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Abstract

Purpose of Review—Overall survival rates for osteosarcoma have remained essentially 

unchanged over the past three decades despite attempts to improve outcome via dose 

intensification and modification based on response. This review describes recent findings from 

contemporary clinical trials, advances in comprehension of osteosarcoma biology and genomic 

complexity, and potential opportunities using targeted and immune-mediated therapies.

Recent Findings—Recent results from international collaborative trials have failed to 

demonstrate an ability to improve outcomes using a design in which the randomized question is 

dictated based on histologic response to preoperative chemotherapy. Novel prognostic markers 

assessable at diagnosis are vital to identifying subsets of osteosarcoma. Clinical trials focus has 

now shifted to serial phase II studies of novel agents to evaluate for activity in recurrent and 

refractory disease. In-depth analyses have revealed profound genomic instability and 

heterogeneity across patients, with nearly universal TP53 aberration. While driver mutational 

events have not clearly been established, frequent derangements in specific pathways may suggest 

opportunities for therapeutic exploitation. Genomic complexity may lend support to a role for 

immune-mediated therapies.

Summary—Rigorous preclinical investigations are potentially generating novel strategies for 

treatment of osteosarcoma that will inform the next generation of clinical trials, with the 

opportunity to identify agents that will improve survival outcomes.
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INTRODUCTION

Osteosarcoma is the most common primary bone malignancy of childhood and adolescence, 

with approximately 400 new cases each year in the United States.[1] The current 

management of newly diagnosed osteosarcoma includes cycles of neoadjuvant 

chemotherapy comprised of 3 to 4 cytotoxic agents (cisplatin, doxorubicin, methotrexate, 

ifosfamide), followed by surgical resection of disease and additional cycles of postoperative 

therapy. Patients with localized disease have a 65-70% 5-year survival rate,[2] while those 

who present with metastatic disease (most commonly in the lung parenchyma and distant 

skeletal sites) experience poor survival rates of 19-30%.[3, 4] Despite numerous attempts in 

large clinical trials to augment therapy via dose intensification and addition of 

chemotherapeutic agents, survival rates for osteosarcoma have stagnated over the past three 

decades.

Current efforts within the Children's Oncology Group (COG) and other independent 

investigators recognize the limitations of continued investigations of a small number of 

cytotoxic agents in varied schedule and dose to treat a tumor well known for chemotherapy 

resistance, and have shifted focus to identifying potential tumor vulnerabilities via genomic 

aberrations and enzymatic pathways that can be exploited, using novel therapies supported 

by robust preclinical testing and animal modeling. The purpose of this article is to review 

the current state of the field as well as opportunities for present and future treatment 

strategies in osteosarcoma.

THE USE OF STANDARD CYTOTOXIC AGENTS IN THERAPY

Recent international collaborations focused on whether survival outcomes could be changed 

through modification of adjuvant therapy with the randomized question for each group 

based on histologic response of the resected primary tumor, a well-established prognostic 

factor. In order to accrue a large enough patient cohort to complete an appropriately 

powered study, COG, the Cooperative Osteosarcoma Study Group (COSS), the European 

Osteosarcoma Intergroup (EOI), and the Scandinavian Sarcoma Group (SSG) developed the 

EURAMOS-1 (European and American Osteosarcoma Study Group) clinical trial.[5] The 

two primary objectives were to determine whether the addition of ifosfamide and etoposide 

to post-operative chemotherapy would improve outcomes for patients who demonstrated a 

poor response to standard neoadjuvant chemotherapy (defined as ≤ 90% necrosis of the 

resected primary tumor), and whether the addition of a 2-year maintenance treatment with 

pegylated interferon alfa-2b (INF-α-2b) after completion of standard treatment would 

improve outcomes for good responders. The trial required immense collaborative efforts to 

navigate regulatory and funding barriers, but proved successful in accruing 2,260 patients 

over a six-year period.[5]

