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ABSTRACT  

To accomplish more valuable and more accurate video fire detection, this paper points out future directions 

and discusses first steps which are now being taken to improve the vision-based detection of smoke and 

flames. First, an overview is given of the state-of-the-art detection methods in the visible and infrared 

spectral range. Then, a novel multi-sensor smoke and flame detector is proposed which combines the multi-

modal information of low-cost visual and thermal infrared detection results. Experiments on fire and non-

fire multi-sensor sequences indicate that the combined detector yields more accurate results, with fewer 

false alarms, than either detector alone. Next, a framework for multi-view fire analysis is discussed to 

overcome the lack in a video-based fire analysis tool and to detect valuable fire characteristics at the early 

stage of the fire. As prior experimental results show, this combined analysis from different viewpoints 

provides more valuable fire characteristics. Information about 3-D fire location, size and growth rate can be 

extracted from the video data in practically no time. Finally, directions towards standardized evaluation and 

video-driven fire forecasting are suggested.  

KEYWORDS: detection, multi-view, multi-sensor, video, modeling. 

INTRODUCTION  

Current research [1] shows that video-based fire detection promises fast detection and can be a viable 

alternative for the more traditional techniques. However, due to the variability of shape, motion, 

transparency, colors, and patterns of smoke and flames, existing approaches are still vulnerable to false 

alarms. On the other hand, video-based fire alarm systems mostly only detect the presence of fire. To 

understand the fire, however, detection is not enough. Effective response to fire requires accurate and 

timely information of its evolution. As an answer to both problems a multi-sensor fire detector and a multi-

view fire analysis framework [2] is proposed, which can be seen as the first steps towards more valuable 

and accurate video fire detection (VFD).  

Although different sensors can be used for multi-sensor fire detection, we believe that the added value of 

IR cameras in the long wave infra-red range (LWIR) will be the highest. Various facts support this idea. 

First of all, existing VFD algorithms have inherent limitations, such as the need for sufficient and specific 

lighting conditions. Thermal IR imaging sensors image emitted light, not reflected light, and do not have 

this limitation. Also, the further one goes in the IR spectrum the more the visual perceptibility decreases 

and the thermal perceptibility increases. As such, hot objects will be best visible and less disturbed by other 

objects in the LWIR spectral range. By combining the thermal and visual characteristics of moving objects 

in registered LWIR, as well as visual images, more robust fire detection can be achieved. Since visual 

misdetections can be corrected by LWIR detections and vice versa, fewer false alarms will occur.  

Due to the transparency of smoke in LWIR images, its absence can be used to distinguish between smoke 

and smoke-like moving objects. Since ordinary moving objects, such as people and cars, produce similar 

silhouettes in background-subtracted visual and thermal IR images, the coverage between these images is 

quasi constant. Smoke, contrarily, will only be detected in the visual images, and as such the coverage will 
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start to decrease. Due to the dynamic character of the smoke, this decrease will also show a high degree of 

disorder. By focusing on both coverage behaviors, smoke can be detected. On the basis of all these facts, 

the use of LWIR in combination with ordinary VFD is considered to be a win-win. This is also confirmed 

by experiments presented in this paper, in which the fused detectors perform better than either sensor alone. 

In order to actually understand and interpret the fire, however, detection is not enough. It is also important 

to have a clear understanding of the fire development and the location. Where did the fire start? What is the 

size of the fire? What is the direction of smoke propagation? How is the fire growing? The answer to each 

of these questions plays an important role in safety analysis and fire fighting/mitigation, and is essential in 

assessing the risk of escalation. Nevertheless, the majority of the detectors that are currently in use just ring 

the bell, i.e., they only detect the presence of fire, and are not able to model fire evolution. In order to 

accomplish more valuable fire analysis, a framework for video fire analysis has become one of the main 

goals of our work. By fusing video fire detection results of multiple cameras using the framework, valuable 

fire characteristics can be detected at the early stage of the fire. The framework merges the single-view 

detection results of the multiple cameras by homographic projection onto multiple horizontal and vertical 

planes, which slice the scene. The crossings of these slices create a 3-D grid of virtual sensor points. Using 

this grid and subsequent spatial and temporal 3-D clean-up filters, information about the location of the 

fire, its size and its propagation can be instantly extracted from the video data. 

