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Abstract
Groundwater is an important global resource and its sustainable use faces major challenges. New methods and advances in
computational science could lead to much improved understanding of groundwater processes and subsurface properties. A closer
look at current groundwater monitoring practice reveals the need for updates with a special focus on the benefits of high-
frequency and high-resolution datasets. To future-proof hydrogeology, this technical note raises awareness about the necessity
for improvement, provides initial recommendations and advocates for the development of universal guidelines.
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Novel approaches can tackle big challenges
in hydrogeology

Our world faces many groundwater-related challenges (Alley
2002), for example over-extraction (e.g., Wada et al. 2010) and
associated reduction in river base flow (e.g., deGraaf et al. 2019),
land subsidence (e.g., Galloway and Burbey 2011), sea-water
intrusion (e.g., Jiao and Post 2019) and deterioration of ground-
water quality, due to arsenic (Rodriguez-Lado et al. 2013) or
increasing nitrate concentrations (e.g. Hansen et al. 2017). This

is further exacerbated by groundwaters’ slow response to anthro-
pogenic and climatic impacts (i.e. long hydraulic memory;
Cuthbert et al. 2019a) and competition for water for multiple
purposes including domestic and stock supply, agriculture, ther-
mal energy storage (e.g., Fleuchaus et al. 2018), resource mining
and the environment (de Graaf et al. 2019).

Monitoring groundwater, for example by measuring heads,
underpins virtually all groundwater flow and storage investi-
gations (e.g., Rau et al. 2019) including the calibration of
groundwater flow models (e.g., Hill and Tiedeman 2007) as
well as ground-truth interpretations of large-scale indirect re-
mote sensing or surface geophysical observations (e.g., Alley
and Konikow 2015). Furthermore, groundwater monitoring is
critical in times of unprecedented environmental change as the
past is not necessarily a good predictor for the future.
Monitoring is not only crucial to sustainable groundwater de-
velopment (Gleeson et al. 2020), but also for mitigating
groundwater-related disputes such as transboundary issues
(Puri 2003) and conflicts that are anticipated to increase as a
result of increasing demand and competition (Jarvis 2014).

Time series of groundwater levels provide insights into the
pattern and dynamics of groundwater flow at local (e.g.,
McCallum et al. 2013), regional/subcontinental (e.g., Cuthbert
et al. 2019b) and even the global scale (e.g., Fan et al. 2013).
One of the biggest challenges for integratedwatermanagement is
the lack of detailed knowledge of the distribution of subsurface
hydrogeological properties at all scales (Bierkens 2015;
Reinecke et al. 2019). Subsurface properties can be inferred by
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monitoring groundwater-level response to external stress—for
example, the groundwater response to pumping has long been
used to quantify important aquifer properties like hydraulic con-
ductivity or storage coefficient (e.g., Kruseman and de Ridder
1990). However, ‘active’ aquifer testing, by applying an artificial
hydraulic forcing (e.g. using an abstraction borehole), delivers
localised results and requires substantial effort, which limits the
number of locations that can be investigated in space and time
(e.g., McMillan et al. 2019).

Decades of continuous head measurements are often required
to capture changes in the balance of groundwater recharge and
discharge fluxes (Cuthbert et al. 2019a) due to the delayed re-
sponse of groundwater systems (Taylor and Alley 2001).
However, heads also respond to natural forces on short (hours
or days) timescales such as changes in stream stage (e.g.,
McCallum et al. 2013; Kelly et al. 2013); barometric fluctuations
(Clark 1967; Rasmussen and Crawford 1997; Acworth et al.
2016); Earth, atmospheric and ocean tides (Bredehoeft 1967;
Van Der Kamp and Gale 1983; Xue et al. 2016); rainfall loading
at the surface (van der Kamp and Schmidt 2017); evapotranspi-
ration by phreatophytes (e.g., Gribovszki et al. 2010); and earth-
quakes (e.g., Zhang et al. 2019).

