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We spend much of our daily lives imagining how we can reach future goals and what will happen when we attain them. Despite the prevalence of such
goal-directed simulations, neuroimaging studies on planning have mainly focused on executive processes in the frontal lobe. This experiment examined
the neural basis of process simulations, during which participants imagined themselves going through steps toward attaining a goal, and outcome
simulations, during which participants imagined events they associated with achieving a goal. In the scanner, participants engaged in these simulation
tasks and an odd/even control task. We hypothesized that process simulations would recruit default and frontoparietal control network regions, and that
outcome simulations, which allow us to anticipate the affective consequences of achieving goals, would recruit default and reward-processing regions.
Our analysis of brain activity that covaried with process and outcome simulations confirmed these hypotheses. A functional connectivity analysis with
posterior cingulate, dorsolateral prefrontal cortex and anterior inferior parietal lobule seeds showed that their activity was correlated during process
simulations and associated with a distributed network of default and frontoparietal control network regions. During outcome simulations, medial
prefrontal cortex and amygdala seeds covaried together and formed a functional network with default and reward-processing regions.
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INTRODUCTION

Episodic future simulation, our ability to construct and imagine a

hypothetical personal event or series of events in the future (Taylor

and Schneider, 1989; Schacter et al., 2008), has been at the center of

much recent behavioral and functional magnetic resonance imaging

(fMRI) research (e.g. Buckner and Carroll, 2007; Gilbert and Wilson,

2007; Schacter et al., 2007; Szpunar, 2010; for a recent review, see

Schacter et al., 2012). In everyday life, people frequently engage in

episodic future simulation (Klinger and Cox, 1987; D’Argembeau

et al., 2011) and tend to plan and anticipate personal goals when

they do so (Baird et al., 2011; D’Argembeau and Mathy, 2011). Two

types of such goal-directed simulations will be the focus of this study:

(i) imagining attaining a desired goal and (ii) constructing a detailed

plan of how to reach a certain goal (Taylor and Pham, 1996; Oettingen

and Gollwitzer, 2010). A large body of research has examined different

aspects of planning, including diverse planning tasks (Hayes-Roth and

Hayes-Roth, 1979; Shallice, 1982; Garden et al., 2001), theoretical

models of planning (e.g. Miller et al., 1960; Ajzen, 1991) and planning

deficits due to neurological damage (e.g. Penfield and Evans, 1935;

Morris and Ward, 2005). In contrast, episodic future simulations, spe-

cifically in the context of personal goals and plans, have received com-

paratively little attention (for discussion, see Schacter, 2012).

A few behavioral studies on personal goal achievement have inves-

tigated the effects of episodic future simulations (e.g. Taylor et al.,

1998; Papies et al., 2009; Chan and Cameron, 2011; Spreng and

Levine, 2013). In a series of experiments measuring undergraduates’

performance on midterm exams and a class project, Taylor and Pham

(Pham and Taylor, 1999; Taylor and Pham, 1996, 1999) found that

‘process simulations’, during which students imagined the steps they

should take in order to obtain a good grade or complete a project

(imagining where and when they would study, what measures they

would have to take in order to progress in their studying) proved

more beneficial than ‘outcome simulations’, during which students

envisioned themselves having achieved the goal of a good grade

(being handed their exam with an A grade, feeling happy).

Compared with students in the outcome simulation condition, partici-

pants in the process simulation condition started studying earlier,

spent more hours studying, performed better on exams, were less anx-

ious and suffered from the planning fallacy to a smaller extent. In a

related line of research on ‘implementation intentions’, where partici-

pants form an association between a cue and the desired behavior (‘If I

encounter X, then I will perform Y’; Gollwitzer, 1999; Gollwitzer and

Sheeran, 2006), implementation intentions that were accompanied by

mental simulations of the future behavior rendered the goal behavior

more likely to be carried out (Gollwitzer and Brandstätter, 1997; Papies

et al., 2009). For example, participants who had formed implementa-

tion intentions to write a report on how they spent Christmas Eve by

specifying and visualizing when and where they would start to write

the report were more likely to complete the assignment earlier and

within the specified time window than participants who had only

formed goal intentions (Gollwitzer and Brandstätter, 1997).

Unlike episodic simulations of the steps to be taken toward a goal,

simulations of desired future outcomes allow us to pre-experience the

events’ affective impact and reward value (Boyer, 2008). This charac-

teristic of outcome simulations has been shown to attenuate temporal

discounting, the tendency to devalue delayed relative to immediate

rewards (Peters and Büchel, 2010a; Benoit et al., 2011). In the para-

digms used by Benoit et al. (2011) and Peters and Büchel (2010a),

participants were presented with immediate and delayed rewards and

engaged in episodic simulations of future events that they could

experience if they received the reward. This episodic simulation

condition was compared with either wait time (Peters and Büchel,

2010a) or a semantic estimation of what the reward could purchase

(Benoit et al., 2011). If participants imagined events they associated
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with receiving a reward, they tended to overcome any temporal

discounting bias, that is, they expressed more willingness to wait for

a delayed but larger reward. Imagining personal future events has also

been linked to the eventual enactment of these events (Spreng and

Levine, 2006, 2013; Weiler et al., 2010). Even though participants

were not specifically instructed to imagine future personal goals,

Spreng and Levine (2013) found that 59–64% of the imagined personal

future events, which were supposed to be probable and specific in time

and place, had actually occurred a year after participants simulated

those events.