Important to mention is that interviews with partners in the field revealed that for our specific „use case‟, 
i.e., the detection of fire in public places (such as shopping malls and airports), it is commercially viable to 

use multiple cameras instead of traditional point, beam, or aspirating type fire/smoke detectors. Most of the 

time these cameras are already available and used for other purposes, such as ordinary video surveillance. 

As such, mostly no additional hardware cost is needed. Furthermore, increasing the number of cameras 

does not much affect the software/processing costs, since the detections itself can run in parallel. By 

combining the detection results, valuable characteristics about fire spread etc. can be obtained with low 

cost, which cannot be achieved with the more „traditional‟ detectors. 

VIDEO FIRE DETECTION  

First, an overview is given of state-of-the-art VFD algorithms in visible light with a particular focus on the 

underlying features. Next, the (limited) work in IR-based fire detection is presented and different 

techniques are highlighted which can be of use in LWIR fire detection. 

VFD in Visible Light 

The several vision-based fire and smoke detection algorithms that have been proposed in the literature have 

led to a large amount of VFD algorithms that can be used to detect the presence of fire at an early stage. 

Each of these algorithms detects flames or smoke by analyzing one or more fire features in visible light [1]. 

Color was one of the first features used in VFD and is still by far the most popular [3]. The majority of the 

color-based approaches in VFD makes use of RGB color space, sometimes in combination with the 

saturation of HSI (hue-saturation-intensity) color space [4,5]. The main reason for using RGB is the 

equality in RGB values of smoke pixels and the easily distinguishable red-yellow range of flames. 

Although the test results in the referenced work seems promising at first, the variability in color, density, 

lighting, and background do raise questions about the applicability of RGB in real world detection systems. 

In Ref. [1], the authors discuss the detection of chrominance decrease as a superior method. 

Other frequently used fire features are flickering [5,6] and energy variation [1,7,8]. Both focus on the 

temporal behavior of flames and smoke. Flickering refers to the temporal intermittency with which pixels 

appear and disappear at the edges of turbulent flames. Energy variation refers to the temporal disorder of 

pixels in the high-pass components of the discrete wavelet transformed images of the camera. Fire also has 

the unique characteristic that it does not remain a steady color, i.e., the flames are composed of several 

varying colors within a small area. Spatial difference analysis [5,9] focuses on this feature and analyses the 

spatial color variations in pixel values to eliminate ordinary fire-colored objects with a solid flame color. 

Also an interesting feature for fire detection is the disorder of smoke and flame regions over time. Some 

examples of frequently used metrics to measure this disorder are randomness of area size [10], boundary 

roughness [8], and turbulence variance [11].  
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Based on the analysis of our own experiments [12] and the discussed state-of-the-art, a low-cost flame 

detector is presented in (Fig. 1). The detector starts with a dynamic background subtraction [1,9], which 

extracts moving objects by subtracting the video frames with everything in the scene that remains constant 

over time, i.e. the estimated background. To avoid unnecessary computational work and to decrease the 

number of false alarms caused by noisy objects, a morphological opening, which filters out the noise, is 

performed after the dynamic background subtraction. Each of the remaining foreground (FG) objects in the 

video images is then further analyzed using a set of visual flame features. In the case of a fire object, the 

selected features, i.e. spatial flame color disorder, principal orientation disorder and bounding box disorder, 

vary considerably over time. Due to this high degree of disorder, extrema analysis is chosen as a technique 

to easily distinguish between flames and other objects. It is related to the number of extremes, i.e., local 

maxima and minima, in the set of data points. For more detailed information the reader is referred to 

Ref. [12].  

 

  

Fig. 1. Low-cost visual flame detector [12]. 

LWIR-Based VFD 

Due to the fact that IR imaging is heading in the direction of higher resolution, increased sensitivity and 

higher speed, it is already used successfully as an alternative for ordinary video in many video surveillance 

applications, e.g., traffic safety and airport security. As manufacturers ensure price-reduction, it is even 

expected that this number of IR imaging applications will increase significantly in the near future [13,14].  