Results for each of the primary objectives on EURAMOS-1 have now been reported. For 

good responders, no significant difference was observed between patients who were treated 

only with standard MAP therapy and those who were randomized to receive INF-α-2b. The 

analysis was confounded by refusal of a large proportion of randomized patients to start 

INF-α-2b; of those who received treatment, 39% stopped early, mostly due to toxicity or 

disease progression.[6] The results of the poor responder cohort were equally disappointing; 
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no difference in 3-year event-free survival (EFS) was observed between the two randomized 

arms. Those who received ifosfamide and etoposide experienced significantly greater 

likelihood of grade 4 non-hematologic toxicities, and were unable to receive the full 

cumulative doses of chemotherapy. A higher rate of secondary malignant neoplasms was 

observed although the difference in the arms was not statistically significant.[7]

PROGNOSTIC MARKERS

The results of the EURAMOS-1 trial provide additional evidence that diminishes the value 

of histologic response as a prognostic marker, with no established ability to impact survival 

through adjustments of post-operative treatment. As previous literature also demonstrates 

inability to augment survival curves through dose intensification and increased rate of 

histologic response, clinical trials should no longer incorporate histologic response as a 

reference point for randomization of post-operative therapy. An increased focus on 

osteosarcoma biology, pathway analysis and genetics has provided new potential biologic 

markers of disease. These include single nucleotide polymorphism (SNP) variants in the 

NFIB gene that affect osteosarcoma cell migration and proliferation, and are associated with 

metastasis in certain lineages.[8] Several microRNAs have been suggested to impact 

prognosis; miR-214 is upregulated in osteosarcoma tissues and independently prognostic for 

progression-free survival and overall survival. A locus at 14q32 associated with miR-382, 

miR-134 and miR-544 has demonstrated an inverse correlation between aggressive tumor 

behavior and residual expression of microRNAs.[9, 10] DNA methylation analysis may 

reveal patterns with prognostic significance.[11] Further evaluation and prospective 

validation of these markers in future studies will establish their role in prognostication of 

tumor response and survival outcomes.

A NEW PARADIGM FOR PRECLINICAL DEVELOPMENT AND CLINICAL INVESTIGATION

The EURAMOS-1 trial results provided further proof that improvement of survival 

outcomes for osteosarcoma would not be achieved through continued adjustments of dose 

and schedule of the same cytotoxic agents in use for the past thirty years. Concurrently, 

attempts to develop and conduct large scale clinical trials with novel therapeutic agents have 

been complicated by three factors: 1) rarity of diagnosis, 2) failure to understand the 

mechanisms of osteosarcoma biology leading to resistance to most chemotherapeutic agents, 

and 3) the lack of radiographic regression of bulky lesions with treatment that hinders the 

ability to measure response by conventional methods. The result of these three factors is the 

lack of novel agents with activity in the treatment of patients with osteosarcoma. 

Collaborative efforts have recently focused on providing rigorous preclinical data for the 

development of new therapeutics before consideration for clinical trials, including a 

comprehensive understanding of mechanism of action, validation of markers of both 

exposure and response, and use of animal models (e.g. murine and canine) to assess 

efficacy.[12] These studies have been supported by the development of the Childhood 

Sarcoma Biostatistics and Annotation Office, which links patient data to archived tissue 

samples and provide biostatistical support to researchers.[13] These investigations have 

begun to yield several promising agents with therapeutic potential, which will be described 

subsequently.
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The need to retrospectively assess prior failures of novel agents was vital to interrogate the 

standard approach to interpreting clinical response. A pooled analysis was conducted for 

seven previous phase II trials conducted by COG and its preceding collaborative groups that 

included strata for recurrent/refractory osteosarcoma patients with measurable disease. The 

4-month EFS was 12%; radiographic responses were observed in only 3 of the trials.[14] 

Recognizing the limitations of traditional use of radiographic response as a primary endpoint 

for phase II studies for osteosarcoma, current and future planned clinical investigations of 

novel therapeutics are incorporating evaluations of “controlled stable disease” and will be 

statistically powered to use this measure as a surrogate for progression-free survival. 

