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Future exacerbation of hot and dry summer monsoon extremes

in India
Vimal Mishra 1,2✉, Kaustubh Thirumalai 3, Deepti Singh4 and Saran Aadhar 1

Summer monsoon (June-September) precipitation is crucial for agricultural activities in India. Extremes during the monsoon season

can have deleterious effects on water availability and agriculture in the region. Here, we show that hot and dry extremes during the

summer monsoon season significantly impact food production in India and find that they tend to occur during El Niño years during

the observed record of 1951–2018. We then use an ensemble of climate simulations for the historic (1971–2000) and future

(2006–2100) that capture this coupling between El Niño and the Indian monsoon to show that the frequency of concurrent hot and

dry extremes increases by a factor of 1.5 under continued greenhouse warming during the 21st century. Despite projections of

summer monsoon intensification on the order of ~10%, the rise in surface air temperatures as well as increase in rainfall variability

contributes to more severe hot and dry monsoon extremes over India, thereby posing a substantial challenge to future food

security in India.

npj Climate and Atmospheric Science            (2020) 3:10 ; https://doi.org/10.1038/s41612-020-0113-5

INTRODUCTION

Food security in the Indian subcontinent is inextricably linked to
summer monsoon rainfall. It is well-known that Indian monsoon
variability significantly impacts food production and, therefore,
affects the socioeconomic well-being of more than a billion
people1. Several studies have documented the relationship
between agriculture and excesses and deficits in monsoon rains
across various regions of India1–9. Despite overall increasing rates
of food production since the mid-20th century, mainly tied to
technological advances and increased inputs during the Green
Revolution, fluctuations in summer monsoon rainfall yet cause
sharp anomalies in the yields of many staple crops. Given such a
tight coupling between climate and agricultural production in a
region with a rising population and nutritional demands, there is a
pressing need to anticipate future changes in monsoon variability
under greenhouse warming.
In particular, monsoon rainfall extremes can cause substantial

crop damage across the subcontinent. Thus, considerable efforts
have been devoted to the detection and attribution of extreme
rainfall events over the observational period, and in simulations of
future climate change10–15. However, due to the large uncertainty
in model sensitivity and choice of metrics, debate persists
regarding future changes in rainfall extremes, despite the
consensus that the Indian monsoon will intensify in a warmer
world12.
Nevertheless, considerably less attention has been given to the

combined impact of rainfall and air temperature extremes during
the summer monsoon season over India. Concurrent hot and dry
extremes are known to have a pronounced influence on food
production, water availability, and human discomfort across the
world16–18. In this work, we demonstrate the negative effect of
seasonal hot and dry extremes on staple crop yields in India
during the monsoon season. Next, we diagnose the potential
drivers of these extremes using observations and link them to the
El Niño Southern Oscillation (ENSO) phenomenon. Finally, we use

an ensemble of global warming simulations to investigate
projections of the frequency of concurrent hot and dry extremes
over India in the 21st century.

RESULTS

Concurrent hot and dry extremes and food production in India

The total food production of staple crops in India has nearly
tripled over 1951–2016 (Fig. 1a) despite declining rainfall and
increasing temperatures during the monsoon season (Supple-
mentary Fig. 1). For instance, yields of food grain (cereals and
pulses), rice, wheat, and cereals (Rice, Jowar, Bajra, Maize, Wheat,
and Barley) have increased at a rate of 25, 27, 43, and 15.5 kg/ha,
respectively, over this period. The significant rise in crop yields is
attributable to refined agricultural management associated with
the expansion of irrigation, fertilizers, and improved seeds after
the green revolution19. However, year-to-year rainfall and
temperature anomalies during the monsoon season (hereafter
defined from June to September; JJAS) still have sizeable impacts
on staple crop yields in India20,21.
To address these anomalies in food production under the

backdrop of an overall increasing trend, we apply a first-difference
filter22 to compilations of yearly crop yields (Fig. 1b). We find that
the first difference of JJAS precipitation is significantly correlated
(p-value < 0.05) to total food grain (r= 0.71) and rice (r= 0.70)
yields in India, with decreased monsoon rainfall associated with
reduced production. Furthermore, monsoon rainfall is positively
correlated with wheat (r= 0.45) and cereal (r= 0.50) yields,
indicating a significant yet indirect effect on crops grown outside
the monsoon season. This indirect effect is primarily due to soil
moisture storage during the monsoon season, which provides
favorable conditions for agricultural growth in the post-monsoon
season. Similarly, albeit with slightly weaker correlations, all-India
averaged air temperature anomalies during the monsoon season
are also associated with anomalies in crop yields (refer to Fig. 1b
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for correlations). We find significant (p-value < 0.05) negative

correlations between monsoon season air temperature and crop

yields, with warmer temperatures linked to reduced production

(Fig. 1). Moreover, the monsoon season rainfall explains more than

50% of the total variance in food grain and rice yields

(Supplementary Table 1). On the other hand, the monsoon season

temperature explains about 22% of the total variance of food

grain yields. The relative contribution of the monsoon season
rainfall and temperature was estimated considering them
together (Supplementary Table 2). The monsoon season rainfall
has more than 40% contribution in food grain and rice yields.
Combining these inferences, we find that concurrent hot and