Although the trend towards IR-based video analysis is noticeable, the number of papers about IR-based fire 

detection is still limited. As is, this relatively new subject in vision research has still a long way to go. 

Nevertheless, the results from existing work already seem very promising and ensure the feasibility of IR 

video in fire detection. Owrutsky et al. [15] work in the near infrared (NIR) spectral range and compare the 

global luminosity L, which is the sum of the pixel intensities of the current frame, to a reference luminosity 

Lb and a threshold Lth. If the number of consecutive frames where L > Lb + Lth exceeds a persistence 

criterion, the system goes into alarm. Although this fairly simple algorithm seems to produce good results 

in the reported experiments its limited constraints do raise questions about its applicability in large and 

open uncontrolled public places. Toreyin et al. [16] detect flames in infrared by searching for bright-

looking moving objects with rapid time-varying contours. A wavelet domain analysis of the 1D-curve 

representation of the contours is used to detect the high frequency nature of the boundary of a fire region. 

In addition, the temporal behavior of the region is analyzed using a Hidden Markov Model (HMM). The 

combination of both temporal and spatial clues seems more appropriate than the luminosity approach and, 

according to Toreyin et al., greatly reduces false alarms caused by ordinary bright moving objects.  

A similar combination of temporal and spatial features is also used by Bosch et al. [17]. Hotspots, i.e., 

candidate flame regions, are detected by automatic histogram-based image thresholding. By analyzing the 

intensity, signature, and orientation of these resulting hot objects‟ regions, discrimination between flames 
and other objects is made. The IR-based fire detector (Fig. 2), proposed by the authors in Ref. [18], mainly 

follows the latter feature-based strategy, but contrary to Bosch et al.‟s work a dynamic background 
subtraction method is used which is more suitable to cope with the time-varying characteristics of dynamic 

scenes. Also, by changing the set of features and combining their probabilities into a global classifier, a 

decrease in computational complexity and execution time is achieved with no negative effect on the 

detection results.  
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Fig. 2. Low-cost LWIR flame detector [18]. 

Similar to the visual flame detector, the LWIR detector starts with a dynamic background subtraction 

(Fig. 3a–c) and morphological filtering. Then, it automatically extracts hot objects (Fig. 3d) from the 

foreground thermal images by histogram-based segmentation, which is based on Otsu‟s method [19]. 

 

 

Fig. 3. Thermal filtering: moving hot object segmentation. 

After this thermal filtering, only the relevant hot objects in the scene remain in the foreground. These 

objects are then further analyzed using a set of three LWIR fire features: bounding box disorder, principal 

orientation disorder, and histogram roughness. The set of features is based on the distinctive geometric, 

temporal and spatial disorder characteristics of bright flame regions, which are easily detectable in LWIR 

thermal images. By combining the probabilities of these fast retrievable local flame features we are able to 

detect the fire at an early stage. Experiments with different LWIR fire/non-fire sequences show already 

good results, as indicated in (Table 1) by the flame detection rate, i.e. the percentage of correctly detected 

fire frames. These experiments were evaluated using manually annotated ground truth (GT). 

 

Table 1. Experimental results of LWIR-based video fire detection. 

Video sequence 
No. 

frames 

No. fire 

frames 

(GT) 

No. 

detected 

fire frames 

Mean 

P(flames) 

No. false 

detections 

Flame 

detection 

rate
a
 

Attic (fire) 337 264 255 0.91 9 0.93 

Attic (fire + moving 

people) 
2123 1461 1296 0.86 34 0.86 

Attic (moving people) 886 0 14 0.24 14 - 

Lab (Bunsen burner) 115 98 77 0.83 0 0.79 

Corridor (person + hot 

object) 
184 0 8 0.29 8 - 

a
detection rate = (no. detected fire frames – no. false detections) / no. fire frames 

 

MULTI-SENSOR SMOKE AND FIRE DETECTION  

Recently, the fusion of visible and infrared images is starting to be explored as a way to improve detection 

performance in video surveillance applications. The combination of both types of imagery yields 

information about the scene that is rich in color, motion and thermal detail. Once the images are registered, 

i.e. aligned with each other, such information can be used to successfully detect and analyze activity in the 

scene. To detect fire, one can also take advantage of this multi-sensor benefit.  
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The proposed multi-sensor flame and smoke detection can be split up into two consecutive parts: the 

registration of the multi-modal images and the detection itself. In the following subsections each of these 

parts will be discussed more in detail.  