Furthermore, while osteosarcoma remains a rare diagnosis, the development of serial clinical 

trials of new therapeutics targeted exclusively toward recurrent and refractory osteosarcoma 

holds promise for accelerating investigations of drug efficacy. The first phase II trial to be 

developed under this paradigm included eribulin mesylate, a microtubule inhibitor that 

demonstrated activity in osteosarcoma cell lines and xenografts in the Pediatric Preclinical 

Testing Program.[15] While expected to enroll 1.3 patients per month based on prior phase 

II studies, the trial rapidly accrued 19 patients in 3.5 months.[16] The brief interval observed 

from enrollment to analysis demonstrates the potential success of such a clinical trial model 

to expedite the analysis of novel agents for clinical effectiveness, and the willingness of 

patients to continue to seek new therapies when available.

GENOMIC COMPLEXITY OF OSTEOSARCOMA

As part of efforts to identify targets for novel therapeutic agents, several groups have taken 

advantage of increasing access to a variety of methods of genomic analysis to analyze 

osteosarcoma samples via whole genome and exome sequencing, transcriptome evaluation 

of gene expression, and epigenetic modifications. These investigations have revealed 

striking genomic complexity, as well as profound interpatient heterogeneity (see Figure 1 

and Figure 2). This includes distinct chromosomal regions of hypermutation referred to as 

“kataegis” and a vast number of structural variations.[17] While p53 aberrancy has long 

been associated with osteosarcoma via germline mutations in Li-Fraumeni syndrome, recent 

comprehensive genomic analyses have revealed that nearly all osteosarcomas have 

alterations of TP53 or associated pathway genes such as MDM2; mutations in RB1 and 

associated pathway genes are also frequently present.[17, 18] Whole genome sequencing 

analysis of 19 osteosarcoma tumors revealed that 55% of patients demonstrated a structural 

variant inactivating TP53, most commonly as a translocation involving intron 1.[17] Other 

common alterations revealed from these studies include mutations of DLG2 and ATRX[17] 

and deletions of CDKN2A/B; alterations of members of the PI3K/mTOR pathways were also 

identified in 24% of samples in one cohort.[18] Forward genetic screening using Sleeping 

Beauty transposon mutagenesis enriched for genes in the PI3K/mTOR, ErbB, and MAPK 

pathways, as well as previously unknown oncogenes related to osteosarcoma such as 

Sema4d and Sema6d, genes associated with axon guidance.[19] Other methods including 

genome-wide association studies have revealed SNPs within a locus at the GRM4 gene 

associated with susceptibility to osteosarcoma,[20] as well as the aforementioned SNP 

within NFIB which may increase risk of metastasis.[8]
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While p53 and RB1 are suspected of acting as major oncogenic drivers, the lack of intron 1 

rearrangements in other p53-associated tumors suggests pre-existing genomic instability in 

osteosarcoma that predisposes to structural variations; subsequent events including PTEN 

loss may accelerate tumorigenesis.[19] Recent data has also suggested a role for DNA 

methylation patterns in osteosarcoma relapse; analysis of 17 diagnostic biopsy samples 

revealed increased methylation at more than 17% of tested loci, with a strong association 

between methylation at the Toll-like receptor 4 gene (TLR4) and 5-year EFS.[11] Further 

understanding of the diverse effects of osteosarcoma's genetic complexity is anticipated 

from the National Cancer Institute's Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) program, which is actively performing integrated multi-

platform analyses of osteosarcoma samples.[21] Generation of sufficient genetic and 

epigenetic data is hoped to enable correlations between genomic changes, tumor biology, 

and clinical behavior.