dry monsoon seasons are associated with substantially reduced
crop yields in India (Fig. 1). The top six years with deficits in
monsoon rainfall larger than 100 mm and with concurrent
temperature anomalies larger than 0.5 °C occurred in 1957
(precipitation deficit=−125 mm and temperature anomaly=
0.7 °C), 1972 (−223.8 mm, 1.0 °C), 1979 (−231mm, 0.8 °C), 2002
(−115mm, 0.5 °C), 2009 (−183 mm, 1.1 °C), and 2014 (−170mm,
0.7 °C). These years are also associated with the largest anomalies
in crop yields, with total food grain yield reduced by 41 (1957), 44
(1972), 146 (1979), 200 (2002), 111 (2009), and 92 (2014) kg/ha,
respectively, (Fig. 1). The year 2002 is not as dry and hot as
compared with the years 2009 and 2014. However, crop yields
were considerably low for the year 2002 in comparison to years
2009 and 2014. The year 2002 was the worst monsoon season
drought with a much larger areal extent (~54%) than in 2009
(~45%) and 2014 (~35%) (Supplementary Fig. 2). The year 1965
had crop yields lower than in 1972 and 1951. The 1965 drought
was mainly centered in one of the most productive regions (i.e.,
Gangetic plain) in India (Supplementary Fig. 2). Since the all-India
averaged crop yields were used in our analysis, location, areal
extent, and timing of droughts (e.g., 1965 and 2002) might have
affected the crop yields more than the noticeable concurrent hot
and dry events. Overall, extreme dry and hot events are associated
with significant reductions in rice, wheat, and cereal yields over
this period as well (Fig. 1), thereby demonstrating the strong
propensity of hot and dry extremes to induce anomalies in Indian
food production.

Observed hot and dry extremes in India

What causes hot and dry monsoon extremes in India? We
characterized these events using the standardized precipitation
evapotranspiration index (SPEI23) and air temperature anomalies
for the monsoon season. SPEI considers available water as the
difference of precipitation and potential evapotranspiration (PET,
see Methods for details). Monsoon seasons with SPEI less than −1
and temperature anomalies greater than 1 were categorized as
concurrent hot and dry extremes. Although there are slight
discrepancies compared with the events categorized using the
first difference of monsoon rainfall and temperature (Fig. 1), SPEI
provides a more robust assessment of dryness in the Indian
monsoon region (see Methods for more details). Overall, India
experienced seven (1951, 1972, 1979, 1987, 2009, 2014, and 2015)
concurrent hot and dry monsoon seasons over the observed
period of 1951–2018 (Fig. 2a, b and Supplementary Table 3). Out
of these seven extreme seasons, four occurred after 1980 while
three (2009, 2014, and 2015) occurred in the most recent decade
(2009–2018) indicating an increased frequency of such events in
recent time.
All the seven concurrent hot and dry monsoon extremes

occurred during El Niño events, the positive phase of ENSO
(Supplementary Fig. 3). We find that sea-surface temperature (SST)
in the Niño3.4 region, central Pacific, an indicator of ENSO
variability, are significantly correlated (r= 0.6; p < 0.05) with
monsoon-season SPEI values over 1951–2018. Similarly, we also
observe a significant relationship between monsoon season
temperature anomalies and Niño3.4 SSTs (r= 0.43; p < 0.05). Out
of the seven hot and dry monsoons during this period, three
(1972, 1987, and 2015) were linked to strong El Niño events with
Niño3.4 SST anomalies larger than 1.0 °C (Supplementary Fig. 3).
Although each extreme event is consistently associated with

warm SSTs in the Pacific, the spatial pattern of these events over
India is variable. However, each event induces intense warming

Fig. 1 Changes in food production and associated links with
monsoon precipitation and temperature over India. a Changes in
yield (kg/ha) of wheat, rice, food grain, and cereal in India from
1951–2016, b first difference of precipitation (mm) during the
monsoon season (June to September) for 1951–2016, c same as (b)
but for the June-to-September air temperature (°C), d–g first
difference of food grain, rice, wheat, and cereal yield (kg/ha) during
1951–2016. The first difference was estimated by subtracting the
value of the previous year from the current year. Vertical lines
indicate precipitation anomalies with a deficit of more than 100mm
and temperature anomalies of more than 0.5 °C during the
monsoon season. Such events occurred in 1957, 1972, 1979, 2002,
2009, and 2014, and were associated with significant reductions in
food yield. Values in parenthesis indicate the correlation between
food yield versus precipitation (P) and temperature (T). Precipitation
and temperature anomalies are estimated using all-India averaged
precipitation and temperature. Correlations between crop yield and
precipitation/temperature were estimated for the entire period of
1951–2016.
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and drying across large swaths of India. For example, a large part
of western and central India was affected by extreme dryness and
heat in 1987, when SST patterns in the Pacific Ocean were
characterized by El Niño conditions (Supplementary Fig. 3).
Similarly, extreme hot and dry conditions affected a large part
of northern and central India during the monsoon season of 2009
(Supplementary Fig. 3). The other five hot and dry extreme years
(1951, 1972, 1979, 2014, and 2015) were also linked with warm SST
anomalies over the central Pacific Ocean and similarly affected
large parts of northern India (Supplementary Fig. 3).
To further explore the dynamics behind the observed SPEI