So far, no fMRI study has examined and compared the neural

underpinnings of episodic simulations of the steps leading up to a

personal goal and the events associated with achieving the desired

goal. However, neuroimaging studies of episodic future simulations

have consistently shown activations in the default network, a set of

interconnected brain regions consisting of medial prefrontal cortex

(mPFC), posterior cingulate cortex (pCC), medial and lateral temporal

regions, and posterior inferior parietal lobule (pIPL; e.g. Gusnard and

Raichle, 2001; Buckner et al., 2008; D’Argembeau et al., 2010;

Yeo et al., 2011). In two recent fMRI studies on episodic simulations

that were directed toward a specific goal, default network regions were

shown to form functional networks with task-relevant regions outside

of the default network (Spreng et al., 2010; Gerlach et al., 2011). In one

such study, Gerlach et al. (2011) required participants to simulate the

process of solving a problem using a certain object (e.g. getting a

friend’s ring off your finger using soap) and revealed that default

network regions and executive dorsolateral prefrontal cortex (dlPFC)

were functionally coupled during the simulation. Spreng et al. (2010)

provided participants with the steps necessary to complete different life

goals and asked them to sequence these goals into a coherent imagina-

tive plan that could lead to the achievement of the goals. During this

planning task, activity in the default network was coupled with the

entire frontoparietal control network, consisting of rostrolateral pre-

frontal cortex (rlPFC), middle frontal gyrus (MFG), anterior insula/

frontal operculum, dorsal anterior cingulate cortex (daCC), precuneus

(PCu) and anterior inferior parietal lobule (aIPL; Vincent et al., 2008;

see also Spreng and Schacter, 2012, and Spreng et al., 2013 for repli-

cation and extension).

Neuropsychological and neuroimaging studies of classic planning

paradigms, such as the Tower of Hanoi or the Multiple Errands

Task, have also consistently implicated prefrontal cortex regions

though none of these tasks involved episodic simulation of personal

goals (e.g. Luria, 1966; Eslinger and Damasio, 1985; Goldstein et al.,

1993; Morris and Ward, 2005). DlPFC activity has been repeatedly

associated with improved performance on executive planning tasks

such as the Tower of London (e.g. Baker et al., 1996; Dagher et al.,

1999; Rowe et al., 2001), as well as more realistic multitasking proced-

ures (e.g. Burgess et al., 2000), suggesting that it plays a role in coor-

dinating and maintaining behavior sequences and goals (Norman and

Shallice, 1980; Botvinick, 2008; Badre and D’Esposito, 2009).

Findings from patients with ventromedial prefrontal cortex

(vmPFC) lesions have indicated that these patients are insensitive to

future consequences and are often unable to decide on which steps to

take toward a goal (Eslinger and Damasio, 1985; Bechara et al., 1994).

VmPFC, which is also a default network region that has been tied to

self-referential processing (e.g. Gusnard et al., 2001; Amodio and Frith,

2006; Jenkins and Mitchell, 2007; D’Argembeau et al., 2010), should

thus play a role in the ability to simulate future outcomes. A more

rostral region of mPFC has also been implicated in the ability to pre-

experience outcomes, particularly if they are associated with positive

valence or rewards (Sharot et al., 2007; D’Argembeau et al., 2008;

Benoit et al., 2011). In addition to mPFC, the experience of emotional

valence and reward has been linked to a system of interconnected brain

regions involved in affective and reward processing, including nucleus

accumbens (NAcc), amygdala, insula, anterior cingulate cortex (aCC)

and thalamus (e.g. Peters and Büchel, 2010b; Liu et al., 2011).

In the present fMRI study of realistic episodic simulations about

personal goals, we examined patterns of brain activation for process

simulations, during which participants imagined themselves going

through a number of idiosyncratic steps toward achieving a goal,

and outcome simulations, during which participants imagined a

number of personal events they associated with achieving a goal.

Based on studies of similar goal-directed simulations and executive

planning (Baker et al., 1996; Spreng et al., 2010; Gerlach et al.,

2011), we hypothesized that participants’ process simulations would

recruit regions of the default and frontoparietal control networks. We

expected activity in core nodes of these networks, such as pCC in the

default network (Fransson and Marrelec, 2008; Hagman et al., 2008;

Buckner et al., 2009), and aIPL and dlPFC in the frontoparietal control

network (Vincent et al., 2008; Spreng et al., 2013) to be coupled as a

functional network during process simulations.

As outcome simulations allow participants to pre-experience the

affective impact and reward value of achieving a goal, we hypothesized

that they would be associated with regions that have been linked to

emotion processing, such as the amygdala (e.g. Bechara et al., 1999,

2003), and reward processing, such as the NAcc and aCC (e.g. Peters

and Büchel, 2010a,b; Liu et al., 2011). Given the prospective,

self-referential nature of outcome simulations, we also expected default

network regions, in particular mPFC based on its aforementioned role

in the simulation of consequences and reward value (Eslinger and

Damasio, 1985; D’Argembeau et al., 2008; Benoit et al., 2011), to be

coupled with reward-processing regions.

MATERIALS AND METHODS

Participants

Twenty-eight healthy, right-handed young adults (mean age¼ 21.2

years, s.d.¼ 2.8; range¼ 18–28 years; 20 women) with normal or cor-

rected-to-normal vision and no history of psychiatric or neurological

conditions provided written consent and participated in the experi-

ment in accordance with the guidelines of the Committee on the Use

of Human Subjects in Research at Harvard University. All participants

were native English speakers and were recruited from Harvard

University and Boston University. Data from an additional three par-

ticipants were discarded due to excessive movement in the scanner

(one participant) and non-compliance with the task reflected in

post-scan interviews (two participants).

Materials

The stimulus set consisted of 102 goals based on a large sample of

personal goals we collected from an independent group of 21 young

adults that were matched to our scanned group in terms of age

[t(47)¼ 1.56, P¼ 0.125], gender [�2(1)¼ 2.10, P¼ 0.15] and educa-

tion [t(47)¼ 1.06, P¼ 0.293; see Supplementary Table S1 for the list of

goals]. This independent group was asked to generate at least 150

realistic personal goals that were attainable within the next 5 years

and comprised neither habitual activities nor significant milestones

such as graduating from college or getting married. We constrained

the goals that participants were asked to provide in such a way as to

limit variability within the stimulus set. For each goal, participants

indicated four sequential steps they would take to reach the goal and

four events or activities they associated with having accomplished the

goal. For instance, for the goal of going on vacation, many participants

imagined going online to compare prices for different destinations,

booking a trip, packing a suitcase and getting on a plane. Swimming

in a pool, having a meal of local specialties, going snorkeling and

Future planning SCAN (2014) 1943

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/9/12/1942/1615827 by U

.S. D
epartm

ent of Justice user on 17 August 2022

-
,
 (aIfO)
,
,
,
,
,
Since
,
medial prefrontal cortex
SD 
-
as
(
p 
)
(
p = .
)
,
(
p = .
http://scan.oxfordjournals.org/lookup/suppl/doi:10.1093/scan/nsu001/-/DC1
)
five 
,
,


sleeping in were activities many participants associated with having

achieved the goal of going on vacation. Participants also provided a

rating of each goal’s desirability on a scale of 1–100 (100 being most

desirable).