Image Registration 

The image registration process (Fig. 4) detects the geometric parameters which are needed to overlay 

images of the same scene taken by different sensors. The registration starts with a moving object silhouette 

extraction [20] to separate the calibration objects, i.e. the moving foreground, from the static background. 

Key components are the dynamic background (BG) subtraction, automatic thresholding and morphological 

filtering. Then, 1-D contour vectors are generated from the resulting IR/visual silhouettes using silhouette 

boundary extraction, cartesian to polar transform and radial vector analysis. Next, to retrieve the rotation 

angle (~ contour alignment) and the scale factor between the LWIR and visual image, the contours are 

mapped onto each other using circular cross correlation [21] and contour scaling. Finally, the translation 

between the two images is calculated using maximization of binary correlation. The retrieved geometric 

parameters are used in the second part of the multi-sensor detectors to align the visual and thermal images. 

 

 
Fig. 4. LWIR-visual image registration. 

Multi-Sensor Flame Detection 

The multi-sensor flame detection (Fig. 5) first searches for candidate flame objects in both LWIR and 

visual images by using moving object detection and flame feature analysis. These steps have already been 

discussed previously. Next, it uses the registration information, i.e. rotation angle, scale factor and 

translation vector, to map the LWIR and visual candidate flame objects on each other. Finally, the global 

classifier analyzes the probabilities of the mapped objects. In case objects are detected with a high 

combined multi-sensor probability, a fire alarm is given.   

 

Fig. 5. Multi-sensor flame detection. 
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As can be seen in (Table 2), the multi-sensor flame detector yields better results than the LWIR detector 

alone (Table 1). In particular for uncontrolled fires, a higher flame detection rate with fewer false alarms is 

achieved. Compared to the rather limited results of standalone visual flame detectors [1], the multi-sensor 

detection results are also more positive. As such, the combined detector is a win-win. As the images of the 

experiments (Fig. 6) show, only objects which are detected as fire by both sensors do raise the fire alarm. 

 

Table 2. Experimental results of multi-sensor video fire detection. 

Video sequence 
No. 

frames 

No. fire 

frames 

(GT) 

No. 

detected 

fire frames 

Mean 

P(flames) 

No. false 

detections 

Flame 

detection 

rate
a
 

Attic (fire) 337 264 259 0.92 6 0.96 

Attic (fire + moving 

people) 
2123 1461 1352 0.84 19 0.91 

Attic (moving people) 886 0 5 0.22 5 - 

Lab (Bunsen burner) 115 98 74 0.77 0 0.75 

Corridor (person + hot 

object) 
184 0 3 0.28 3 - 

a
detection rate = (no. detected fire frames – no. false detections) / no. fire frames 

 

 

Fig. 6. LWIR fire detection experiments. 

Multi-Sensor Smoke Detection 

The proposed multi-sensor smoke detector makes use of the invisibility of smoke in LWIR. Smoke, 

contrarily to ordinary moving objects, will only be detected in visual images. As such, the coverage of 

moving objects their LWIR and visual silhouettes will start to decrease in case of smoke. Due to the 

dynamic character of the smoke, this decrease will also show a high degree of disorder. By focusing on 

both coverage behaviors, the system is able to accurately detect the smoke.  

The silhouette coverage analysis (Fig. 7) starts with the similar moving object silhouette extraction as the 

one used for registration. Then, it uses the registration information, i.e. rotation angle, scale factor and 

translation vector, to map the IR and visual silhouette images on each other. Finally, the coverage of the 

resulting IR-visual silhouette map is computed and is analyzed over time. In case of silhouette coverage 

reduction with a high degree of disorder, fire alarm is given.  

