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Abstract

We consider the problem of future event prediction in

video: if and when a future event will occur. To this end,

we propose a number of representations and loss functions

tailored to this problem. These include several probabilistic

formulations that also model the uncertainty of the predic-

tion. We train and evaluate the approach on two entirely

different prediction scenarios: if and when a car will stop

in the BDD100k car driving dataset; and if and when a

player is going to shoot a basketball towards the basket in

the NCAA basketball dataset.

We show that (i) we are able to predict events far in the

future, up to 10 seconds before they occur; and (ii) using at-

tention, we can determine which areas of the image sequence

are responsible for these predictions, and find that they are

meaningful, e.g. traffic lights are picked out for predicting

when a vehicle will stop.

1. Introduction

Image understanding is usually concerned with the prob-

lem of describing the content of a given image or video.

However, in applications such as robotics and autonomous

driving this is often not enough: in order to react in a timely

manner to external events (such as a pedestrian crossing the

street), it may be necessary to predict them before they occur

or are captured by the imaging device.

Our objective in this paper introducing the problem of

time-to-event prediction into computer vision by predicting

future events in video before they occur. In addition to

its practical importance, the problem also has a significant

scientific interest. In fact, predicting effectively the future is

likely to require an understanding of subtle properties of the

world and of its dynamics. Thus, this task can be used as a

form of self-supervision to learn about abstract concepts in

images and videos.

In this paper, we focus on two key challenges that are of

direct interest in many applications: telling (i) if a certain

event, such as a car stopping, is likely to occur in the near

future and, in this case, (ii) when the event is going to happen.

Our approach is based on performing probabilistic prediction

of future events, while accounting for event rarity, which is

required due to the fact that most of the data does not in fact

contain the event of interest.

Seeking to develop a very general approach, we consider

two entirely different testing scenarios. The first scenario is

to predict, given a video stream captured from a moving car,

whether and when the car is going to stop, in response to traf-

fic conditions and other environmental factors. The second

scenario is to predict, in videos of basketball games, whether

and if a player is going to throw. We develop and publish

two benchmarks for these tasks building on existing pub-

lic benchmark data. We also develop a new benchmarking

protocol based on evaluation metrics that reflect the ability

of a model to perform such predictions in a manner that is

relevant to applications.

The key design decision for this task is how to represent

the prediction, and the associated loss function. In section 3

we discuss a number of possible options and discuss their

advantages and disadvantages, introducing models that were

not tested before in this context. Our best model is GMMH,

a hybrid between a heatmap and a Mixture of Gaussians. We

show that this approach works better than may be thought

of as the “default” solution for modelling such problems,

such as pure classification or the Weibull distribution used

in survival analysis.

Compared to alternatives, the main benefit of our ap-

proach is its ability to predict events far in the future, up

to 10 seconds before they occur. We also show that, as the

algorithm learns to predict future events, it induces a visual

representation that captures small but important details of

image content. For example, in the driving application, we

show that the learned neural network pays attention to ele-

ments such as traffic and car lights as predictor of slowing

traffic.

We also compare our method to human performance,

demonstrating that such systems are competitive and in fact
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better at performing predictions about the future than average

humans. We impute this to the ability of algorithms to better

learn a specific domain, such as traffic conditions, and thus

be better able to capture subtle cues and tells that may be

overlooked by people.

2. Related Work

Early Action Recognition. Several authors have studied

the problem of early action recognition, where the task is

to predict what kind of action is currently happening, using

as small number of frames as possible. Hoai et al. [9] use

Structured Output SVM to detect facial expressions early.

Aliakbarian et al. [3, 2] use context- and action-aware fea-

tures with a two-stage LSTM to recognize actions from

partial video sequences. Similarly, Sigurdsson et al. [18] pro-

pose a fully-connected temporal CRF model, which exploits

intent information to predict in each frame the action being

performed. Dave et al. [5] use a predictive-corrective model

to maintain a memory state of the network for per-frame

action classification. Ramanathan et al.[16] use a BLSTM

to classify and detect events in individual frames of basket-

ball sports videos and Heidarivincheh et al. [8] detect action

completion. Wei et al. [27] on the other hand learn to classify

the arrow of time in videos.