We determined 102 goals to be similarly desirable (t < 1) and reliable

across the sample such that at least six out of 21 participants needed to

have generated a goal for it to be included in the dataset. Common

goals ranged from self-improvement (e.g. eating healthier food, im-

proving your wardrobe) to new skill acquisition (e.g. learning to drive

stick shift, learning how to paint), to activities with friends and family

(e.g. going on family vacation, being in a friend’s wedding). All goals

were adapted to be 3–6 words long and to apply to both process and

outcome simulations. Six goals were used for practice trials and 96 for

fMRI scanning.

Design and procedure

Prior to scanning, participants became familiar with all in-scanner

tasks by completing six practice trials. The practice trials included

three trials for the process simulation, for which they imagined two,

three and four steps necessary to achieve a goal, and three trials for the

outcome simulation condition, for which they imagined 2, 3 and 4

plausible events associated with achieving the goal. We asked partici-

pants to produce a specific number of steps or events for each

simulation in order to make the two conditions as equivalent as pos-

sible. This procedure also allowed us to test whether the number of

imagined steps or events affected neural activity for each type of simu-

lation. Following the practice trials, participants were asked to recount

the content of their simulations to ensure task compliance. In order to

elicit realistic, idiosyncratic process and outcome simulations, we did

not to prescribe the specific steps or events participants imagined.

In the scanner, participants were presented with eight experimental

runs of 12 goal simulation trials. Goals were randomized and counter-

balanced across conditions, number of steps/events and participants,

so that each run contained six outcome and six process simulations

without repetitions across conditions. All experimental trials were

intermixed with varying periods of an odd/even task ranging from

5 to 10 s in duration (Stark and Squire, 2001): participants saw a

number from 1 to 9 in the center of the screen and indicated through

a button press whether it was odd or even; they had 2.5 s to do so for

each number. Fixation, which typically elicits default network activity

(Stark and Squire, 2001), was not used as a direct comparison task for

process and outcome simulations, as we expected default network

regions to also be engaged in process and outcome simulations.

For process simulation trials, participants were instructed to imagine

themselves going through a set number of steps (2, 3 or 4) that would

help them achieve a given goal. In outcome simulation trials, partici-

pants simulated a set number of events that they associated with

having achieved a given goal. Both the instructions and the goal

itself remained on screen for the duration of all trials. Trial duration

was self-paced with a maximum duration of 30 s. Next, participants

had 2.5 s to provide a success rating indicating whether they were able

to generate a simulation and adhere to the task instructions. Runs were

approximately 8 min long, and visual stimuli were presented in black,

blue (process goals) or green (outcome goals) on a white background

using a Lenovo Thinkpad laptop that runs EPrime.

Following the scan, participants received a randomized list of all the

goals and were asked to provide a brief written description of each

step/event imagined, which served as a manipulation and task compli-

ance check. Participants also provided behavioral ratings for each trial:

on a scale of 1–7, they rated how detailed and difficult to generate each

simulation had been (1¼ least detailed/difficult, 7¼most detailed/dif-

ficult) and also indicated with a ‘yes’ or ‘no’ whether a given goal was

one they wanted to pursue in real life. Participants also provided

ratings on a 1–7 scale for how important and desirable the goal was,

how confident they were that they would complete the goal, how

motivated they were to achieve it and how difficult they thought it

would be to achieve the goal. It took participants 1.5–2 h to complete

this post-scan interview. The written descriptions of each imagined

step or event allowed us to verify participants’ adherence to the

experimental manipulation. Any written description that was incom-

plete or did not comply with task instructions in the post-scan inter-

view or that was rated unsuccessful in the scanner was excluded from

behavioral and fMRI analyses.

fMRI data collection

We acquired high-resolution three-dimensional T1-weighted anatom-

ical images [repetition time (TR), 2530 ms; echo time (TE), 3.44 ms;

flip angle (FA), 78; 1.0 mm3 isotropic voxels] as well as all functional

images using a 3 T Tim Trio scanner (Siemens) with a 12-channel

phased-array head coil. We collected the data for each participant’s

eight experimental runs using a gradient-echo echo-planar pulse

sequence sensitive to blood oxygenation level-dependent (BOLD) con-

trast (TR, 2500 ms; TE, 30 ms; FA, 908; 2� 2� 2 mm3 voxels; 39 axial

slices parallel to the plane of the anterior commissure–posterior com-

missure; 0.5 mm gap between slices). Participants’ head motion was

minimized with a pillow and two padded clamps. They wore earplugs

to decrease scanner noise and held a button box in their right hand. All

visual stimuli were projected onto a screen at the head of the magnet

bore, which participants viewed through a reflection in a mirror on top

of the head coil.

fMRI data

Preprocessing

We used SPM2 (Wellcome Department of Cognitive Neurology,

London, UK, www.fil.ion.ucl.ac.uk/spm) to preprocess all fMRI data.

After excluding the first four volumes of each run to avoid T1-equili-

bration effects, we corrected the data for slice-dependent time shifts

and for head motion within and across runs using a rigid body cor-

rection. Images were normalized to the standard space of the Montreal

Neurological Institute (MNI) atlas and smoothed with a 6 mm full-

width-at-half-maximum Gaussian kernel resulting in a voxel size of

2 mm3.