 

 

Fig. 7. Multi-sensor smoke detection. 
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The silhouette maps in Fig. 8 show that the proposed approach achieves good performance for image 

registration between color and thermal image sequences. The visual and IR silhouette of the person are 

coarsely mapped on each other. Due to the individual sensor limitations, such as shadows in visual images, 

thermal reflections and soft thermal boundaries in LWIR, small artifacts at the boundary of the merged 

silhouettes can be noticed. This is also the reason why the LWIR-visual silhouette coverage for ordinary 

moving objects is between 0.7 and 0.8, and not equal to 1. As can be seen in the silhouette coverage graph 

of the moving person, this 0.7–0.8 coverage remains quasi-constant over time. Contrarily, for the smoke 

sequence the silhouette coverage decreases as soon as smoke occurs and shows a high degree of disorder. 

Using quantization and extrema analysis these phenomena are detected and a fire alarm is raised. Even in 

the case where no moving objects are present, the system detects the smoke. 

 

Fig. 8. Experimental results: silhouette coverage analysis. 

MULTI-VIEW FIRE ANALYSIS  

Only a few of the existing VFD systems [22,23] are capable of providing additional information on the fire 

circumstances, such as size and location. Despite the good performance reported in the papers, the results 

of these approaches are still limited and interpretation of the provided information is not straightforward. 

As such, one of the main goals of our work is to provide an easy-to-use and information-rich framework for 

video fire analysis, which is discussed briefly in this paper. For more details, readers are referred to [2].  

Using the localization framework shown in Fig. 9, information about the fire location and (growing) size 

can be generated very accurately. First, the framework detects the fire, i.e. smoke and/or flames, in each 

single view. An appropriate single-view smoke or flame detector can be chosen out of the numerous 

approaches already proposed previously. It is even possible to use the multi-sensor detectors. The only 

constraint is that the detector produces a binary image as output, in which white regions are fire/smoke FG 

regions and black regions are non-fire/non-smoke BG. Secondly, the single-view detection results of the 

available cameras are projected by homography [24] onto horizontal and vertical planes which slice the 

scene. For optimal performance it is assumed that the camera views overlap. Overlapping multi-camera 

views provide elements of redundancy, i.e., each point is seen by multiple cameras that help to minimize 

ambiguities like occlusions, i.e. visual obstructions, and improve the accuracy in the determination of the 

position and size of the flames and smoke. Next, the plane slicing algorithm accumulates, i.e. sums, the 

multi-view detection results in each of the horizontal and vertical planes. This step is a 3-D extension of 

Arsic's work [25]. Then, a 3-D grid of virtual multi-camera sensors is created at the crossings of these 

planes. At each sensor point of the grid, the detection results of the horizontal and vertical planes that cross 

at that point are analyzed and only the points with stable detections are further considered as candidate fire 

or smoke. Finally, 3-D spatial and temporal filters clean up the grid and remove the remaining noise. The 

filtered grid can then be used to extract the smoke and fire location, information about the growing process 

and the direction of propagation. For a more detailed description the reader is referred to Ref. [26].  
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Fig. 9. Multi-view localization framework for 3-D fire analysis [2]. 

Since fire/smoke regions are not always visible in all views or only partly visible, the detection/localization 

will be influenced by the number of cameras having the fire/smoke position under surveillance. By making 

a camera map, that contains the number of cameras that are able to monitor the specific position, 

appropriate detection criteria can be determined. The higher the value of a position on the map, the more 

cameras that monitor that position. Special events, such as camera unavailability and tampering can be 

automatically detected and could also be taken into account by dynamically updating the map [26].  

In order to verify the proposed multi-view localization framework we performed smoke experiments in a 

car park. We tried to detect the location, the growing size and the propagation direction of smoke generated 

by a smoke machine. An example of these experiments is shown in Fig. 10. Single-view fire detection 

results, i.e. the binary images which are the input for the homographic projection in our localization 

framework, were retrieved by using the chrominance-based smoke detection method proposed in Ref. [1]. 

Since the framework is independent of the type of VFD, also other detectors can be used here. The only 

constraint is that the detector delivers a black and white binary image, as mentioned earlier. As such, it is 

even possible to integrate other types of sensors, such as the proposed multi-sensor detectors. 

 

Fig. 10. Car park smoke experiments. 