values and Pacific SSTs during the monsoon season, we performed
maximum covariance analysis (MCA, see Methods for more details)
over the 1951–2018 period (Fig. 3a). The first leading mode
exhibits an ENSO-like pattern that confirms a strong correlation
between SPEI and SSTs over the central Pacific (r= 0.6; Fig. 3a, b).
The second leading mode obtained from MCA has characteristics
that somewhat resemble the Indian Ocean Dipole (IOD) pattern,
and primarily affects rainfall in Southern India during the monsoon
season (Supplementary Fig. 4c, d). Finally, the third leading mode
from MCA points towards the role of Indian Ocean SSTs on
monsoon-season rainfall over northern and southern India24,25,
where Indian ocean warming is associated with drying over the
Gangetic Plain (Supplementary Fig. 4e, f). Thus, the dynamics of
hot and dry extremes are tied to El Niño as well as Indian Ocean
warming. However, the linkage of hot and dry extremes with
ENSO may change under the global warming climate due to
change in the Walker circulation26–29. Recent studies reported the
weakening of the Walker circulation in observed climate due to
rapid warming over the Indian Ocean in comparison to the Pacific
Ocean28,29.

Future monsoon extremes

How will hot and dry monsoon extremes change in the future? To
address this question, we used simulations of the historic and
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Fig. 3 Heterogeneous correlations between 4-month SPEI and SST anomalies for the monsoon season obtained using Maximum
Covariance Analysis (MCA). a, b Correlations for the observed SPEI and SST for the monsoon season obtained from the first leading mode of
MCA for 1951–2018, and c, d composite of heterogeneous correlations between monsoon season SPEI and SST from the first leading mode of
MCA from all 40 ensemble members of CESM-LENS. Numbers in brackets denote the squared covariance fraction (SCF) explained by the first
leading mode. For CESM-LENS, we calculated the mean SCF from all ensemble members.

Fig. 2 Hot and dry extremes over India during the monsoon
season (June-September) and associated links with El Niño over
1951–2018. a Four-month (June to September) Standardized
Precipitation Evapotranspiration Index (SPEI) at the end of Septem-
ber from 1951 to 2018, b standardized temperature (T) anomaly
during the monsoon season in India, c Niño 3.4 SST anomaly for the
monsoon season during the same period. Gray vertical bars denote
hot and dry monsoon anomalies with SPEI and T anomalies less than
−1 and more than 1, respectively. 1987 and 2009 were identified as
extreme hot and dry monsoon years with SPEI less than −1.5 while T
anomaly more than 1.5 during the period of 1951–2018.
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future climate from the Community Earth System Model Version 1
Large Ensemble (CESM-LENS) for the high-emission scenario (RCP
8.5). This model realistically simulates the coupling between
Indian monsoon rainfall and ENSO over the observed period
(1951–2005) and is skilled at reproducing monsoon spatial
patterns as well as seasonality (Supplementary Fig. 5a, c).
Moreover, CESM-LENS is known to reproduce observed ENSO
variability as well as ENSO-induced circulation and SST anoma-
lies18,30,31. Our MCA exercise based on composites of correlations
obtained in the first leading mode from all the ensemble members
shows that CESM-LENS simulations capture ENSO-monsoon
coupling over India reasonably well (Fig. 3c, d). In addition, the
squared covariance explained by the first leading mode in the
observations and LENS simulations is about 70%. The realism of
CESM-LENS, consisting of model output from 40 ensemble
member simulations of 20th and 21st-century climate32, allows
us to explore changes in future monsoon extremes over India.
In agreement with many other model simulations12,33, the

CESM-LENS also indicates that India is projected to witness
increased monsoon rainfall (~6% increase by 2100) under future
greenhouse warming (Fig. 4a). However, air temperature over
India is also projected to increase by 4 °C on average by the end of
the 21st century. This coupling results in a ~10% increase in
potential evapotranspiration (PET), or atmospheric water demands
(Fig. 4b, c). The increase in atmospheric water demands under a
warmer climate with the effect of increased global mean CO2