Partial least squares

In order to analyze task-related brain activation, we performed a

multivariate partial least squares analysis (PLS; McIntosh et al., 1996;

McIntosh et al., 2004; Krishnan et al., 2011). PLS identifies whole-brain

activity patterns related to experimental tasks and is sensitive to dis-

tributed voxel response. It calculates a set of orthogonal components

(latent variables, LVs) that best explain the covariance of distributed

voxels across the whole brain with the experimental tasks. In contrast

to univariate analyses, PLS thus does not examine the activity of any

single voxel independently but instead identifies patterns of activity

that covary with task conditions. In addition, it extracts these whole-

brain activity patterns in one step, which renders correcting for mul-

tiple statistical comparisons unnecessary. Permutation tests determine

the statistical significance of the LV as a whole, and bootstrap resam-

pling with replacement determines the reliability of the effects.

The whole-brain data were analyzed as blocks of variable duration

set to participants’ self-paced simulation intervals. In the first PLS

analysis, we reported on simulation and outcome conditions, collap-

sing across the different numbers of imagined steps or events. PLS

calculated a set of LVs based on the covariance matrix of the mean

BOLD signal for each block and the experimental tasks: process
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simulations, outcome simulations and odd/even judgments. This

calculation, which involved singular value decomposition of the

matrix, resulted in a singular value for each orthogonal LV. The first

LV always has the largest singular value, i.e. it explains the largest

proportion of the covariance between the BOLD signal and the experi-

mental conditions. The statistical significance of each LV was calcu-

lated using a permutation test with 500 permutations. The correlation

matrix was thereby randomly reordered 500 times, and each time the

singular values for a new set of LVs were calculated. By comparing each

resulting singular value of an LV to the original singular value, PLS

establishes the probability of the permuted singular values that exceed

the original value.

Each brain voxel was assigned a weight, or ‘salience’, that reflects the

covariance of its activity with the task on each LV. The sum of the

product of each voxel’s by each voxel’s BOLD signal resulted in a

so-called brain score for each participant, task and LV. Brain scores

indicate to what extent each participant expresses the LV’s brain

pattern. We calculated 100 bootstrap samples with replacement to

determine whether the saliences for the brain voxels across participants

for each LV were reliable based on the voxels’ standard error (Efron

and Tibshirani, 1985; Davidson and MacKinnon, 2000). We con-

sidered voxels with a bootstrap ratio (BSR; salience/standard

error) > 2.58, P < 0.01, to be reliable. Local maxima, which we reported

as MNI coordinates, were defined as voxels with the highest BSR

within 2 cm3 around them, consisted of clusters of more than 20 reli-

ably activated voxels, and were more than 10 voxels apart from the

next voxel peak. We calculated 95% confidence intervals for each BSR

and determined two conditions to be reliably different from each other

if their confidence intervals did not overlap.

In a second block PLS analysis, we divided the process and outcome

simulation trials into trials with 2, 3 and 4 steps/events. This also

allowed us to test whether the number of imagined steps or events

affected neural activity for each type of simulation.

Task-related functional connectivity

We hypothesized that during process simulation, default and fronto-

parietal control network regions would be functionally coupled.

During outcome simulations, we expected default and reward-process-

ing regions to form a functional network. In order to test these hypoth-

eses, we conducted a task-related functional connectivity analysis using

‘seed’ PLS (McIntosh, 1999; Krishnan et al., 2011). Seed PLS examines

the relationship between the activity of a set of seed regions and the

activity in the rest of the brain. Across participants, the mean BOLD

signal values of each group of seeds were correlated with the activity in

all other brain voxels and combined into a matrix. Singular value

decomposition of this matrix resulted in a set of orthogonal LVs.

Each LV had a pattern of covariance for each seed region with the

rest of the brain (singular profile; Figures 5 and 7) and a pattern of

brain regions that covaried reliably with the seed activity (singular

image; Figures 6 and 8). The significance and reliability of the pattern

of connectivity of the distributed functional network were determined

using permutation tests and bootstrap resampling as described earlier.

For process simulations, we extracted mean BOLD signal values

from pCC (�10 �34 30), left aIPL (�46 �48 42), right aIPL

(46 �50 46), left dlPFC (�34 32 45) and right dlPFC (40 44 26)

along with their 26 neighborhood voxels, which provide a more reli-

able estimate of the activity in the region given anatomical variability

than that of a single voxel. These seeds were derived from the peak

activations with the highest BSRs in the block PLS analysis comparing

process with outcome simulations (see Table 3) and also make up

critical components of the frontoparietal control and default network

in line with our a priori hypothesis. We also extracted mean BOLD

signal values from mPFC (�10 58 28), left amygdala (�20 �6 �14)

and right amygdala (16 �2 �20) for the outcome simulation condi-

tion. All three peaks stemmed from the PLS analysis comparing out-

come and process simulations (see Table 4). For this seed PLS analysis,

we required a BSR of 3.29 for peaks, which approximates a P < 0.001.

RESULTS

Behavioral findings

Participants rated 95% (s.d.¼ 4%) of simulation trials in the scanner

as successful and correctly identified 90% (s.d.¼ 5%) of all odd/even

trials, confirming their ability to successfully perform all experimental

tasks. According to the exclusion criteria described earlier, we were

able to use 90% (s.d.¼ 7%) of goal trials for behavioral and fMRI

analyses. Simulation periods increased significantly in duration accord-

ing to the number of steps and events participants were instructed to

imagine [F(2, 54)¼ 109.44, P < 0.001, �2p¼ 0.80], providing evidence

of participants’ task compliance, and did not differ significantly be-

tween conditions [F(1, 27)¼ 3.54, P¼ 0.07, �2p¼ 0.12]. On average, it

took participants 18 s (s.d.¼ 4) to simulate two steps/events, 21 s

(s.d.¼ 5) to simulate three steps/events and 24 s (s.d.¼ 4) to imagine

four steps/events associated with a given goal.