As can be seen in the 3-D model in Fig. 11 and in the back-projections of the 3-D results in Fig. 12, the 

framework is able to detect the location and the dimension of the smoke regions. In Fig. 11 the smoke 

regions are represented by the dark gray 3-D boxes, which are bounded by the minimal and maximal 

horizontal and vertical FG slices. As a reference, also the bounding box of the smoking machine is 

visualized. Even if a camera view is partially or fully occluded by smoke, like for example in frame 5040 of 

CAM2 (Fig. 10d), the framework localizes the smoke, as long as it is visible from the other views. Based 

on the detected 3-D smoke boxes, the framework generates the spatial smoke characteristics, i.e., the 

height, width, length, centroid, and volume of the smoke region. By analyzing this information over time, 

the growing size and the propagation direction are also estimated. If LWIR-visual multi-sensor cameras, 

like the one proposed in this paper, are used, it is even possible to also analyze the temperature evolution of 

the detected regions. As such, for example, temperature-based levels of warnings can be given. 
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Fig. 11. Plane slicing-based smoke box localization. 

The back-projections (Fig. 12) of the 3-D smoke regions to the camera views show that the multi-view 

slicing approach produces plausible and acceptable results. Due to the fact that the number of (multi-view) 

video fire sequences is limited and the fact that no 3-D ground truth data and widely “agree-upon” 
evaluation criteria of video-based fire tests are available yet [27], only this kind of visual validation is 

possible for the moment. Contrary to existing fire analysis approaches [23], which deliver a rather limited 

3-D reconstruction, the output contains valuable 3-D information about the fire development. 

 

Fig. 12. Back-projection of 3-D smoke box results into camera view CAM1. 

FUTURE DIRECTIONS 

VFD Performance Evaluation 

Due to the limited number of fire datasets, the absence of ground truth (GT) data, the extensive use of 

heuristic thresholds and the lack of standardized evaluation criteria and metrics, experimental verification 

of VFD algorithms is still an error-prone and time-consuming task. To facilitate the evaluation process, and 

to provide a tool to correctly validate the effectiveness of video-based detectors in a standardized way, the 

authors propose a performance evaluation framework in Ref. [28].  

The evaluation framework is able to determine optimal settings for each individual VFD algorithm and is 

also able to compare multiple algorithms against each other. By using ground truth data of a large set of fire 

and non-fire video sequences and comparing the detection results of each algorithm against this data, the 
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framework ensures a reliable independent evaluation. Key components to perform this evaluation are the 

XML-based GT creation, an automatic VFD optimizer and frame and object-based evaluation metrics.  

A general overview of the evaluation framework is shown in Fig. 13. The framework is designed for 

implementing new detection algorithms that still need to be tested for their optimal settings. This is done by 

the automatic video algorithm optimizer, which allows a detection algorithm to define a set of parameters 

that can be set for minimum and maximum values. These values are then incrementally run through on a set 

of fire and non-fire video files. Afterwards, the result per parameter combination is written to an XML file. 

The evaluation framework also contains an application that supports the creation of GT data for a given 

video. Because this GT creation is done manually by a user, it is still in some way error prone. As such, 

research on automatic GT annotation is part of our future work. Finally, the framework also includes a tool 

for comparing the GT data with the results created by the algorithm tests. This result set evaluation tool 

uses a variety of evaluation metrics [28,29] to decide what detection algorithm performs best and outputs 

the optimal parameters for a given set of videos. 

 

 

Fig. 13. VFD performance evaluation framework. 

Prior experiments [28] indicate that the VFD performance evaluation framework is very promising and is a 

worthy alternative for the error-prone and time-consuming experimental evaluations that are used in many 

works today. However, further testing on a broader range of fire and non-fire video sequences is necessary 

for an adequate evaluation. As future work, we will also look for ways to remove the human factor in the 

GT creation process. This would relieve the research teams as they would only need to research a detection 

algorithm, select what type of object(s) the algorithm must detect and let the system create a test bench.  