The crucial difference of all the above methods to our

task is that the event had already started, i.e. the methods

already observe the event of interest unrolling, whereas in

our task we observe frames leading towards the start of the

event, but never the event itself. The same difference applies

to the standard activity recognition datasets [17, 10, 19, 4],

which capture many different classes of events, but typically

not what leads to them - and even if it was captured, the data

would not be very informative for event prediction, as given

the nature of the actions in the datasets such as “singing” or

“cliff diving”, the motivation leading to start the action is

mostly intrinsic to the actors and therefore cannot be easily

observed in the videos until the action actually starts.

Future Frames Prediction. A lot of work has been done

trying to predict future visual appearance. Vondrick et

al. [25, 26] use Generative Adversarial Networks (GANs)

to explicitly model foreground and background pixels and

generate a short video sequence from a single image. Xue

et al. [29] also predict future frames from a single image,

exploiting cross convolutional networks. Liang et al. [12]

then use dual motion GAN to predict future frames given

an input video sequence. The prediction horizon in all these

methods is however only couple of frames, and therefore

it is not applicable for predicting events which are several

seconds in the future.

Event Prediction In the machine learning literature, time

to event prediction has been extensively studied. Most re-

cently, Martinsson [13] proposed a Recurrent Neural Net-

work model with Weibull distribution for a customer churn

prediction. Soleimani et al. [20] use Gaussian processes to

predict time to event in medical applications. These mod-

els however deal with only low-dimensional sequential data

(such as patient temperature measurements), and thus are

not directly applicable in computer vision. Where possible,

we however try to adapt these models for high-dimensional

video data and evaluate them (see section 4.1).

In computer vision, Vondrick et al. [24] exploit

AlexNet [11] representations to predict what action will

happen in a recording of TV series in exactly 1 second time.

Felsen et al. [6] predict which player will hold the ball next,

by applying random forests to normalized overhead-view

sport videos. Alahi et al. [1] use a LSTM model to pre-

dict a 2D heatmap of future pedestrian position in overhead

pedestrian videos.

Our work is significantly different in that i) we predict

whether the event will happen or not ii) we give time estimate

to say when the event is likely to happen and with what prob-

ability iii) we predict significantly longer time horizon (up to

10 seconds) and iv) we don’t require static and normalized

camera views like [1, 6].

3. Method

3.1. Time to event

Consider a short sequence of N past and current visual

observations xt0−N+1,xt0−N+2, . . . ,xt0 . Our aim is to

estimate, based on this information, the probability that a

certain event of interest will occur in the near future and, if

so, when exactly (see fig. 2).

Since the choice of a time origin is immaterial, we sim-

plify the notation by assuming t0 = 0, and denote XN =
(x−N+1,x−N+2, . . . ,x0) the N observations. Hence, the

task can be formulated as estimating the conditional proba-

bility density p(t|XN ) of the time to event (TTE) τ ≥ 0.

More precisely, we define TTE as the time when the

observed system enters first a certain state of interest. For

example, in the car application the state of interest is that

the car velocity is zero, and in the sport application the

condition is that the ball is flying as a consequence of a

throw. This definition has a few important consequences.

First, the system may enter and leave the state of interest

several times and we are only concerned with the first of such

occurrences. Second, the system may already be in said state

at time 0, for example because the car is already stopped, so

that strictly speaking τ may be less than 0. In this case we

assume instead that τ = 0. Thirdly, the event may not occur

at all in the near future. The “no show” condition could

be model by allowing t to range in R
+
0 ∪ {+∞}. Instead,

it is more practical to choose a fixed prediction horizon

∆max ≫ 0 and conventionally set τ = 2∆max whenever the

TTE is beyond the horizon.
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Figure 1. Predicting car stopping in the BDD100k driving dataset. Time to event probability prediction (blue), event occurrence ground truth