concentration (Supplementary Fig. 6) can reduce overall water

availability (i.e., the difference between precipitation and PET).
Accordingly, the frequency of extreme dry (SPEI ≤−1) monsoon
seasons are projected to increase over the coming century (Fig.
4d), especially after the 2030s. Furthermore, alarmingly, extreme
hot monsoon seasons, defined by today’s standards, are likely to
become normal after the 2040s (Fig. 4e), with CESM-LENS
indicating that even more severe hot extremes will become
regular toward the end of the 21st century. Finally, the combined
influence of higher temperatures, variable monsoon rainfall, and
rising PET results in an increased frequency of hot and dry
monsoon extremes (Fig. 4f). As another metric of the impact of
dryness and heat during the monsoon season, we estimated
changes in surface soil moisture (10 cm) according to CESM-LENS
(Supplementary Fig. 7). Soil moisture is a plant-centric measure of
the atmospheric water demand34. We did not consider deeper soil
moisture in our analysis to avoid the influence of high soil
moisture persistence35 on monsoon-season dry and hot extremes.
This exercise reinforced our results with estimated changes in PET,
wherein surface soil moisture is projected to decrease and the
combination with increased warming results in the increased
frequency of concurrent hot and dry extremes over the 21st
century (Supplementary Fig. 8).
According to CESM-LENS, the main driver of hot and dry

monsoon extremes over India is El Niño. As in the observations,
the leading mode obtained from MCA on output from the CESM-
LENS members indicates a strong correlation with El Niño (Fig. 3c,
d). Although there are differences between the patterns in the
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Fig. 4 Climate warming and future changes in hot and dry extremes over India. a Ensemble-mean 30-year average change in monsoon
season precipitation (%) against the reference of 1971–2000 over 2000–2100 period based on 40 large ensemble LENS members, b same as in
(a) but for the monsoon season temperature (T), c same as in (a) but for the monsoon season potential evapotranspiration (PET, %), d 30-year
moving-mean frequency of extreme dry (SPEI ≤−1) events, e 30-year moving-mean frequency of extreme hot (temperature anomaly ≥ 1.0),
and f 30-year moving-mean frequency of extreme hot and dry events during 2000–2100 periods. Estimates in (d–f) are based on the ensemble
mean of 40 LENS members.
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leading MCA mode from the simulations and the observations, the
similarities are striking, with negative correlations across much of

India and relatively weaker or positive correlations over eastern
India. The second and third leading modes also resemble those in
the observations, additionally testifying to the realism of the
simulations and potentially suggesting that the dynamical

controls on the monsoon remain intact over the coming century
(Supplementary Figs 9, 10).
CESM-LENS simulations indicate future exacerbation of mon-

soon extremes in the latter half of the 21st century. The changes in
all-India averaged air temperature and SPEI from all the ensemble

members of CESM-LENS were evaluated during the monsoon
season by dividing our dataset into two periods (1971–2000 and
2071–2100). Forcing changes dramatically at the end of the 21st
century (Fig. 5). Similarly, two periods (1971–2000 and 2071–2100)

were used to evaluate the linkage between ENSO and concurrent
hot and dry extremes during the summer monsoon (Fig. 6). A

significant warming trend is projected during the monsoon
season over India as shown by the kernel-density function of air
temperature (Fig. 5a). Both the mean (Ranksum test) and variance
(Kolmogorov–Smirnov (KS) test) of monsoon season air tempera-

ture are significantly (p-value < 0.05) different for 2071–2100
compared with the 1971–2000 period. Despite the substantial
rise in air temperature, the normalized density for SPEI over the

2071–2100 period is not considerably different (though signifi-
cant) due to the projected increase in rainfall (Fig. 5b).
We identify a total of 42 concurrent hot and dry monsoon years

with SPEI less than−1 and air temperature anomaly greater than 1 °C
in all the 40 ensemble members of CESM-LENS during 1971–2000 (30-
years duration). The SST composite across these 42 extreme years
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clearly indicates the influence of El Niño on hot and dry extremes (Fig.
6a). Similarly, based on 208 hot and dry monsoon seasons in the
future period (2071–2100; 30-years duration in 40 ensemble members
of CESM-LENS), these extremes are more strongly linked with El Niño
(Fig. 6b). Given that the frequency of El Niño is projected to rise under
future climate change36,37, the fraction of extreme hot and dry
monsoon years was quantified that occurred during El Niño years
over the two periods (Fig. 6c, d). The association of El Niño (based on
Niño3.4 SSTs) to concurrent hot and dry extremes is likely to rise by
20% over 2071–2100 compared with 1971–2000 (Fig. 6d). Across all
the CESM-LENS ensemble members about 30% of the total hot and
dry extremes occur with El Niño during 1971–2000 whereas that
fraction increases to 50% over 2071–2100 (Fig. 6d). We note that our
analysis does not investigate SST in the other ENSO regions9, which
could increase the contribution of El Niño to India’s hot and dry
monsoon extremes (Fig. 6d).
We evaluated the co-variability of atmosphere and ocean to

identify the drivers of hot and dry extremes during the monsoon
over India. The Walker circulation is known to play a key role
during the positive phase of ENSO26–29. The trends in SLP and SLP
gradient (between central and (western Pacific/Indian Ocean) in all
the ensemble members of CESM-LENS (Fig. 7) were estimated to
understand the strength of the Walker circulation28. To estimate
the robust trend in the CESM-LENS ensemble members, slightly
longer periods (1951–2000 and 2051–2100) in the historical and
future climate were selected. SLP has increased over the Indian

