predicting cyber risk 
uncertainty. From this study, it appears that a new impact 
assessment model for the cyber risks from IoT in high-tech 
national strategies, should start with the guidance from 
RiskLense and Cyber VaR. The application of Monte Carlo 
simulation would reduce the IoT cyber risk uncertainty and 
enable the approximation and estimation of the economic 
impact of cyber risk from IoT devices. Such calculation 
would enable companies to develop appropriate recov-
ery planning and the insurance industry to provide a more 
realistic cost of cyber insurance.

The proposed design principles suggest anticipating 
recovery planning in the assessment of economic impact 
of IoT cyber risk. Such approach would enable cyber 
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insurance companies to value the impact of IoT cyber risks 
in I4.0. The rationale of the proposed design principles is 
that without appropriate recovery planning, the eco-
nomic impact can be miscalculated, resulting in greater 
losses than we anticipated initially. The design principles 
are developed to advance the existing e�orts (from the 
World Economic Forum, Deloitte, FAIR, etc.) in develop-
ing a standardised quantitative approach for assessing 
the impact of cyber risks. The described design process 
decomposes the most prominent risk vectors and units of 
analysis and formulates a generalised set of IoT risk vec-
tors. This does not refer to a complete set of vectors, but 
to the most prominent risk vectors. Considering that such 
study has not been conducted until present, the process of 
integrating the most prominent vectors, with a compara-
tive analysis of the a diverse set of security frameworks 
and tools, represents the �rst step in understanding the 
standardisation process. The design principles in Fig. 1, 
also present multiple approaches to calculating the eco-
nomic risk of IoT implementation (e.g. BetaPert, Cyber VaR, 
RiskLense). This connects the design with the described 
issues related to the costs of risk.

7.3  Use cases

Case study research is applied for extending, evaluating 
and comparing the framework with the other frameworks 
listed in the empirical analysis (Sect. 5.1—Table 2). The 
industrial case study requesting the participants to apply 
the framework to their cyber risk assessment of IoT risk. To 
clarify the participants understanding of the framework, a 
series of open-ended interviews were performed. The pool 
of participants interviewed were proportionally represent-
ative of di�erent levels of seniority. The initial participants 
were selected through convenience sampling. Only part of 
the interviews were predetermined in the initial selection 
and the rest were chosen based on the development of 
the case study research. The industrial case study involved 
series of 20 qualitative interviews, followed by 4 group dis-
cussions, two with experts from Cisco Systems in the USA; 
one with experts from Fujitsu centre for Arti�cial Intelli-
gence the UK and second with Fujitsu Coelition (I4.0 cen-
tre) in the UK. The data collected was transcribed and cat-
egorised with aims to investigate the relationship between 
the notion of IoT and existing cyber risk assessments with 
their company established approaches (see Table 2 for all 
approaches investigated and compared in the case study). 
The aim of the analysis was to verify the ideas behind the 
epistemological framework and to relate IoT technologies 
to established models for cyber risk assessment.

The generic diagram from Fig. 1 was presented to the 
participants and it enables quick comparative analysis of 
the entire epistemological design process. This enabled 

practitioners to compare the new framework, with the 
established cyber risk assessment approaches (in Table 2). 
The design process for IoT risk assessment (in Fig. 1) is 
generic and could be applied by other companies and 
sectors. The generic design outlines a new approach for 
cyber risk assessment from the IoT. This was considered 
by the participants as easier to understand and navigate 
through than the cyber risk assessment approaches (from 
Table 2). The main feedback from the use cases was that 
this framework enables easier understanding of the spe-
ci�cs of IoT cyber risk with the direct reference points to 
the required type of assessment. While the existing cyber 
risk assessment approaches that were compared (see 
Table 2) were considered more time demanding. While 
many comprehensive frameworks and modes are cur-
rently in use, from our use case study we determined that 
many experts do not understand the technicalities and the 
continuous updates of the established frameworks. The 
epistemological framework we presented on the use case, 
was con�rmed as easier, quicker, and more practical for the 
participating practitioners.

7.4  Discussion

The research problem investigated in this article was the 
present lack of standardised methodology that would 
measure the cost and probabilities of cyber-attacks in 
speci�c IoT related verticals (ex. connected spaces or com-
mercial and industrial IoT equipment) and the economic 
impact (IoT product, service or platform related) of such 
cyber risk.