TARGETED THERAPIES

Preclinical studies of osteosarcoma biology, genomic and pathway analyses, and drug 

screening have now provided several therapeutic opportunities to be evaluated in clinical 

studies (Table 1). This includes denosumab, a fully human monoclonal antibody targeting 

the receptor activator of nuclear factor κB ligand (RANKL). RANK signaling promotes 

motility and anchorage-independent growth of osteosarcoma cells;[22] transgenic mouse 

models with alterations of RANKL have been observed to develop osteosarcoma. Preclinical 

drug screening has also suggested activity of glembatumumab vedotin, which targets the 

transmembrane glycoprotein NMB (GPNMB; osteoactivin). In PPTP testing, 

glembaumumab demonstrated maintained complete responses in three of six osteosarcoma 

xenografts.[23] Further testing demonstrated expression of GPNMB in 92.5% of 67 human 

osteosarcoma tissue samples and correlation between GPNMB protein expression and in 

vitro cytotoxicity.[24] A third potential target for treatment is the disialoganglioside GD2. 

Anti-GD2 therapy has improved survival outcomes for patients with high-risk 

neuroblastoma who have minimal residual disease; based on this success, the chimeric anti-

GD2 antibody dinutuximab (ch14.18) was recently approved by the Food and Drug 

Administration. Nearly all osteosarcomas tumors expressed GD2 by immunohistochemistry 

in a recent investigation;[25] subsequent analysis showed that in relapsed patients, GD2 

expression was universally maintained upon recurrence.[26] Several trials utilizing varied 

forms of anti-GD2 therapy are currently open (NCT02173093; NCT00743496; 

NCT02107963; NCT02502786). Clinical trials are currently in development for the use of 

denosumab, glembatumumab vedotin, and dinutuximab for the treatment of recurrent and 

refractory osteosarcoma.

As noted above, multiple complementary analyses have implicated PI3K/mTOR as a 

targetable pathway in osteosarcoma,[18, 19, 27] and that dual inhibition of PI3K and mTOR 

may abrogate proliferation and induce apoptosis.[27] Several dual PI3K/mTOR inhibitors 

are in clinical development; combinations of novel PI3K inhibitors such as buparlisib[28] 

with existing mTOR inhibitors such as everolimus and temsirolimus warrant investigation. 

The tyrosine kinase inhibitor (TKI) sorafenib inhibits cell growth, angiogenesis and 

metastasis through inhibition of VEGF and MAPK/ERK pathways[29] and has been utilized 
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in recent studies as a single agent or in combination.[30, 31] Combination of sorafenib with 

everolimus increased anti-tumor activity in vitro and in vivo via abrogation of upregulation 

of mTORC2.[32] A recent clinical trial of combined sorafenib and everolimus yielded a 6-

month progression-free survival (PFS) of 45%,[33] generating increasing interest in 

development of trials incorporating sorafenib or an alternative TKI with an mTOR inhibitor.

Other druggable targets requiring further preclinical evaluation include cell cycle 

checkpoints Wee1 and Chk. Use of a Wee1 inhibitor (AZD1775) increases osteosarcoma 

sensitivity to radiation and enhances cytotoxicity of gemcitabine in cell lines,[34, 35] not 

only via dysregulation of cell cycle progression and mitotic catastrophe but also through 

enhancement of replicative stress via reduction of ATR/Chk1.[36] Inhibition of ATR is 

another novel approach to therapy. Osteosarcoma cells employ alternative lengthening of 

telomeres to overcome replicative senescence,[37] a process not infrequently associated with 

ATRX loss, as seen in a number of osteosarcoma samples.[17] ATR inhibition disrupts 

alternative lengthening and results in chromosomal fragmentation and apoptosis; 

osteosarcoma cell lines positive for ALT (U2OS, SAOS2) treated with the ATR inhibitor 

VE-821 demonstrated hypersensitivity and increased cell death compared to cell lines with 

telomerase activity.[38]