(red), maximal prediction horizon ∆max (dashed gray). The network has learned to look for various cues (traffic lights, cars in front on the

road) to predict the probability if and when the car will stop. It has also learned to assign non-zero probability to time/position corresponding

to green traffic lights, as they in fact might turn red by the time the car gets there (middle row). See Supplementary material for the videos.
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Figure 2. Predicting future event at time τ , having observed N

frames up until time t0, where ∆ denotes the time distance between

the last observed frame and the event

In the following, rather than discussing density function

p(t|XN ) directly, we will make use of their cumulative dis-

tribution function (CDF), which has the usual definition

F (u|XN ) = P [t > u|XN ]. CDFs are more convenient in

our discussion as they can represent both continuous and

discrete-time distributions. Furthermore, CDFs can capture

both non-trivial distributions, used to encode uncertainty,

as well as “deterministic ones” that put all the mass on a

specific value of t, and can thus be used to encode point

estimates (these CDFs are step functions).

3.2. Predicting the TTE

Next, we describe a number of prediction models for the

TTE, all implemented as neural networks Φ. These networks

take as input a sequence of observations XN and output

an estimate F̂ (t|XN ) of the TTE CDF. The networks are

learned from example pairs (XN , τ) via optimization of a

suitable expected loss, which depends on the nature of the

model. Models differs mainly by whether they use a discrete

or continuous representation of time and by whether they

predict a non-trivial distribution over possible TTEs or they

produce instead point estimates.

3.2.1 Discrete-time models

One-in-many classification. The simplest approach to

modelling the CDF F̂ (t|XN ) is to quantize time in discrete

bins and reduce the problem to a classification one. For sim-

plicity, assume that the quantization interval is of one second

and that there are ∆max bins in total. Time t ≥ 0 is mapped

to a discrete index by the following quantizer function:

q(t) =

{

⌊t⌋+ 1, t < ∆max,

∆max, t ≥ ∆max.

Index q = ∆max means that the event occurs beyond the

prediction horizon.



In order to implement this model, the network Φ(XN ) is

terminated in a softmax layer configured to output a ∆max-

dimensional probability vector. The corresponding CDF is

given by the cumulative sum

F̂ (t|XN ) =

q(t)
∑

i=1

Φi(XN ). (1)

The model is trained by minimizing its negative log-

likelihood E(XN ,t)[− log Φq(t)(XN )].

Binary classifiers. As a variant of the previous model,

we consider using ∆max independent binary classifiers

Φi(XN ) ∈ [0, 1] by processing the network output not via

a softmax layer, but via a sigmoid. Each such classifier

Φi(XN ) is trained via log-likelihood maximization to pre-

dict the probability that the event occurs at time i or later. At

test time, the event is deemed to occur at the time the first of

such classifier fires; formally, the CDF is given by

F̂ (t|XN ) =

{

1, ∃i ≤ t+ 1 : Φi(XN ) ≥ 1
2 ,

0, otherwise.
(2)

Note that the expression above is valid for values of t strictly

less than the horizon ∆max; if all classifiers fail to fire, then

the event is deemed to occur beyond the prediction hori-

zon and conventionally predicted to be at time 2∆max as

explained before.

Heuristic heatmaps. Inspired by the keypoint detection

literature [23, 22, 14], we explore predicting the TTE via

an heuristic heatmap. To this end, the neural network is

configured to output a 1D heat map Φ(XN ) = h ∈ R
T
+ of

size T = 2r∆max, where r is the temporal resolution (in

our experiments, we set r = 4). The TTE is decoded as the

position of the maximum in the heat map h. For t < 2∆max,

the TTE CDF is obtained via cumulative summation and

normalization:

F̂ (t;h) =
1

∑T
i=1 hi

⌊ T
2r∆max

t⌋+1
∑

i=1

hi. (3)

This model is trained by minimizing the expected squared L2

distance E(XN ,t)[‖gt − Φ(XN )‖2] between the estimated

heatmap and a heatmap prototype gt centered at the ground-

truth TTE value τ . The prototype is a Gaussian-like kernel

[gt]i = exp
[

− 1
2σ2

(

2r∆max

T i− τ
)2
]

.