Post-scan ratings

Participants were able to generate detailed goal simulations (M¼ 4.58

out of 7 for all scalar ratings, s.d.¼ 0.64) and remembered their out-

come simulations to be slightly more detailed than their process simu-

lations (see Table 1 for descriptive statistics per condition and paired t-

tests). Participants found it relatively easy to think of steps or events

for each goal in the scanner (M¼ 2.87, s.d.¼ 0.82) or to achieve the

given goals in real life (M¼ 3.55, s.d.¼ 0.81). On average, participants

shared 59% (s.d.¼ 14%) of the presented goals and categorized a

slightly higher percentage of the goals for which they had undergone

outcome simulations as personal goals. Based on the relatively low

novelty ratings (M¼ 3.09, s.d.¼ 0.88), participants had apparently

given many of the given goals prior consideration. They were quite

confident that they would be able to achieve the presented goals

(M¼ 4.23, s.d.¼ 0.70) and were motivated to do so (M¼ 3.75,

s.d.¼ 0.64). Goals in the outcome simulation condition were evaluated

to be somewhat more important (M¼ 3.74, s.d.¼ 0.69) and desirable

(M¼ 4.38, s.d.¼ 0.74) than goals in the process simulation condition

(importance: M¼ 3.50, s.d.¼ 0.72; desirability: M¼ 4.03, s.d.¼ 1.00);

across conditions participants found the presented goals to be quite

desirable (M¼ 4.27, s.d.¼ 0.71) and important (M¼ 3.65, s.d.¼ 0.73).

Table 1 Post-scan interview characteristics

Process Outcome Paired t-tests

M (s.d.) M (s.d.) t P-value

Detail 4.45 (0.67) 4.7 (0.73) 2.44 0.02
Generation 2.82 (0.85) 2.94 (0.91) 1.04 0.31
Goal 0.56 (0.17) 0.62 (0.16) 3.07 0.005
Importance 3.50 (0.72) 3.74 (0.69) 3.94 0.001
Desirability 4.03 (1.00) 4.38 (0.74) 2.39 0.02
Novelty 3.09 (0.91) 3.10 (0.91) 0.12 0.91
Confidence 4.26 (0.82) 4.23 (0.65) �0.26 0.80
Motivation 3.81 (0.95) 3.82 (0.63) 0.07 0.95
Achievement 3.79 (1.37) 3.53 (0.82) �1.44 0.16

Behavioral ratings on a scale of 1–7 of each goal simulation (1¼ least, 7¼most). ‘Generation’
refers to how difficult it was to generate steps or events; ‘achievement’ refers to how difficult it
would be to achieve the goal in real life. ‘Goal’ was coded as a binary variable (1¼ personal goal,
0¼ not a personal goal). All paired t-tests had 27 degrees of freedom and were two-tailed.
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These results show that participants’ process and outcome simulations

were relatively equivalent and confirm that the provided goals were

relatable as well as relevant.

fMRI results

Partial least squares

The primary block PLS analysis resulted in two significant LVs. The

first LV dissociated the two simulation tasks from the odd/even control

task (P < 0.001; Figure 1). Both goal simulation tasks were associated

with increased activity in default network regions relative to the

odd/even task (see Table 2 and Figure 2). This robust default net-

work activity encompassed all of the main default network nodes,

including posterior parietal and retrosplenial cortex (rSC), vmPFC,

posterior parietal lobule, inferior frontal gyrus, as well as anterior

and medial temporal lobes (Gusnard and Raichle, 2001; Buckner

et al., 2008; Supplementary Table S2 for odd/even > goal simulation

peaks).

As the first LV accounted for most of the covariance in the data

(95.63%), we conducted a second PLS analysis with only the two ex-

perimental conditions in order to specifically target differences be-

tween process and outcome simulations (see also, St.-Laurent et al.,

2011). This analysis resulted in a significant pattern of activity that

accounted for 100% of the covariance in the data (P¼ 0.02; Figure 1)

and identified brain regions where BOLD signal differed between pro-

cess and outcome simulations. Regions that showed increased activity

during process simulations compared with outcome simulations per-

tained to both the frontoparietal control and the default network (see

Table 3 and Figure 3): bilateral aIPL, anterior insula, dlPFC, PCu and

MFG make up the frontoparietal control network (Vincent et al., 2008;

Spreng et al., 2010; Niendam et al., 2012), whereas pCC, rSC, superior

frontal gyrus and the inferior frontal gyrus are part of the default

network (Buckner et al., 2008; Spreng et al., 2013). In contrast,

outcome simulations were associated with increased BOLD signal in

bilateral mPFC, inferior frontal gyrus and amygdala (see Table 4 and

Figure 4).

The secondary PLS analysis of process and outcome simulations

with different numbers of steps and events tested whether the

number of imagined steps/events modulated neural activity. Its results

closely resembled those of the previous analysis: The first LV disso-

ciated both simulation conditions from the odd/even condition,

accounting for 75% of the variance (P < 0.001), whereas a significant

second LV dissociated process from outcome simulations and

explained 9% of the variance (P¼ 0.03) but did not differentiate

between conditions with different numbers of steps or events.

Even a separate PLS analysis comparing only process simulations

with 2, 3 or 4 imagined steps did not reach significance

(LV accounting for 60% of the covariance in the data, P¼ 0.07). An

analogous analysis of outcome simulations with different numbers of

events rendered no significant LV (accounting for 55% of the variance;

P¼ 0.25).

Task-related functional connectivity

The seed PLS analysis for process simulations resulted in a significant

pattern of task-related functional connectivity with one significant LV

that accounted for 53% of the covariance (P < 0.001). Activity in

Fig. 2 Goal simulations > odd/even judgments. Activations in regions of the default network,
including pCC, rsC, vmPFC, pIPL, inferior frontal gyrus and anterior temporal lobe (aTL).

Fig. 1 Block PLS analysis mean brain scores per condition. Data are shown for the PLS analysis that included the control condition (LV1) and the analysis that focused on the experimental conditions (LV2). Error
bars represent the 95% bootstrapped confidence intervals.