Ocean/western Pacific (80°E–160°E, 5°N–5°S) while declined over
the central/east Pacific Ocean (160°W–80°W, 5°N–5°S) in the
historical (1951–2000) and projected to decline in the future
(2051–2100). The increase in SLP over the western Pacific and the
decline in the central Pacific show the weakening of the Walker
circulation (Fig. 7). Moreover, the SLP gradient index (dSLP), which
is the difference in SLP between the central Pacific (160°W–80°W,
5°N–5°S) and western Pacific (80°E–160°E, 5°N–5°S) oceans,
represents the intensity of Walker circulation. SLP gradient is
projected to decline more rapidly in the future (2051–2100) in
comparison to the historical period of 1951–2000 (Fig. 7c, d). The
composite analysis of SLP for all the hot and dry extremes shows
that a weakening in the Walker circulation in the historical period,
which is projected to continue in the future (Fig. 8a, b) and
consistent with the previous study38. Similarly, the composite of
SLP for hot and dry extremes that occurred during El-Nino shows
even a stronger weakening of the Walker circulation, indicating
the strong El-Nino teleconnection with Indian summer monsoon.
Since the western Pacific and Indian Ocean SST is warming with a
faster rate24,28, the weakening in the Walker circulation may
continue under the warming climate.

DISCUSSION

Addressing and anticipating future changes in climate extremes with
continued greenhouse warming is of critical importance for regional
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adaptation39,40. Thus far, due to an emphasis on rainfall extremes over
the Indian subcontinent, changes in the magnitude and frequency of
hot and dry monsoon years have largely been overlooked. In this
work, we have shown how these events have already had
considerable impacts on staple crop yields across India and long-
term warming can increase the prevalence of hot and dry extremes.
Moreover, we link the occurrence of these extremes over the Indian
subcontinent to El Niño events in the Pacific Ocean. Despite a low
number of El Niño events in the observational record, the CESM-LENS
simulations facilitate conclusive statistics that long-term warming can
worsen these ENSO-modulated events due to the weakening of the
Walker circulation. Our analysis finds that concurrent hot and dry
extremes will increase in frequency and magnitude over the coming
century. According to CESM-LENS, in spite of seemingly stable SPEI
projections due to moderate increases in future monsoon rainfall, the
long-lived rise in surface-air temperatures will conspire with El Niño to
yield extreme seasonal heat and dryness. Since our analysis is based
on the single model (CESM-LENS), additional analyses with other
global climate models that show reasonable skill in capturing the
ENSO-monsoon relationship41,42 can provide additional insights into
the increasing contribution of El-Nino events in driving the rising
concurrence of hot and dry extremes over India under the warming
climate. Nonetheless, the increased severity of hot and dry monsoon
extremes is likely to pose a substantial challenge to the future food
security of the Indian subcontinent.

METHODS

Observed datasets

We obtained gridded (0.25 °C) precipitation and air temperature (1 °C) for
1951–2018 from India Meteorological Department (IMD). Air temperature data
at 1 °C spatial resolution was regridded to 0.25 °C using bilinear interpolation to
make it consistent with the precipitation dataset. Daily precipitation product
from IMD has been developed using more than 6500 rain gauge stations
located across India43. The gridded precipitation product captures the key
features of the Indian summer monsoon precipitation. For instance,
precipitation variability in the core monsoon season, western Ghats, and

north-eastern India are well captured. In addition, the gridded product resolves
the influence of orography on precipitation reasonably well44,45. Daily
temperature (at 1 °C) from IMD is developed using the station data from
about 395 stations located in India. The temperature data showed warm bias
in the northern regions of Himalaya due to sparse gage density, which has
been reported in the previous studies44,45. We used yield (kg/ha) data for total
food grain, rice, wheat, and cereals from the directorate of economics and
statistics (https://eands.dacnet.nic.in/latest_20011.htm). All-India food grain and
crop yields are available for the 1951–2016 period. We estimated the
relationship between yields and precipitation and temperature during the
monsoon season using the first difference22 of time series. The first difference
was estimated after removing the value of the previous year from the current
year, which minimizes the influence of management practices (irrigation,
fertilizer, and seed) on crop yields22. We estimated the relative importance46 of
the monsoon season rainfall and temperature in crop yield at 95%
significant level.

CESM-LENS simulations

We used simulations from the Community Earth System Model Version 1
(CESM1) that consists of a large ensemble (CESM-LENS: hereafter) of 40 runs
with the common period of 1920–210032. The first ensemble of CESM (CESM-
LENS01) covers the period of 1850–2100 and can be used to analyze the
climate during the pre-industrial era. The 40 ensemble members of CESM-LENS
are run using 40 different initial conditions, therefore, can be useful for
understanding the role of internal climate variability on climate extremes.
Moreover, a large number of runs from CESM-LENS enable us to conduct a
more robust statistical analysis of climate extremes under the current and
projected future climate18. We used surface temperature and precipitation
from CESM-LENS simulations to estimate the changes in hot and dry extremes
during the monsoon season.