Note that this model allows the heatmap to have non-

zero values in a region beyond the prediction horizon ∆max

up to 2∆max so that the “no show” case can be captured.

For training the model, “no show” samples are mapped to

Gaussian window prototypes gt whose center is randomly

selected in the interval [∆max, 2∆max]. This ensures that data

are more balanced in the training process, compared to a

representation when one outputs just zero values in the heat

map if the event did not occur.

3.2.2 Continuous-time models

A limitation of the previous models is their finite temporal

resolution, due to the use of a quantizer function, and no

representation of uncertainty of the prediction. We thus

evaluate models that produce a continuous estimate of the

TTE, and that, apart from Direct Regression, also output

prediction uncertainty.

Direct regression. The simplest approach to predict the

TTE over a continuous domain is to configure the neural

network to output a real number Φ(XN ) = t̂ ∈ R+ that

approximates the TTE directly (following the convention

that, if the event does not occur before the time horizon

∆max, then the model outputs the value 2∆max).

This model estimates the TTE with infinite resolution,

but it does not produce an uncertainty. This fact is cap-

tured by a step-wise CDF F̂ (u|t̂) = [u ≥ t̂]. The model

is trained by minimizing the expected absolute distance be-

tween estimated TTE t̂ and ground-truth TTE τ , given by

E(XN ,t)[|τ − Φ(XN )|]; this is the same as the expected L1

distance ‖F (·|t̂)−F (·|t)‖1 between the estimated step-wise

CDF and the step-wise CDF centered at ground-truth TTE.

Gaussian distribution. In this case, the model Φ(XN ) =
(µ, σ) ∈ R

2
+ outputs two real numbers, the mean µ and stan-

dard deviation σ of a 1D Gaussian distribution N (t|µ, σ),
with CDF F (t|XN ) = NCDF(t|Φ(XN )). Again, we use

the convention of setting τ = 2∆max when the event

does not occur within the prediction horizon. This model

is also trained by minimizing the negative log-likelihood

E(XN ,τ)[− logN (τ |Φ(XN ))].

Weibull distribution. The Gaussian distribution is not

necessarily optimal for modeling TTEs; in fact, several

authors have proposed to use the Weibull distribution in

similar contexts [13]. In order to experiment with this

idea, the network is modified to output the parameters

(α, β) ∈ R
2 of a Weibull distribution, whose CDF is given by

F̂ (t|α, β) = 1−e−(t/α)β . The advantage of the Weibull dis-

tribution is that it can more explicitly model the case in which

the event does not occur within the prediction horizon ∆max.

Such a “no show” event is modeled as Type I censoring,

denoted with z = 0, whereas z = 1 means that the event oc-

curs within the window. The model is learned by minimizing

the negative log-likelihood E(XN ,t)[− log p(τ |z,Φ(XN ))]
where

log p(t|z, α, β) = z

(

log(β) + β log
t

α

)

−

(

t

α

)β

(4)

where, given our convention of mapping events that do not

occur we have z = [τ > ∆max].

Gaussian Mixture Model Heatmap (GMMH). Finally,

we propose a novel representation based on a Gaussian Mix-



ture Model (GMM), which combines the benefits of the

Gaussian distribution and the heuristic heat map models.

The network is configured to output three vectors

Φ(XN ) = (µ,σ,h) ∈ R
T×3 again of dimension T =

2r∆max. The first two vectors µ and σ represent the param-

eters of T 1D Gaussian distributions, and the third vector h,

similar to the heuristic heatmap, is used here as the weight-

ing of the T Gaussians components. The CDF of this model

is simply the weighted combination of Gaussian CDFs:

F̂ (t;µ,σ,h) =
1

〈1,h〉

T
∑

j=1

hjNCDF(t;µj , σj).

The loss function is the negative log-likelihood of the GMM

regularized by the loss already adopted for the heuristic

heatmap:

E(XN ,t)



− log

T
∑

j=1

hjN (τ ;µj , σj)

〈1,h〉
+ λ‖gt − h‖2



 .