Table 2 Peak regions of activation for goal simulation > odd/even judgments

Lat Region BA MNI coordinates BSR

x y z

Goal simulation > odd/even judgments

R PHG 35/28 24 �34 �18 11.62
L IFG 47/11 �40 28 �14 10.99
L msPFC 6 �14 12 58 10.87
L AG 39 �44 �72 32 10.04
L IFG 45 �50 26 14 9.85
R CT 42 �62 �42 9.76
R PostCG 3 26 �30 62 7.48
L Caud �12 10 14 6.08
L UC �8 �88 �38 5.40
R MTG 39 48 �60 24 5.07
R MFG 6 30 12 48 4.96
R IFG 11 36 38 �16 4.40
R PCu 7 14 �58 60 3.99
R mPFC 9 10 56 32 3.85

Lat, laterality; B, bilateral; L, left; R, right; BA, Brodmann’s area; AG, angular gyrus; Caud, caudate;
CT, cerebellar tonsil; IFG, inferior frontal gyrus; msPFC, medial superior prefrontal cortex; MTG, middle
temporal gyrus; PHG, parahippocampal gyrus; PostCG, postcentral gyrus; UC, uvula of the cerebellum.
Locations of the maxima are reported in the stereotaxic coordinates of MNI space.
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bilateral dlPFC, aIPL and pCC seeds was significantly correlated with

the whole-brain pattern, and the five seed regions reliably covaried

together (see Figure 5). The regions that were functionally connected

with the seeds during process simulations were part of the default

network, such as mPFC, IFG and medial temporal lobe, as well as

the frontoparietal control network, such as MFG, rlPFC and PCu

(see Table 5 and Figure 6).

Table 3 Peak regions of activation for process simulation > outcome simulation

Lat Region BA MNI coordinates BSR

x y z

Process simulation > outcome simulation

R dlPFC 9 40 44 26 6.79
L aIPL 40/7 �46 �48 42 5.89
R aIPL 40/7 46 �50 46 5.71
B pCC 23/31 �10 �34 30 5.69
L islC �16 �78 �44 5.61
R MFG 32/8 6 30 34 5.23
R PHG 34 �34 8 4.80
R MFG 6 12 �8 54 4.69
B PCu 7 0 �72 58 4.64
L DC �20 �92 �24 4.62
R LG 18 4 �96 �2 4.36
L islC �34 �62 �40 4.34
R PreCG 6 36 �6 38 4.28
L dlPFC 9 �34 32 45 4.20
R aINS 13 36 16 �4 4.05
L MFG 6 �32 2 60 4.02
L MTG 37 �48 �42 �10 4.02
L FP 10 �26 52 �8 4.00
R IFG 45 46 20 8 3.96
L aINS 13 �32 �22 6 3.96
L islC �40 �78 �42 3.93
L mCC 24 �6 0 26 3.92
L PreCG 6 �52 �4 14 3.90
R STG 38 46 �2 �18 3.90
L ITG 37 �60 �62 �14 3.86
L aINS 13 �36 12 6 3.85
L FP 10 �26 48 20 3.84
R FP 10 30 66 4 3.84
R Thal 20 �10 18 3.77
R Thal 22 �22 12 3.71
R PostCG 3 50 �14 26 3.70
R OP 18 30 �84 �20 3.66
L STG 22 �48 �4 �6 3.63
R GP 20 �2 2 3.62
R STG 22 62 4 2 3.61
L MFG 6 �30 �4 40 3.59
L PC �26 �68 �26 3.58
R islC 24 �78 �48 3.39
L SFG 6 �22 24 56 3.33
R TC 54 �60 �30 3.27
L PostCG 3 �36 �28 64 3.22
L CC �30 �38 �36 3.22
L Thal �10 �22 12 3.20
L PCu 19 �28 �78 46 3.16
R aIPL 40 52 �28 36 3.16
R FG 37 56 �60 �14 2.86

aINS, anterior insula; CC, culmen of the cerebellum; DC, declive of the cerebellum; FG, fusiform gyrus;
FP, frontal pole; GP, globus pallidus; islC, inferior semilunar lobule of the cerebellum; ITG, inferior
temporal gyrus; LG, lingual gyrus; mCC, midcingulate cortex; OP, occipital pole; PC, pyramis of the
cerebellum; PreCG, precentral gyrus; SFG, superior frontal gyrus; STG, superior temporal gyrus;
TC, tuber of the cerebellum; Thal, thalamus. Other abbreviations can be found in the footnote of
Table 2.

Fig. 5 Correlations of activity in bilateral dlPFC, aIPL and PCC with their respective brain scores show
how activity in the five seeds covaries with activity in the entire network. Error bars represent 95%
bootstrapped confidence intervals, which indicate no significant differences in the pattern of con-
nectivity between the five seed regions.

Table 4 Peak regions of activation for outcome simulation > process simulation

Lat Region BA MNI coordinates BSR

x y z

Outcome simulation > process simulation

R mPFC 9 8 58 20 4.81
L IFG 47 �28 30 �10 4.21
B aCC 24 �2 22 10 3.99
L AMG �20 �6 �14 3.96
L IFG 46 �48 38 0 3.78
L mPFC 9 �10 58 28 3.72
L IFG 45 �56 22 18 3.52
R IFG 46 50 36 8 3.47
R AMG 16 �2 �20 3.18

AMG, amygdala. Other abbreviations can be found in the footnotes of Tables 2 and 3.

Fig. 4 Outcome simulation > process simulation. Activations in regions of the default network
(mPFC) and of the limbic system (bilateral amygdala).

Fig. 3 Process simulation > outcome simulation. Activations in regions of the default network,
including pCC, and regions of the frontoparietal network, such as PCu, aIPL and dlPFC.
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For outcome simulations, one significant LV accounted for 51% of

the variance (P¼ 0.01) in the seed PLS analysis. The two amygdala

seeds and the mPFC seed reliably covaried together and were signifi-

cantly correlated with the composite whole-brain score (see Figure 7).

The resulting functional network included vmPFC, rsC and medial

temporal lobe regions that are commonly associated with the default

network (see Table 6 and Figure 8). Regions that have been implicated

in reward processing were also functionally recruited during outcome

simulations, including NAcc, aCC, caudate, thalamus, MFG and

vmPFC (Liu et al., 2011).