The lack of recovery planning is consistent in all of the 
high-tech strategies reviewed. Adding to this, the new 
risks emerging from IoT connected devices and services, 
and the lack of economic impact assessments from IoT 
cyber risks, makes it imperative to emphasise the lack of 
recovery planning. The volume of data generated by the 
IoT devices creates diverse challenges in variety of verticals 
(e.g. machine learning, ethics, business models). Simulta-
neously, to design and build cyber security architecture 
for complex coupled IoT systems, while understanding the 
economic impact, demands bold new solutions for opti-
misation and decision making [13]. Much of the research 
is application-oriented and by default interdisciplinary, 
requiring hybrid research in different academic areas. 
Hybrid and interdisciplinary approaches are required, for 
the design of cyber risk assessment that integrate eco-
nomic impact from IoT verticals. Such design must meet 
public acceptability, security standards, and legal scrutiny.

As a result of the fast growth of the IoT, cyber risk 
�nance and insurance markets are lacking empirical data 
to construct actuarial tables. Despite the development of 
models related to the impact of cyber risk, there is a lack of 
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such models related to speci�c IoT verticals. Hence, banks 
and insurers are unable to price IoT cyber risk with the 
same precision as in traditional insurance lines. Even more 
concerning, the current macroeconomic costs estimates 
of cyber-attacks related to IoT products, services and 
platforms are entirely speculative. The approach by ‘early 
adopters’ that IoT products are ‘secure by default’ is mis-
leading. Even governments advocate security standards 
ex. standards like ISA 99, or C2M2 [129, 149] that accept 
that the truth on the ground is that IoT devices are unable 
to secure themselves, so the logical placement of security 
capability is in the communications network.

8  Conclusion

This article decomposes the cyber risk assessment stand-
ards and combines concepts for the purposes of building 
a model for the standardisation of impact assessment 
approaches. The model enables the implementation of 
two current problems with assessing cyber risk from IoT 
devices. First, the model enables identifying and capturing 
the IoT cyber risk from di�erent risk vectors. Second, the 
model o�ers new design principles for assessing cyber risk. 
The analysis in this paper was focused on understanding 
the best approach for quantifying the impact of cyber risk 
in the IoT space. The model and the documented process 
represents a new design for mapping IoT risk vectors and 
optimising IoT risk impact assessment.

The model proposes a process for adapting existing 
cyber security practices and standards to include IoT cyber 
risk. Despite the interest to standardise existing cyber risk 
frameworks, models and methodologies, this has not 
been done until present. Standardisation framework cur-
rently does not exist in literature and the epistemologi-
cal framework represents the �rst attempt to de�ne the 
standardisation process for cyber risk impact assessment 
of IoT vectors. This article applies empirical (via literature 
reviews and workshops) and comparative studies with 
theoretical analysis and the grounded theory to de�ne a 
process of standardisation of cyber risk impact assessment 
approaches. The study advances the e�orts of integrat-
ing standards and governance on IoT cyber risk and o�ers 
a better understanding of a holistic impact assessment 
approach for cyber risk. The documented process repre-
sents a new design for mapping and optimising IoT cyber 
security.

The empirical study de�ned the gaps in current cyber 
risk assessment frameworks, models and methodologies. 
The identi�ed gaps are analysed to de�ne a process of 
decomposing risks and compounding assessment con-
cepts, to address the gaps in cyber risk standards. The com-
parative study de�nes the IoT cyber risk vectors which are 

not anticipated or considered in existing cyber risk assess-
ment standards. The epistemological analysis adapts the 
current cyber security standards and de�nes the principles 
for integrating speci�c IoT risk vectors in a holistic impact 
assessment framework. It is anticipated that the analysis 
of the complete economic impact of data compromise of 
IoT risk vectors, would empower the communications net-
work providers to create clear, rigorous, industry-accepted 
mechanisms to measure, control, analyse, distribute and 
manage critical data needed to develop, deploy and oper-
ate cost-e�ective cyber security for critical infrastructure. 
The research design identi�es and captures the IoT cyber 
risk vectors and de�nes a framework for adapting existing 
cyber risk standards to include IoT cyber risk.

8.1  Limitations and further research

The epistemological framework in this article is derived 
from empirical and comparative studies, supported with 
theoretical analysis of a limited set of frameworks, models, 
methodologies and high-tech strategies. The set selection 
was based on documented availability and on relevance 
to cyber risk impact assessment of IoT risk vectors. Holistic 
analysis of all risk assessment approaches was considered 
beyond the scope of this study. Additional research is 
required to integrate the knowledge from other studies.
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