Estimation of PET

We estimated atmospheric water demand (potential evapotranspiration:
PET) to estimate standardized precipitation evapotranspiration index
(SPEI23) considering 1971–2000 as the reference period. We estimated
PET using Modified Penman–Monteith method for CESM-LENS datasets.
Modified Penman–Monteith method considers the changes in surface
resistance (resistance of vapor flow through stomata openings) with
changes in atmospheric CO2 concentration in the warming condition. Yang
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et al.47 incorporated the global mean atmospheric CO2 concentration in
the PET estimation:

PET ¼
0:408Δ Rn � Gð Þ þ γ

900
Tþ273

uD

Δþ γ½1þ u 0:34þ 2:4 ´ 10�4 CO2½ � � 300ð Þf g�

where Rn is net radiation at the surface, G is ground heat flux, Δ is the slope
of the vapor pressure curve, u is wind speed, D is vapor pressure deficit,
and γ is psychometric constant.
We obtained monthly global mean atmospheric CO2 concentration from

MPI-ESM-LR model for the historical (1920–2005) and RCP 8.5 (2006–2100)
which is consistent with the atmospheric CO2 concentration from CESM-LENS
data (Supplementary Fig. 6). For observations (1951–2018), we used the
Hargreaves–Samani48 method to estimate the PET due to the lack of observed
data required to estimate PET using the Modified Penman–Monteith method.
We considered dry events with 4-month SPEI at the end of September, which
represents cumulative available water (precipitation–PET) for the monsoon
season, less than −1. Similarly, for hot monsoons, the temperature anomaly of
more than 1 °C from the mean temperature for the reference period
(1971–2000) was considered49. We considered the monsoon season affected
by the hot and dry extremes if temperature anomaly was higher than 1 °C and
SPEI was lower than −1, simultaneously. We estimated the mean frequency of
hot, dry, and hot and dry monsoons from all the runs of CESM-LENS for each of
the 30-years period starting from 1971.

Maximum covariance analysis (MCA)

We obtained NOAA extended reconstructed sea-surface temperature (SST,
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html)50

version 5 that is available at 2 °C spatial resolution and monthly temporal
resolution to evaluate SST anomalies during hot and dry extremes in the
observed period (1951–2018). Surface temperature (TS) from CESM-LENS
was used to identify the SST anomalies during the historic and future
periods. We obtained Niño 3.4 (5°N–5°S, 170°W–120°W) from National
Center for Atmospheric Research (NCAR: https://climatedataguide.ucar.
edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni) to evaluate
the linkage between El Niño Southern Oscillation (ENSO) and hot and dry
extremes in India. We estimated Niño 3.4 (5°N–5°S, 170°W–120°W) using
the monsoon season SST. Notwithstanding ENSO peaks in boreal winter,
we focused on the monsoon season as monsoon season SST in the Pacific
Ocean is strongly associated with the summer monsoon precipitation over
India25,51,52. Since the monsoon season SST has a strong trend under the
future climate, to estimate SST anomalies for the selected Niño regions we
removed secular trends53 from SST time series using ensemble empirical
mode decomposition (EEMD54). In contrast to the common detrending
methods, EEMD considers both linear and non-linear trends in data
(Supplementary Fig. 10). We find a good agreement between Niño 3.4
based on Hadley Centre SST dataset (HadSST) and estimated using EEMD
(Supplementary Figs 11, 12). SST anomalies were estimated for the
monsoon season in the observed and CESM-LENS datasets after removing
the trend using EEMD. We used maximum covariance analysis (MCA55) to
evaluate the linkage between SST anomalies and hot and dry extremes
over India. The MCA provides leading modes of coupled variability of SST
and SPEI and heterogeneous correlation can be used to understand the
strength of relationship in each leading mode25.
Using the LENS-CESM sea level pressure (SLP) data, we estimated the

SLP gradient index (dSLP) from the difference in SLP averaged over the
central/east Pacific (160°W–80°W, 5°S–5°N) and over the Indian Ocean/west
Pacific (80°E–160°E, 5°S–5°N)28. The SLP gradient, which represents the
strength of the Walker circulation, was computed for the monsoon season.
A positive SLP gradient means a strong Walker circulation while a negative
gradient shows a weak Walker circulation, representative of El-Nino-like
conditions. Moreover, SLP gradient was identified as a better proxy than
wind for the Walker circulation28. Trends in the SLP were estimated using
the non-parametric Mann–Kendall56,57 and Sen’s slope58 methods. The
influence of serial and spatial correlations in trend estimation was
considered using modified method59.

DATA AVAILABILITY

The data that support the findings of this study are available from the authors on

reasonable request to the corresponding author.

Received: 19 December 2019; Accepted: 26 February 2020;

REFERENCES

1. Gadgil, S. & Gadgil, S. The Indian monsoon, GDP and agriculture. Econ. Polit. Wkly.

41, 4887–4895 (2006).

2. Parthasarathy, B., Rupa Kumar, K. & Munot, A. Forecast of rainy season foodgrain

production based on monsoon rainfall. Indian J. Agric. Sci. 62, 1–8 (1992).

3. Krishna Kumar, K., Rupa Kumar, K., Ashrit, R. G., Deshpande, N. R. & Hansen, J. W.

Climate impacts on Indian agriculture. Int. J. Climatol. 24, 1375–1393 (2004).