DISCUSSION

This study examined the neural correlates of our ability to imagine a

series of steps leading up to a goal and to simulate what it would be like

to achieve a goal. Participants engaged in process simulations, during

which they imagined a number of steps they would take toward achiev-

ing a given goal. This task required them to project themselves into the

future, generate a number of plausible steps, put them into a coherent

sequence and simulate themselves going through these steps, all the

while keeping in mind the end goal. Process simulations recruited

default network as well as frontoparietal control network regions,

which converged with evidence from fMRI studies of related planning

and problem-solving simulations (Spreng et al., 2010; Gerlach et al.,

2011). Components of the frontoparietal network, such as dlPFC, have

been linked to cognitive control (e.g. Botvinick, 2008; Badre and

D’Esposito, 2009; Packer and Cunningham, 2009) and executive plan-

ning processes in both healthy samples (e.g. Baker et al., 1996; Burgess

et al., 2000; Rowe et al., 2001) and lesion patients (e.g. Goldstein et al.,

1993; Luria, 1966; Morris and Ward, 2005). DlPFC activity was not

correlated with information load, suggesting that the involvement of

executive processes cannot be accounted for by increasing task

demands. Many recent findings have provided evidence that the

default network supports self-projection and prospection (Buckner

and Carroll, 2007; Spreng and Grady, 2010; Andrews-Hanna, 2012),

and that pCC acts as one of its critical connector hubs (Fransson and

Marrelec, 2008; Hagman et al., 2008; Buckner et al., 2009). Our seed

PLS analysis confirmed that defining nodes of the default and fronto-

parietal control networks (pCC, aIPL and dlPFC) behaved as a func-

tional network during process simulations and were connected with a

distributed network of regions that consisted of other default and

frontoparietal control network regions, including MFG, IFG, rlPFC,

PCu and PHG. These findings provide more evidence that the default

and frontoparietal control networks are coactive during goal-directed

simulations that require cognitive control (Spreng, 2012). The results

fit with the hypothesized role of the frontoparietal control network,

which is thought to regulate activity in the default network and the

dorsal attention network, whose activation has been linked to exogen-

ous stimuli (Corbetta and Shulman, 2002; Spreng et al., 2010;

Smallwood et al., 2011; Gao and Lin, 2012). In the present task, the

frontoparietal control network may have shielded the default network

from distracting exogenous stimuli and supported the simulation of

complex internal plans though this hypothesis goes beyond the evi-

dence presented in this study and should be tested in future research.

During outcome simulations, participants imagined what it would

be like to achieve a given goal. They were prompted to generate and

imagine themselves in a number of events they associated with reach-

ing a goal, which allowed them to pre-experience the affective impact

that these events could have on them. Compared with process simu-

lations, we found outcome simulations to be associated with increased

activity in mPFC, a main node of the default network (e.g. Buckner

et al., 2008; Andrews-Hanna et al., 2010), and the amygdala, a region

that has consistently been linked to emotion processing (e.g. Bechara

et al., 1999, 2003). Across many studies, mPFC has shown increased

activation in response to self-referential processing (e.g. Macrae et al.,

2004; Jenkins and Mitchell, 2007; Mitchell et al., 2011), including

thinking about personal compared with non-personal future goals

(D’Argembeau et al., 2010). Participants in this study were significantly

more likely to consider a given goal for which they had generated

outcome simulations a personal future goal and also rated it higher

Table 5 Peak regions functionally connected with pCC, bilateral aIPLs and bilateral dlPFC
seeds during process simulations

Lat Region BA MNI coordinates BSR

x y z

L dlPFC 9 �32 58 24 7.32
R dlPFC 9 44 42 28 7.13
L IPL 13 �44 �46 28 6.47
L PC �14 �86 �28 6.35
L pCC 31 �14 �44 34 6.34
L aCC 32 �6 20 34 6.34
R aIPL 40 46 �54 54 6.07
R mCC 24 2 �18 42 5.93
R CT 22 �64 �42 5.84
L Med �4 �48 �50 5.80
R MFG 6 18 16 56 5.73
L PreCG 6 �26 �6 68 5.71
R CT 12 �58 �32 5.59
R pCC 29 6 �42 10 5.56
R PHG 34 24 2 �16 5.48
L MFG 8 �36 28 40 5.42
R Caud 12 8 18 5.40
L TP 38 �50 14 �12 5.36
R IFG 13 44 30 2 5.30
L islC �32 �74 �46 5.28
L PHG 23 �18 2 �18 5.20
R MOG 18 36 �76 10 5.15
L PHG 19 �24 �50 �10 5.10
R islC 12 �76 �40 5.07
R STG 41 46 �30 2 5.04
L PreCG 6 �46 �6 24 5.04
L PreCG 4 �42 �12 42 5.03
R Thal 4 �16 6 4.93
R PHG 27 36 �26 �12 4.88
R FG 37 42 �60 �20 4.80
L PARC 6 �2 �30 70 4.72
L PCu 7 �8 �64 40 4.67
R PCu 19 32 �70 34 4.65
L MOG 19 �30 �82 18 4.61
B CUN 18 0 �78 24 4.51
R MTG 20 58 �38 �12 4.49
R FP 8 34 36 48 4.41
L CT �38 �56 �48 4.38
R Mid 10 �16 �14 4.31
L IFG 9 �38 12 24 4.29
R IFG 9 40 14 22 4.23
R IFG 45 60 30 4 4.10
L MTG 21 �60 �30 �16 4.08
L MOG 19 �52 �74 �2 4.05
R PCu 7 16 �70 36 4.04
R STG 42 70 �30 14 3.99
R PreCG 6 40 0 26 3.99
L msFG 6 �4 �4 72 3.98
R CT 42 �52 �36 3.94
R PCu 7 6 �64 40 3.76
L INS 13 �34 �24 4 3.72
L LN �14 �2 4 3.59

CUN, cuneus; INS, insula; LN, lentiform nucleus; Med, medulla; Mid, midbrain; MOG, middle occipital
gyrus; msFG, medial superior frontal gyrus; PARC, paracentral lobule; TP, temporal pole. Other
abbreviations can be found in the footnotes of Tables 2–4.
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in importance and desirability. These ratings may be explained by the

reward-emphasizing nature of outcome simulations, which might have

led participants to identify more with the goals whose achievement

they imagined.