(5)

3.3. Evaluation Metrics

Next, we present three evaluation metrics of increasing

granularity, allowing to compare models’ performance in

terms of how well they predict whether the event will or

will not occur (Event Prediction Accuracy), how accurately

they predict time to the event (Time-to-Event Error) and how

accurate is the event probability distribution estimate (Model

Surprise).

We expect predictions to be more difficult as the event oc-

curs farther in the future, so we break down evaluations based

on this parameter. Specifically, we vary ∆gt ∈ [0,∆max] to

draw performance curves, as the same test events are ob-

served from greater temporal distance. We also report the

average value of the three metrics as ∆gt is swept inside this

range.

Event Prediction Accuracy (EPA). EPA measures

whether the model can successfully answer the if question,

namely whether the event will or will not occur within the

prediction window. This is a classification problem and EPA

is the average classification accuracy. Recall that, in order

to predict that the event does not occur, discrete-time mod-

els predict a special index/class, whereas continuous-time

models predict the event to occur at a time t > ∆max.

Since most of the episodes XN do not contain the event

of interest (as these are comparatively rare), in order to make

metrics comparable between event types and datasets we

balance the testing set so that the ratio between sequences

with and without the event is 50:50.

Time-to-Event Error (TTEE). TTEE measures whether

the model can successfully answer the if so, when? question,

namely determine when exactly the events will occur. TTEE

is the average absolute prediction error E(XN ,t)[|τ − Ψ ◦
Φ(XN )|], where Ψ is the operation that maps the output of

the neural network Φ to a point estimate t̂ = Ψ ◦Φ(XN ) for

the TTE. For discrete-time models, for example, Ψ maps the

predicted time index to a continuous time value to allow for

a comparison against the ground-truth time. The empirical

average is carried over the subset of the test set where the

event does occur. If the network predicts incorrectly that the

event does not occur, then the TTEE for that sample is set to

∆max.

Model Surprise (MS). For model that outputs a predic-

tion uncertainty in addition to a point estimates, we are

also interested in measuring the quality of the predicted un-

certainty value. We do so by taking the output distribution

p̂(t|XN ) and measuring the expected negative log-likelihood

given the ground truth annotations in the test set, defined as

E(XN ,τ)[− log p̂(τ |XN )]. This is also known as model “sur-

prise” and is an indication of the quality of the probabilistic

output of the model: if the model assigns high probability

values to the correct ground truth locations, the resulting

“surprise” will be low, and vice-versa.

3.4. Backbone Architecture

In order to implement the neural network Φ, in all experi-

ments we adapt the 3D ResNet-34 [7] architecture (see ta-

ble 1) and extend it with a soft-attention module [28] to

visualize what regions of the video sequence play the key

role in the network decision making process. Depending on

the model, we also change the output dimension accordingly

(see Section 3.2). Most notably, our proposed GMMH has an

output dimension of 80× 3 (T = 2r∆max = 2× 4× 10 =
80).

We used the vanilla SGD optimizer with Nesterov mo-

mentum [21] with an initial learning rate of 10−1, which was

decreased by a factor of 10 every time the loss stopped im-

proving, and trained every model until the learning rate fell

below 10−5. All models were implemented in PyTorch [15]

and all the source code will be released to foster reproducibil-

ity.

4. Experiments

We assess our approach in two challenging scenarios:

egocentric car stopping and basketball throws.

4.1. Egocentric Car Stopping

In the first experiment, we aim to predict if and when a

car is about to stop, using the video stream from a forward-

looking camera mounted behind a windshield.