4. Milesi, C. et al. Decadal variations in NDVI and food production in India. Remote

Sens. 2, 758–776 (2010).

5. Prasanna, V. Impact of monsoon rainfall on the total foodgrain yield over India. J.

Earth Syst. Sci. 123, 1129–1145 (2014).

6. Davis, K. F., Chhatre, A., Rao, N. D., Singh, D. & Defries, R. Sensitivity of grain

yields to historical climate variability in India. Environ. Res. Lett. 14, 064013

(2019).

7. DeFries, R. et al. Synergies and trade-offs for sustainable agriculture: Nutritional

yields and climate-resilience for cereal crops in Central India. Glob. Food Security

11, 44–53 (2016).

8. Davis, K. F. et al. Assessing the sustainability of post-Green Revolution cereals in

India. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1910935116 (2019).

9. Singh, D. et al. Climate and the Global Famine of 1876–78. J. Clim. 31, 9445–9467

(2018).

10. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K.

Increasing trend of extreme rain events over india in a warming environment.

Science 314, 1442–1445 (2006).

11. Singh, D., Tsiang, M., Rajaratnam, B. & Di, N. S. Observed changes in extreme wet

and dry spells during the South Asian summer monsoon season. Nat. Clim.

Chang. 4, 1–6 (2014).

12. Singh, D., Ghosh, S., Roxy, M. K. & McDermid, S. Indian summer monsoon:

extreme events, historical changes, and role of anthropogenic forcings. Wiley

Interdiscip. Rev. Clim. Chang. 10, e571 (2019).

13. Ghosh, S., Das, D., Kao, S. C. & Ganguly, A. R. Lack of uniform trends but increasing

spatial variability in observed Indian rainfall extremes. Nat. Clim. Chang. 2, 86–91

(2012).

14. Roxy, M. K. et al. A threefold rise in widespread extreme rain events over central

India. Nat. Commun. 8, 1–11 (2017).

15. Mukherjee, S., Aadhar, S., Stone, D. & Mishra, V. Increase in extreme precipitation

events under anthropogenic warming in India. Weather Clim. Extrem. https://doi.

org/10.1016/J.WACE.2018.03.005 (2018).

16. Overpeck, J. T. Climate science: the challenge of hot drought. Nature 503,

350–351 (2013).

17. Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought?

Geophys. Res. Lett. 41, 9017–9023 (2014).

18. Thirumalai, K., DInezio, P. N., Okumura, Y. & Deser, C. Extreme temperatures in

Southeast Asia caused by El Ninõ and worsened by global warming. Nat. Com-

mun. 8, 1–8 (2017).

19. Siegfried, T. et al. Modeling irrigated area to increase water, energy, and food

security in semiarid India. Weather, Clim., Soc. 2, 255–270 (2010).

20. Mall, R. K., Singh, R., Gupta, A., Srinivasan, G. & Rathore, L. S. Impact of climate

change on Indian agriculture: a review. Climatic Change 78, 445–478 (2006).

21. Lobell, D. B., Sibley, A. & Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat

senescence in India. Nat. Clim. Chang. 2, 186–189 (2012).

22. Lobell, D. B. & Field, C. B. Global scale climate-crop yield relationships and the

impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).

23. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought

index sensitive to global warming: The standardized precipitation evapo-

transpiration index. J. Clim. 23, 1696–1718 (2010).

24. Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming

and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).

25. Mishra, V., Smoliak, B. V., Lettenmaier, D. P. & Wallace, J. M. A prominent pattern

of year-to-year variability in Indian Summer Monsoon Rainfall. Proc. Natl Acad. Sci.

USA 109, 7213–7217 (2012).

26. Bayr, T., Dommenget, D., Martin, T. & Power, S. B. The eastward shift of the Walker

Circulation in response to global warming and its relationship to ENSO variability.

Clim. Dyn. 43, 2747–2763 (2014).

27. Power, S. B. & Smith, I. N. Weakening of the Walker Circulation and apparent

dominance of El Niño both reach record levels, but has ENSO really changed?

Geophys. Res. Lett. 34, L18702 (2007).

28. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to

anthropogenic forcing. Nature 441, 73–76 (2006).

29. Tokinaga, H., Xie, S. P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the

Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443

(2012).

30. DiNezio, P. N. et al. A 2 year forecast for a 60–80% chance of La Niña in

2017–2018. Geophys. Res. Lett. 44, 11,624–11,635 (2017).

V. Mishra et al.

8

npj Climate and Atmospheric Science (2020)    10 Published in partnership with CECCR at King Abdulaziz University

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://doi.org/10.1073/pnas.1910935116
https://doi.org/10.1016/J.WACE.2018.03.005
https://doi.org/10.1016/J.WACE.2018.03.005


31. DiNezio, P. N., Deser, C., Okumura, Y. & Karspeck, A. Predictability of 2-year La

Niña events in a coupled general circulation model. Clim. Dyn. 49, 4237–4261

(2017).

32. Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble

Project: a community resource for studying climate change in the presence of

internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

33. Menon, A., Levermann, A., Schewe, J., Lehmann, J. & Frieler, K. Consistent increase

in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst.

Dyn. 4, 287–300 (2013).

34. Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to

increasing CO 2 reduce estimates of climate impacts on drought severity. Proc.

Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1604581113 (2016).

35. Mishra, V. et al. Reconstruction of droughts in India using multiple land surface

models (1951-2015). Hydrol. Earth Syst. Sci. 2000, 1–22 (2018).

36. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

37. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse

warming. Nature 564, 201–206 (2018).

38. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse

warming. Nat. Clim. Chang. 4, 111–116 (2014).

39. Fedoroff, N. V. et al. Radically rethinking agriculture for the 21st century. Science

327, 833–834 (2010).

40. Anderson, W. B., Seager, R., Baethgen, W., Cane, M. & You, L. Synchronous crop

failures and climate-forced production variability. Sci. Adv. 5, eaaw1976 (2019).

41. Li, X. & Ting, M. Recent and future changes in the Asian monsoon-ENSO rela-

tionship: Natural or forced? Geophys. Res. Lett. 42, 3502–3512 (2015).

42. Mishra, S. K., Sahany, S., Salunke, P., Kang, I.-S. & Jain, S. Fidelity of CMIP5 multi-

model mean in assessing Indian monsoon simulations. npj Clim. Atmos. Sci. 1, 1–8

(2018).

43. Pai, D. S. et al. Development of a new high spatial resolution (0.25° × 0.25°) Long

Period (1901–2010) daily gridded rainfall data set over India and its comparison

with existing data sets over the region. Mausam 65, 1–18 (2014).

44. Shah, R. & Mishra, V. Evaluation of the reanalysis products for the monsoon

season droughts in India. J. Hydrometeorol. 15, 1575–1591 (2014).

45. Mahto, S. S. & Mishra, V. Does ERA‐5 outperform other reanalysis products for

hydrologic applications in India? J. Geophys. Res. Atmos. https://doi.org/10.1029/

2019JD031155 (2019).

46. Silber, J. H., Rosenbaum, P. R. & Ross, R. N. Comparing the contributions of groups

of predictors: Which outcomes vary with hospital rather than patient character-

istics? J. Am. Stat. Assoc. 90, 7–18 (1995).

47. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic

implications of vegetation response to elevated CO2 in climate projections. Nat.

Clim. Change 9, 44–48 (2019).

48. Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from tem-

perature. Appl. Eng. Agric. 1, 96–99 (1985).

49. Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has

increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936

(2015).

50. Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.

v4). Part I: Upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

51. Mishra, V. Long-term (1870–2018) drought reconstruction in context of surface

water security in India. J. Hydrol. 580, 124228 (2020).

52. Zhou, Z., Xie, S. & Zhang, R. Variability and predictability of Indian rainfall during

the monsoon onset month of June. Geophys. Res. Lett. 46, 14782–14788 (2019).

53. Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V. & Chen, X. On the time-varying

trend in global-mean surface temperature. Clim. Dyn. 37, 759–773 (2011).

54. Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: a noise-assisted

data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009).

55. Bretherton, C. S., Smith, C. & Wallace, J. M. An intercomparison of methods for

finding coupled patterns in climate data. J. Clim. 5, 541–560 (1992).

56. Kendall, M. G. Rank Correlation Methods (Charles Griffin, San Francisco, Calif.,

1975).

57. Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245 (1945).

58. Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. Source J.

Am. Stat. Assoc. 63, 1379–1389 (1968).

59. Yue, S. & Wang, C. Y. Applicability of prewhitening to eliminate the influence of

serial correlation on the Mann-Kendall test. Water Resour. Res. 38, 4-1–4-7 (2002).

ACKNOWLEDGEMENTS

We acknowledge the financial assistance from Belmont Forum and Ministry of Earth

Sciences. Authors also appreciate data availability from NCAR-CESM-LENS ensemble.

AUTHOR CONTRIBUTIONS

V.M. conceived the idea and designed the study with inputs from K.T. and D.S. S.A.

prepared the data from CESM-LENS ensemble. V.M. conducted the analysis. V.M. and

S.A. worked on the dynamics using SST and SLP datasets. V.M. and K.T. wrote the

initial draft. V.M., K.T., and D.S. improved the discussion and results.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/

s41612-020-0113-5.

Correspondence and requests for materials should be addressed to V.M.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2020

V. Mishra et al.

9

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2020)    10 

https://doi.org/10.1073/pnas.1604581113
https://doi.org/10.1029/2019JD031155
https://doi.org/10.1029/2019JD031155
https://doi.org/10.1038/s41612-020-0113-5
https://doi.org/10.1038/s41612-020-0113-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Future exacerbation of hot and dry summer monsoon extremes in India
	Introduction
	Results
	Concurrent hot and dry extremes and food production in India
	Observed hot and dry extremes in India
	Future monsoon extremes

	Discussion
	Methods
	Observed datasets
	CESM-LENS simulations
	Estimation of PET
	Maximum covariance analysis (MCA)

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