High-frequency methods have been developed that exploit
such natural variations—for example to calculate barometric re-
sponse functions (BRF) that can be used to determine ground-
water confinement (e.g., Rasmussen and Crawford 1997; Spane
2002). Further, groundwater response to Earth tides and atmo-
spheric forcing can be used to determine confinement (Rahi and
Halihan 2013; Acworth et al. 2017) as well as to quantify hydro-
geomechanical properties—e.g. permeability, transmissivity, po-
rosity, compressibility and even specific storage (e.g., Cutillo and
Bredehoeft 2011). Recent research has illustrated that 1-mm in-
strument resolution is enough to capture and interpret the
millimetres of variation in hydraulic head caused by atmospheric
or Earth tide variations in confined systems (e.g., Acworth et al.
2016), known as Tidal Subsurface Analysis (TSA; McMillan
et al. 2019). It is worth emphasising that such methods rely on
high-resolution measurements where accuracy is secondary, as
the sought information is in the relative changes.

These approaches have the immense advantage that they are
‘passive’, i.e. they do not require artificially applied forcing (such
as pumping), but rather rely on ubiquitous natural influences
(e.g., Xue et al. 2016). Such analysis only requires time series
of (1) borehole water levels (or pressure heads), (2) atmospheric
pressure, and (3) calculated Earth tides (McMillan et al. 2019).
Measuring and interpreting such head changes provides a huge
treasure trove for wide-spread analysis of subsurface processes
and properties (McMillan et al. 2019). Due to the number of
observation boreholes relative to dedicated pump testing bore-
holes, this has the potential to significantly increase spatial
knowledge of subsurface hydrogeological properties and hence
the characterisation of heterogeneity. To ensure robust applica-
tion, analysed datasets must adhere to minimum requirements

(outlined in section ‘How can hydrogeology be future-proofed
through improved groundwater monitoring and archiving prac-
tice?’). It is noted that while high time and measurement resolu-
tion may not be required for traditional hydrogeological ap-
proaches (e.g., large-scale models), this becomes significant
when applying passive techniques. Importantly, results from
the latter can inform traditional approaches and improve the
quality of interpretation.

Computational advances have brought about methods which
can digest large quantities of data to solve challenging problems,
derive new understanding or forecast future scenarios, for exam-
ple using artificial intelligence approaches such as deep learning
(Shen 2018). Groundwater databases have become increasingly
available in recent decades due to increased accessibility over the
Internet and decreased computer storage costs. This, in combina-
tionwith thewidespread availability of open-source data analysis
software, offers much potential for data-driven discovery
(Bergen et al. 2019). The authors propose that these new ap-
proaches should increasingly be applied to the large volume of
existing hydrogeological datasets, so that improved
groundwater-system understanding with high-frequency datasets
and large spatial coverage can be derived at low effort and cost.

Unfortunately, there are many obstacles to taking advantage
of existing datasets such as accessibility, and limited provision of
meta-data to assess their quality, as well as insufficient time or
sensor resolution and dataset duration. This technical note calls
for a more holistic approach for collecting, managing and dis-
seminating groundwater head datasets, with an emphasis on
those collected at high frequency. This is not intended to be a
comprehensive review or blueprint for groundwater monitoring
in general terms, but specifically to address how the benefits of
new high-frequency methods can be fully exploited in the future.

Observations from current practice

Traditionally, groundwater level measurements are performed
manually by using water level meters, i.e. measuring tapes with
a water-sensitive tip at the end (Freeman et al. 2004). It is recog-
nized that much critically important historical information is held
in data bases where measurements have only been taken using
measuring tapes (dip meters) to centimetric accuracy at intervals
that may have only been monthly or less frequently. Automated
water-level recorders have been used for decades, but only since
the 1980s have advances in electronics enabled the construction
of automated pressure and distance sensors that are small enough
to fit inside smaller (25-mm diameter) monitoring boreholes
(e.g., Rosenberry 1990), and in the 1990s, further development
allowed the storage of large amounts of data in the same devices.
Using these sensors, water-level changes inside boreholes are
measured and stored at programmable time intervals providing
time series of pressure that can be converted to hydraulic heads.
For this conversion, manual water level measurements are
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required to calibrate and check automated measurements (e.g.,
Rau et al. 2019).