A functional connectivity analysis confirmed that mPFC activity

was significantly correlated with bilateral amygdala activity during

outcome simulations, and that the three seed regions were also

connected to a distributed network of regions consisting of other

default network regions (e.g. vmPFC, rsC, HC) and regions involved

in the anticipation and evaluation of rewards and outcomes, includ-

ing aCC, NAcc, MFG, caudate and medial thalamus (e.g. Schulz,

2000; Peters and Büchel, 2010a,b; Liu et al., 2011). Activation in the

mPFC seed region has been linked to imagining positive events and

goals that promoted positive actions (Sharot et al., 2007;

D’Argembeau et al. 2008; Packer and Cunningham, 2009) and to

evaluating possible rewards and outcomes (Montague et al., 2006;

Rushworth and Behrens, 2008; Benoit et al., 2011; Liu et al., 2011).

Other components of the reported functional network, such as aCC,

amygdala and the hippocampus, have been shown to be coactive

when participants envisioned possible rewards, with the effect of

alleviating reward delay discounting (Peters and Büchel, 2010a).

Finally, vmPFC is presumed to play a role in the ability to antici-

pate future consequences and to decide on goals to pursue (Eslinger

and Damasio, 1985; Bechara et al., 1994), which aligns with its

recruitment during outcome simulations. The present findings

reveal how default network and reward-processing regions can act

together to generate simulations of desired future outcomes, thereby

facilitating decision-making about future goals.

Table 6 Peak regions functionally connected with mPFC and bilateral amygdala seeds
during outcome simulations

Lat Region BA MNI coordinates BSR

x y z

R AMG 16 �2 �16 9.60
R LG 19 26 �72 4 9.18
L PHG 28 �18 �18 �20 8.49
R CC 24 �32 �34 8.35
L LG 19 �28 �70 4 8.23
L SPL 7 �24 �66 56 7.58
L DC �20 �70 �20 7.36
L Med �2 �30 �44 7.28
R Caud 18 �10 22 7.21
R FG 37 46 �60 �20 6.82
L Caud �14 10 22 6.81
L rsC 29 �2 �36 0 6.38
L Pons �10 �24 �24 6.36
L LN �16 0 �4 6.19
R OP 18 2 �98 18 6.16
R Pons 4 �42 �30 5.99
R FG 19 22 �54 �10 5.96
L aCC 32 �2 22 32 5.94
L aCC 32 �2 36 20 5.75
R PCu 7 2 �72 56 5.62
L msFC 6 �2 28 66 5.55
L FP 10 �32 46 12 5.37
L TC �34 �80 �26 5.29
R Thal 26 �26 10 5.17
L Put �30 4 14 5.14
R NAcc 12 10 �10 5.06
R MFG 6 2 8 52 4.99
L LG 18 �2 �64 2 4.80
L HC �40 �34 �6 4.77
L Thal �26 �32 8 4.73
R SPL 7 22 �58 68 4.66
L PCu 7 �8 �56 74 4.66
L STG 22 �46 �20 �8 4.61
R SOG 19 42 �74 38 4.60
L CT �18 �42 �50 4.52
L MFG 9 �28 34 30 4.42
B vmPFC 10 0 56 0 4.40
R PreCG 4 28 �24 72 4.36
R aCC 32 8 14 38 4.35
B mPFC 8 0 36 40 4.25
L FP 10 �12 64 20 4.21

HC, hippocampus; Put, putamen; SOG, superior occipital gyrus; SPL, superior parietal lobule. Other
abbreviations can be found in the footnotes of Tables 2–5.

Fig. 6 Regions of the distributed functional network in the seed PLS analyses of process simulations.

Fig. 7 Correlation of activity in mPFC and bilateral amygdala seeds with their respective brain scores
show how activity in the three seeds covaries with activity in the entire network. Error bars represent
95% bootstrapped confidence intervals, which indicate no significant differences in the pattern of
connectivity between the three seed regions.
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Our results provide further evidence of the default network’s in-

volvement in goal-directed episodic simulations and its ability to flex-

ibly pair with both frontoparietal control and reward-processing

regions to support such simulations. These findings were based on

process and outcome simulations of goals to which participants

could relate but which they were not necessarily trying to meet in

their own lives at the time of study. If all of the goals had been self-

generated and immediately relevant to participants, we would have

expected mPFC, which has been linked to self-referential processing

(e.g. Macrae et al., 2004) and imagining personal as opposed to non-

personal future goals (D’Argembeau et al., 2010), to be even more

strongly activated in both experimental conditions. It is also useful

to consider our findings in the context of the adaptive value of process

and outcome simulations. Behavioral studies of process and outcome

simulations have suggested that both types of simulation can help us

achieve goals but may do so in different ways (e.g. Taylor and Pham,

1999; Benoit et al. 2011). Although process simulations may aide the

implementation of plans to reach a goal by laying out the exact steps

necessary to achieve it, outcome simulations may help us choose bene-

ficial long-term goals if, for example, the ability to make far-sighted

decisions in the context of temporal discounting (Peters and Büchel,

2010a; Benoit et al., 2011) extends to the choice of personal goals.

However, the exact mechanisms behind these potential benefits have

to be explored further. By providing initial insights into the brain

networks that subserve process and outcome simulations, this study

has helped to lay the groundwork for further behavioral and neuroi-

maging investigations.

SUPPLEMENTARY DATA

Supplementary data are available at SCAN online.
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Peters, J., Büchel, C. (2010a). Episodic future thinking reduces reward delay discounting

through an enhancement of prefrontal-mediotemporal interactions. Neuron, 66, 138–48.
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