Dataset. We build on the BDD100k dataset [30], which

consists of 100,000 video sequences each 40 seconds of

length, accompanied with basic sensory data such as GPS,

velocity or acceleration. We define the stopping event as the



Layer Spatial Dim. Time Dim. Channels Operation

Input 112× 112 16 64 3× 3× 3 conv (stride 2), BN, ReLU

Pooling 56× 56 8 64 3× 3× 3 max pool (stride 2)

Residual Block (1) 24× 24 8 64 3× 3× 3 conv, BN, ReLU, 3× 3× 3 conv, BN, sum

Residual Block (2) 24× 24 8 128 3× 3× 3 conv, BN, ReLU, 3× 3× 3 conv, BN, sum

Attention Map 24× 24 8 1 3× 3× 3 conv, BN, ReLU, 3× 3× 3 conv, softmax

Soft Attention 24× 24 8 128 element-wise multiply all channels by Attention Map

Residual Block (3) 14× 14 4 256 3× 3× 3 conv (stride 2), BN, ReLU, 3× 3× 3 conv, BN, sum

Residual Block (4) 7× 7 2 512 3× 3× 3 conv (stride 2), BN, ReLU, 3× 3× 3 conv, BN, sum

Average Pooling 1× 1 1 512 7× 7× 2 avg. pool

Output 80 × 3 — — fully connected

Table 1. 3D ResNet architecture
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Figure 3. Predicting stopping in the BDD100k driv-

ing dataset. EPA (left) and TTEE (right) as functions

of the temporal distance ∆ before the event
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Figure 4. Human accuracy

on BDD100k.

# frames EPA [%] TTEE [s] MS

1 60.96 3.84 4.29

2 68.70 3.77 4.19

4 71.41 3.43 4.10

8 73.27 2.90 3.99

16 78.70 2.04 2.69

24 78.75 2.03 2.65

Table 2. Number of input frames vs. event

prediction accuracy on BDD100k

Model EPA [%] TTEE [s] MS

One-in-many Classifier 71.87 2.66 N/A

Binary Classifiers 75.90 3.21 N/A

Direct Regression 71.11 3.81 N/A

Gaussian Distribution 66.77 5.77 10.91

Weibull Distribution 55.66 8.31 3.20

Heuristic Heatmap 76.15 2.64 3.88

Gaussian Mixture 78.70 2.04 2.69

Table 3. Car stopping prediction in the BDD100k driving dataset

point in time when the vehicle velocity falls below 5km/h,

if previously the velocity was above the threshold for at least

10 seconds (i.e. the vehicle was in motion for at least 10

seconds). We follow the original train/val/test BDD100k

dataset split, but since the sensory data are not available

for the test subset, we evaluate our model on the val subset

only. In total, we used 31k stopping and 21k not-stopping

sequences for training, and 4.6k stopping and 3.1k non-

stopping sequences for evaluation. Each video sequence was

sampled at 5fps. We did not use any of the sequences where

the car was not moving at all or where it stopped in less than

10 seconds since the beginning of the video clip in either

training or evaluation. We will publish the data split and the

stopping events positions to make sure the experiment can

be easily reproduced.

Results. We trained all models from scratch, using the

same 3D-ResNet architecture (see section 3.4) as the back-

bone in all experiments. The only difference between them

is the the dimensionality/nature of the last layer and loss

function accordingly, which vary as explained in section 3.

Method Output model EPA [%]

WTTE-RNN [13] Weibull Distribution 56.01

MS-LSTM [3] Binary Classifiers 61.17

our method Gaussian Mixture 78.70

Table 4. Car stopping prediction in the BDD100k driving dataset

Table 3 shows GMMH performs the best on this dataset.

As shown in fig. 3, all models’ prediction accuracy decreases

as events more in the future are considered, but GMMH

uniformly outperforms all other models.

We also visualize the attention of the network by display-

ing the values of the Attention Map layer, averaged over the

N input frames. In fig. 1 we show that the network has for

example learned to detect traffic lights, as well as to look for

cars ahead on the road, as this is a good indicator or whether

the car will shortly stop or not. The model has also learned

that when approaching a green traffic light, there is a still

a probability the car might stop (fig. 1 — middle row), as

green might turn red before the car gets there. We note that

all this was learned in an unsupervised way, only as a result

of the requirement to predict the car stopping.