The advent of automated measurement systems, in conjunc-
tionwith data telemetry, enables increasingly comprehensive and
cost-effective collection of groundwater data, even in remote
locations (e.g., Rosenberry 1990; Post and von Asmuth 2013;
Rau et al. 2019). Many countries such as the US Geological
Survey (Freeman et al. 2004) or the Australian Government’s
Bureau of Meteorology (BoM 2019), have developed guidelines
for groundwater monitoring. The Internet has facilitated accessi-
bility, and well-curated groundwater data from various providers
are available to researchers and the general public. Some good
examples for open access databases are:

& The Global Groundwater Information System (GGIS) by
the International Groundwater Resources Assessment
Centre (IGRAC), which is financially supported by the
Government of the Netherlands (IGRAC 2020).

& The National Ground-Water Monitoring Network
(NGWMN) operated by the US Geological Survey
(USGS 2020) provides groundwater monitoring data from
more than 9,000 wells in the USA.

& The British Columbia Groundwater Wells and Aquifers
application (Government of British Columbia 2020a),
real-time hydrological data (Government of British
Columbia 2020b) and the Provincial Groundwater
Observation Well Network interactive map (Government
of British Columbia 2020c) are examples of spatially
displayed datasets for well location and real-time ground-
water level data queries. Established in 1961, the
Provincial Groundwater Observation Well Network pro-
gram has been collecting hourly groundwater level read-
ings reported to three decimal places for over 17 years.

& The National Groundwater Information System (NGIS) and
its mapping interface the Australian Groundwater Explorer
operated by the Australian Government’s Bureau of
Meteorology (BoM 2020) which contains information for
900,000 bores across the country and the National
Collaborative Research Infrastructure Strategy (NCRIS)
Groundwater Infrastructure Program (NCRIS 2020).

These examples summarize advances that testify to the
giant steps that have been made during the last three decades.
Nevertheless, practicalities often prevent data from achieving
their full potential. Collectively, the authors have gained sub-
stantial field and data-interpretation experience while working
for, and with, many academic institutions, consultancies and
governing bodies around the world. In doing so, the authors
have distilled the following observations:

& Groundwater levels are not routinely collected at high fre-
quency, even for limited time periods, at long-term mon-
itoring locations. Some monitoring is associated with a

finite project period and there are few known groundwater
monitoring sites at which strategic long-term high-fre-
quency monitoring is conducted.

& The choice of an appropriate sampling frequency is diffi-
cult to make, usually due to a lack of knowledge about the
dynamics of groundwater processes for a particular loca-
tion. Further, the relationship between the internal clock in
automated devices (which are prone to clock drift) and a
common time base (e.g. time zone and daylight saving
time setting) is often neglected which leads to post-
processing confusion, for example spurious offsets be-
tween barometric pressure or ocean tides and groundwater
records, which can thwart advanced interpretation of pro-
cesses and properties when using high-frequency methods
or when interpreting multiple data sets together.

& Using an established and accurate vertical reference for
groundwater head records is crucial when interpreting
multiple datasets. Practitioners often simply reference to
ground level or the top of the borehole casing and neglect
the accuracy of this information. Please refer to Rau et al.
(2019) for a detailed discussion of this issue.

& In the trade-off between pressure transducer range (maxi-
mum limits) and resolution (smallest resolvable signals),
practitioners seem to prefer maximizing range as it allows
for greater versatility (less chance of failure due to over-
pressurization and a wider range of deployments). In addi-
tion, some practitioners report and archive datasets rounded
to the nearest centimetre thereby mistaking the limited abso-
lute accuracy of manual measurements with the high relative
accuracy of automated measurements. This leads to a loss of
information content such as the often-subtle water level var-
iations caused by Earth or atmospheric tide influences and
prevents the immense benefit of their interpretation.

& Converting pressure time series from automated pressure
transducers into hydraulic head records requires regularman-
ual measurements (e.g., Freeman et al. 2004; Post and von
Asmuth 2013). Systematic and regular borehole inspections
are further required to ensure bore integrity and that the water
level inside the well is a truthful representation of the pres-
sure head in the aquifer. However, regular manual measure-
ment of groundwater levels in spatially distributed monitor-
ing bores is being deprioritised because it requires effort by a
human operator and therefore has a significant financial cost.
Because there are often little spatial and temporal overlap
between manual and automated measurement, groundwater
monitoring bores often have insufficient evaluation of auto-
matically measured water levels.