Video-Driven Fire Spread Forecasting 

Fire spread forecasting is about predicting the further evolution of a fire, in the event of the fire itself. In the 

world of fire research, not much experience exists on this topic [30]. Based on their common use in fire 

modeling, CFD (computational fluid dynamics) [31] calculations look interesting for fire forecasting at first 

sight. These are three-dimensional simulations where the rooms of interest are subdivided into a large 

amount of small cells (Fig. 14b). In each cell, the basic laws of fluid dynamics and thermodynamics 

(conservation of mass, total momentum and energy) are evaluated in time. These types of calculations 

result in quite accurate and detailed results, but they are costly, especially in calculation time. As such, 

CFD simulations do not seem to be the most suitable technique for fast fire forecasting. We believe, 

therefore, it is better to use zone models [31] to perform this task.  

In a zone model, the environment is subdivided into two main zones. The smoke of the fire is in the hot 

zone. A cold air layer exists underneath this hot zone (Fig. 14a). The interface between these two zones is 

an essentially horizontal surface. The height of the interface (hint) and the temperature of the hot (Thot) and 

cold (Tcold) zones vary as function of time. These calculations are simple in nature. They rely on a set of 

538



experimentally derived equations for fire and smoke plumes. It usually takes between seconds and minutes 

to perform this kind of calculations, depending on the simulated time and the dimensions of the room or 

building. Therefore, it is much better suited for fire forecasting than the use of CFD calculations.  

 

 
   (a)      (b) 

Fig. 14. Fire modeling techniques: (a) zone model; (b) computational fluid dynamics (CFD) model. 

The real aim of fire forecasting is to use measured data from the fire, e.g. obtained by sensors or video 

images in the room of interest, in order to replace or correct the model predictions [32,33]. This process of 

data assimilation is illustrated in Fig. 15, which summarizes our future plans for video-driven fire 

forecasting. As can be seen in the graph, model predictions of smoke layer height (~ zone model interface 

hint) are corrected at each correction point. This correction uses the measured smoke characteristics from 

our fire analysis framework. The further we go in time, the closer the model begins to match the future 

measurements and the more accurate predictions of future smoke layer height become.  

The proposed video-driven fire forecasting is a prime example of how video-based detectors will be able to 

do more than just generate alarms. Detectors can give information about the state of the environment, and 

using this information, zone model-based predictions of the future state can be improved and accelerated. 

By combining the information about the fire from models and real-time data we will be able to produce an 

estimate of the fire that is better than could be obtained from using the model or the data alone. 

  

 

Fig. 15. Data assimilation – video-driven fire forecasting (FireGrid [32]). 
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CONCLUSIONS 

Based on the analysis of existing approaches in visible and non-visible light and on our own experiments, 

this paper presents a multi-sensor fire detector which detects flames and smoke in LWIR and visual 

registered images. By using thermal and visual images to detect and recognize the fire, we can take 

advantage of the different kinds of information to improve the detection and to reduce the false alarm rate. 

To detect the presence of flames at an early stage, the novel multi-sensor flame detector fuses visual and 

non-visual flame features from moving (hot) objects in ordinary video and LWIR thermal images. By 

focusing on the distinctive geometric, temporal and spatial disorder characteristics of flame regions, the 

combined features are able to successfully detect flames. The novel multi-sensor smoke detector, on the 

other hand, makes use of the smoke invisibility in LWIR. The smoke detector analyzes the silhouette 

coverage of moving objects in visual and LWIR registered images. In case of silhouette coverage reduction 

with a high degree of disorder, a fire alarm is given. Experiments on both fire and non-fire multi-sensor 

sequences indicate that the proposed algorithm can detect the presence of smoke and flames in most cases. 

Moreover, false alarms, one of the major problems of many other VFD techniques, are drastically reduced. 

As a future work, additional „evaluation‟ experiments will also be performed following the guidelines from 

the work of Gottuk and Dinaburg [34].  

To provide more valuable information about the fire progress, we also present a multi-view fire analysis 

framework, which is mainly based on 3-D extensions to homographic plane slicing. The framework merges 

single view VFD results of multiple cameras by homographic projection onto multiple horizontal and 

vertical planes which slice the scene under surveillance. At the crossings of these slices, we create a 3-D 

grid of virtual sensor points. Using this grid, information about 3-D location, size and propagation of the 

fire can be extracted from the video data. As prior experimental results show, this combined analysis from 

different viewpoints provides more valuable fire characteristics.  
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