Comparison to Existing Methods. We also do our best to

compare to existing methods in the literature. We exploit the

architecture of Aliakbarian et al. [3], which is a LSTM with

attention model for early event classification, and we adapt

it to our domain by treating the event prediction as a clas-

sification problem (see Section 3.2.1). For this method, we

use the Binary Classifiers output formulation, as this proved

to be the best discrete-time model in our experiments. We

train the models using the same training data and learning



rate schedule as our model and follow the same evaluation

protocol (see Table 4). We show that the method performs

worse than our method. This however is in part explained by

the fact that this approach uses a different backbone (VGG)

as the method also performs worse than 3D-ResNet with

the same output formulation (see Table 3). We also adapt

WTTE-RNN [13], which is a LSTM-based model used to

predict events in low-dimensional data (such as engine fail-

ures based on a series of measurements). The model outputs

Weibull distribution, which makes it extremely relevant to

the domain of time to event prediction. We adapt it for im-

age processing by plugging 3D ResNet-35 as a backbone,

in order to generate low-dimensional features for the model,

and train it jointly. The method performs only slightly better

than the vanilla 3D ResNet-35 using Weibull Distribution

(see Table 3), which suggests that the LSTM does not bring

much of an additional benefit for the 3D ResNet backbone.

It still however is worse than our GMMH model.

Comparison to Human Performance. We set up an ex-

periment to assess the human performance for the task of

breaking prediction. We showed 5 second video sequences

(N = 25 frames) randomly picked from the above validation

set to non-expert volunteers and asked them to answer the

question “Will the car you are in stop within the next 10

seconds?” by clicking one of the two buttons. For stopping

videos, we randomly picked from the interval ∆ ∈ (1, 10)
seconds before the car stopped, so that the last frame of the

5 second sequence was exactly ∆ seconds before the stop-

ping, and for non-stopping video we simply picked a random

5-second sequence from the video.

We collected around 1.5k data points from 28 non-expert

volunteers (students), by asking them to perform this task for

approximately 10 minutes, without giving them any immedi-

ate feedback to say if their answers were correct or not. As

we show in Figure 4, the human performance decreases as

events more in the future are considered, which is expected.

More interestingly human performance in our experiment is

actually slightly worse than the best model. We think that

this is because it is harder for humans to establish a deeper

understanding of the currently shown road scene from only

a 5 second video sequence, and that humans were gener-

ally more defensive in their estimates. Many scenes in the

dataset, for example, capture busy traffic situations where

cars in front are slowing down/breaking but not actually stop-

ping, but a natural reaction for a human is to expect the car

will indeed stop as a result, leading to a biased answer. The

network, on the other hand, can learn to exploit this prior in

the data.

Ablation Studies. We study the contribution of the vehi-

cle’s velocity as a possible source for the stopping prediction.

This is interesting, as one might expect that the stopping

prediction could be mostly based on velocity information,

Model EPA [%] TTEE [%]

Image only 71.87 2.66

Velocity only 61.89 6.92

Image + velocity 72.01 2.70

Table 5. Impact of the velocity input

i.e. the information that the vehicle has started to slow down.

First, we train a multi-layer perception classifier, using 16-

dimensional velocity vector as the input feature. The vector

represents the current velocity in the respective 16 frames

of the video sequence. We then compare the prediction per-

formance to our model which uses only images as an input.

We also combine both by concatenating the MLP output as

the 513th channel for the fully connected layer. We used the

one-in-many model in this experiment, so that we can have

the same output encoding for all three options, including the

standalone MLP.

As we show in table 5, the velocity channel on its own is

not sufficient for a reliable stopping prediction — predicting

whether the car will stop or not (EPA) is 10 percent point

worse than when using only the image data, but more im-

portantly the time-to-event prediction error (TTEE) is more

than 2 times higher. This suggests that the car slowing down

is a reasonably good indicator of that the car about to stop,

but the exact time/place of stopping relies heavily on visual

information from the scene. On the other hand, adding the

velocity information to the image data has very limited im-

pact to the accuracy, which suggests that the network actually

already performs some velocity estimation from the image

data.