& Data units vary across countries (e.g., metric or imperial)
and are sometimes not explicitly stated within datasets.
This can create confusion when converting between dif-
ferent unit systems.

& Hydraulic head measurements are rarely corrected for
density effects, which is crucial in areas with brackish or
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saline groundwater (Post and von Asmuth 2013). As part
of standard practice, fluid electrical conductivity and tem-
perature should always be measured as a proxy for densi-
ty, and corrections to the head made, if required.

& Groundwater is monitored by many different stakeholders
with varying objectives, including private companies.
Datasets are often archived separately, have yet to
make their way into accessible databases or are not
made accessible, e.g. archived by government agen-
cies or private companies. Obtaining information
about monitoring locations as well as datasets there-
fore requires significant search, communication and
quality assurance efforts.

& Auxiliary datasets are not commensurate with available
water-level time series. For example, barometric pressure
or rainfall records may be required to interpret datasets but
may not be available at all or not at the required spatial or
temporal resolution. Typically, such data are collected and
maintained by different institutions, which again increases
interpretation efforts.

& Perhaps because of a lack of market push, many standard
pressure transducers do not measure to subcentimetre reso-
lution (Rau et al. 2019). During procurement, affordability is
all too often favoured over performance, even though low-
end pressure transducers are known to have operational is-
sues (e.g., resolution, accuracy, clock accuracy, longevity,
etc.) that limit interpretability of the data they collect.

& Quality assurance (QA) and quality control (QC) proce-
dures for data stored in databases are not always transpar-
ent and may lack meta-data descriptions, thus making it
unclear for what purpose the data are suited.

& Groundwater monitoring is organised differently around the
world. While the stakeholders can roughly be categorised
into private, industry, government and research (Fig. 1), the
responsibilities for and expectations of groundwatermonitor-
ing vary greatly. Consequently, defining a universally appli-
cable best practice is a challenging task.

How can hydrogeology be future-proofed
through improved groundwater monitoring
and archiving practice?

New methodological advances could bring about improved pro-
cess understanding from old monitoring datasets, but the points
listed previously illustrate some of the difficulties typically en-
counteredwith this. To remove these obstacles, there is a need for
developing and adopting universal standard practice for the fu-
ture, when the availability of new data processing and interpre-
tation methods will add even further value to groundwater
datasets. Figure 1 shows a conceptual summary of the workflow
in groundwater monitoring highlighting the limitations in current
practices and a pathway to future opportunities.

The authors call for an update of existing groundwater
monitoring and archiving practice to accelerate process under-
standing at different spatial and temporal scales. More specif-
ically, the following recommendations are proposed:

1. For a successful application of high-frequency methods, a
dataset must fulfil the following criteria:
a. The minimum required measurement resolution is

1-mm head equivalent, which is necessary to accu-
rately capture the subtle influences from atmospheric
pressure changes or Earth tides. Importantly, good
instrument resolution is more important than the over-
all accuracy of the dataset as is usually the focus when
calculating head gradients. Measurements must be
curated, preserved and archived at their original reso-
lution (at least millimetres or three significant digits).

b. The minimum sampling frequency in cycles per day
(cpd) depends on the desired analysis as follows:

& Barometric response functions (BRFs): Like
aquifer testing, the minimum sampling period
will depend on the hydraulic diffusivity of the
aquifer (faster response requires higher time
resolution but shorter record duration).
However, in most cases a sampling frequency
of one per hour is enough to establish confine-
ment or to correct heads for barometric and
Earth tide influences under confined condi-
tions. A minimum record duration of 5 days
is recommended, to capture the response under
low hydraulic diffusivity conditions.

& Tidal Subsurface Analysis (TSA): The mini-
mum sampling frequency must be larger than
twice the Nyquist frequency required to capture
the highest dominant Earth tide influence (S2
tidal component at 2 cpd). This would lead to
sampling every 6 h (or at 4 cpd). However, to
accurately establish the amplitude of the S2 tid-
al component at 2 cpd, it is recommended to
double that frequency to sample every 3 h (or
at 8 cpd). Similarly, the minimum record dura-
tion to confidently distinguish between the
dominant Earth tide frequencies M2 (at
1.93227 cpd) and S2 (at 2.00 cpd) can be de-
rived by applying the Nyquist theorem to the
frequency difference between both components
resulting in a minimum duration of 60 days.

c. A good compromise allowing application of both ap-
proaches is to sample hourly for a minimum duration
of 60 days.