IMMUNOTHERAPY

Immune-based therapy has long been considered to have therapeutic potential for 

osteosarcoma, as far back as 1891;[39] as the field of immunotherapy has expanded, a 

greater number of treatment approaches have surfaced that hold potential for treatment of 

sarcomas via expansion of anti-tumor immunity or induction of durable anti-tumor immune 

response.[40] Immunomodulatory agents have previously been investigated for 

osteosarcoma, including INF-α-2b,[6] interleukin-2,[41] and liposomal muramyl tripeptide 

phosphatidylethanolamine (L-MTP-PE).[2, 42] Efficacy of L-MTP-PE has been difficult to 

interpret due to potential interaction but was suggested to improve 5-year survival;[42] 

presently L-MTP-PE is approved for use and available in Europe, Mexico, Turkey and 

Israel.[39]

The clinical success of immunologic checkpoint inhibitors targeting T cell function via 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the programmed cell death 

protein 1 pathway (PD-1, PD-L1) for the treatment of adult tumors such as metastatic 

melanoma[43] has generated great interest for their use in pediatric tumors. Increased 

mutational burden has been associated with response in these tumors, with tumor 

neoantigens considered to be the primary target of efficacious response.[44, 45] While it is 

unclear whether the types of genetic aberrations frequently seen in osteosarcoma (point 

mutations, structural variations) will predict response to these agents, the overall high 

mutation rate (1.2 per megabase)[17, 18] suggests that osteosarcoma is a potentially 

attractive target for immunotherapy. In addition, recent studies have demonstrated 

expression of PD-L1 on osteosarcoma cells; blockade of PD-1/PD-L1 improved cytotoxic T 

lymphocyte function.[46, 47] When evaluated in a K7M2 mouse model of osteosarcoma, 

antibody blockade of CTLA-4 and PD-L1 produced complete control of tumors and 

immunity to further tumor inoculation.[48] Trials are currently open via COG using the anti-
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PD-1 antibody nivolumab with and without the anti-CTLA-4 antibody ipilimumab 

(NCT02304458) and the Sarcoma Alliance for Research through Collaboration (SARC) 

with the anti-PD1 antibody pembrolizumab (NCT02301039).

CONCLUSION

Recent efforts to expand opportunities for treatment of osteosarcoma through rigorous 

preclinical drug development, comprehensive genomic analyses, and the implementation of 

a histology-exclusive clinical trial model for investigation of new agents are now beginning 

to generate a number of therapeutic strategies to be implemented in upcoming studies. We 

are optimistic that this new paradigm for preclinical and clinical investigation will identify 

agents with a signal of activity that can be moved forward to new trials in combination with 

standard chemotherapy, with the goal of improving long-stagnant survival outcomes.
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KEY POINTS

• Recent collaborative efforts to study osteosarcoma in a randomized fashion 

failed to demonstrate improvement in outcomes by augmenting post-operative 

therapy based on histologic response to pre-operative chemotherapy

• A new paradigm for osteosarcoma includes rigorous preclinical drug 

development, understanding of mechanism of action and animal models, paired 

with a clinical trial model focused exclusively on osteosarcoma with both 

response and survival endpoints

• Osteosarcoma harbors striking genetic complexity and interpatient 

heterogeneity; nearly all osteosarcomas have aberrations of the TP53 pathway

• Several biologic targeted therapies have been identified from recent 

comprehensive analyses and are being developed for phase II trials to determine 

efficacy

• Based on the high mutational load, osteosarcoma may be an attractive target for 

immunotherapy using anti-CTLA-4 and anti-PD-1/PD-L1 therapies
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Figure 1. 

A CIRCOS plot demonstrates genomic complexity within a single osteosarcoma tumor 

sample. Chromosomes are depicted on the outer most track. A blue-red heatmap circle 

indicates copy number ratio estimates from whole genome sequencing. Interchromosomal 

and intrachromosomal rearrangements are represented by lines and arcs within the heat-map 

circle. C>T (green) and C>G (yellow) mutations are plotted outside the heat-map circle. An 

area of numerous C>T and C>G mutations in concert with significant intrachromosomal 

rearrangements at chromosome 15 suggests a focal area of hypermutation or “kataegis”.
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Figure 2. 

A karyotype of a patient with osteosarcoma demonstrates multiple structural and numeric 

abnormalities.
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