In the second ablation study, we evaluate the impact of

the number of observed video frames on the overall accuracy,

when using the newly proposed Gaussian Mixture formu-

lation (see table 2). We show that the accuracy is slowly

decreased as less input frames are considered, however the

difference between the input length of 24 and 16 frames

is very small, but comes with almost double the computa-

tional cost. In the extreme case of observing a single frame,

the accuracy drops significantly, because the network loses

any information about the current car movement. We there-

fore opted to use 16 frames as the input of our model, as a

trade-off between accuracy and training/run time.

Due to lack of space, the ablation study of the temporal

resolution r is presented in the Supplementary material.

4.2. Basketball Shooting

In the second experiment setting, we aim to predict if and

how long till a player is going to shoot a basketball towards

the basket, using TV recordings of basketball games. The

data is very different from the previous experiment, because

the action is observed by an external observer as the camera

aims at the field where the action is happening, and the video

sequences are generally more challenging as basketball is a



Figure 5. Predicting basket-

ball shooting. Time to event

probability prediction (blue),

event occurrence ground truth

(red), maximal prediction hori-

zon ∆max (dashed gray).
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model EPA [%] TTEE [s] MS

One-in-many Classifier 53.71 5.00 N/A

Binary Classifiers 73.84 2.30 N/A

Direct Regression 71.87 2.68 N/A

Gaussian Distribution 53.80 4.99 7.09

Heuristic Heatmap 73.64 2.10 3.61

Gaussian Mixture 76.42 1.42 3.02

Table 6. Predicting basketball shooting
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Figure 6. Basketball shooting EA (left) and TTEE (right)

fast-moving game and moreover there are often cuts between

different cameras and therefore viewpoints within the video

stream.

Dataset. We exploit the NCAA basketball dataset [16],

which contains 296 basketball game recordings, each typ-

ically 1.5 hours long. The dataset comes with manually

created annotations of 11 event types, from which we picked

4 classes (2-point success, 2-point fail, 3-point success and

3-point fail) representing ball leaving player’s hands and

used that as an annotation for the “ball throw” event used in

our experiments. We follow the original data split and used

the training & val subsets for training, and the test subset for

evaluation. We do not use any of the localization (bounding

box) information provided in the dataset.

Since the videos are much longer than in the driving case,

we first split them into 30 second sequences and then label

each sequence depending whether it contains the ball throw

or not. Because the sequences without the ball throw prevail,

we randomly subsample them to have a comparable number

of sequences with and without the ball throw. As a result, the

training set consists of 7k “ball throw” and 9k “no ball throw”

sequences, and the testing set contains 1.1k “ball throw” and

1.4k “no ball throw” sequences. We will again publish the

exact data split for reproducibility.

Results. We trained all models from scratch, using the

same training protocol as in the previous section. In contrast

to the previous section, we only train and evaluate the pre-

diction in the interval of (1, 5) seconds, because of generally

faster pace of the action happening in the videos and to avoid

issues with cuts in the TV stream.

Our GMMH again performs the best (see Table 6), signif-

icantly outperforming the other representations in all three

metrics. Looking at the attention map, we observe that the

network has learned to look for players and the team forma-

tion as a cue to predict whether a player is about to shoot

the basketball or not (see fig. 5). We also point out that the

output probability distribution has generally greater variance

(i.e. “the sigmas are larger”) than in the previous experiment,

which is also reflected in the higher Model Surprise (3.02 for

basketball vs. 2.69 for the stopping prediction — note this

metric has a logarithmic scale). This suggests that generally

there is a higher uncertainty in the underlying dataset.

5. Conclusion

We considered the problem of future event prediction: if

and when an event will occur. We evaluated several possible

representations and proposed a novel probabilistic GMMH

model, which also outputs uncertainty of the prediction.

By evaluating in two entirely different testing scenarios,

we demonstrated that we are able to predict events up to

10 seconds before they occur, and that using attention, we

can demonstrate that the network has learned to look for

meaningful cues, such as traffic lights. We also showed that

in vehicle stopping prediction, our model outperforms an

average human, which we contribute to the better ability

of neural networks to learn domain specific priors and to

capture subtle cues.
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