2. Encourage manufacturers to update sensor resolution—
for example, using an industry standard 16-bit analogue-
to-digital-converter (ADC) microchip could theoretically
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deliver a 0.7-mm resolution with a measurement range of
50 m. This would allow the same device to capture large
drawdowns as well as subtle changes caused by Earth
tides and atmospheric pressure changes.

3. Regular field trips usually dedicated to manual water-
level measurements, monitoring infrastructure and instru-
ment maintenance should include the task to coordinate
the relocation of the generally limited number of automat-
ed monitoring devices around a catchment (or monitoring
jurisdiction) so that records satisfying the minimal re-
quirements for high-frequency methods (hourly sampling
frequency with 60-day duration) can be established for
each location. The resulting datasets should be analysed,
and the results would lead to a much better decision about
which locations to focus the limited resources on for stra-
tegic long-term monitoring.

4. Increase the availability of measurements and meta-data
(Taylor and Alley 2001), especially for government-
funded groundwater monitoring efforts, by migrating dis-
crete datasets into centralized and publicly available data-
storage infrastructure.

5. A requirement to provide readily available, standardized
meta-data information about instrumentation used, i.e.
sensor details, sensing types (vented/nonvented), brand,
range, resolution, calibration records, an assessment of the
measurement errors and data units.

6. Regular synchronisation of the internal clocks of automat-
ed devices (and records of observed clock drift for
recorded time-series) and conversion to a generic time

reference. The authors recommend Coordinated
Universal Time (UTC) as a time base to allow for cross-
referencing with other influences on groundwater heads
archived elsewhere such as gravity (Earth tides) or seismic
activity (earthquakes).

7. Implementation of the FAIR principles (findable, accessi-
ble, interoperable, and reusable) when archiving datasets
(Wilkinson et al. 2016). This includes providing data access
via standardised application programming interfaces (APIs)
to circumvent onerous download and formatting issues.

8. The need for full appreciation of the difficulty and skill
requirements for accurate head measurements (including
installations, calibration, conversion and standard inter-
pretation) and with that, the provision of appropriately
trained technical staff.

Recent advances in open-source software development facil-
itate the widespread use of sophisticated analysis techniques
(e.g., Bakker and Schaars 2019). Further, the capabilities of
cloud-based big data analysis (Hayley 2017) such as deep or
machine learning are rapidly progressing (Shen 2018; Bergen
et al. 2019) and will inevitably play a major role in the discipline
of hydrogeology. Such developments will, without doubt, lead to
improved knowledge of groundwater system functioning, deliver
much increased spatiotemporal understanding of subsurface re-
sources and therefore also progress sustainable groundwater
management efforts. However, newly developed methods will
always rely on, and benefit from, high-resolution and quality
assured time-series data from accessible sources. The authors
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Fig. 1 General overview of the groundwater-monitoring and data-
archiving workflow. The development of new universal guidelines and
adherence to the *FAIR principles (findable, accessible, interoperable,

and reusable; Wilkinson et al. 2016) for groundwater data is needed to
gain maximum benefit of recent methodological advances and future
opportunities
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believe that implementing these recommendations would help to
future-proof hydrogeology by ensuring that currently acquired
datasets enable maximum benefit in future interpretations.

The foregoing views and recommendations are reinforced by
the recent publication of a special issue ofHydrological Sciences
Journal called “Hydrological data: opportunities and barriers”,
which focuses on hydrometeorology and river basin data
(Cudennec et al. 2020). International initiatives focusing on in-
novation and data sharing in hydrology more broadly have also
emerged, like the World Meteorological Organisation’s
HydroHub (WMO 2020). It is imperative that the
hydrogeological community is represented within these initia-
tives as they can be instrumental in driving forward the changes
envisaged in this article. A good start would be the coordinated
development of groundwater monitoring guidelines and data re-
quirements by an international community of experts.
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