REVIEW

Future prospects for new vaccines against sexually
transmitted infections

Sami L. Gottlieb® and Christine Johnston®

Purpose of review

This review provides an update on the need, development status, and important next steps for advancing
development of vaccines against sexually transmitted infections (STls), including herpes simplex virus (HSV),
Neisseria gonorrhoeae (gonorrhea), Chlamydia trachomatis (chlamydia), and Treponema pallidum (syphilis).

Recent findings

Global estimates suggest that more than a million STls are acquired every day, and many new and
emerging challenges to STI control highlight the critical need for development of new STI vaccines. Several
therapeutic HSV-2 vaccine candidates are in Phase I/l clinical trials, and one subunit vaccine has shown
sustained reductions in genital lesions and viral shedding, providing hope that an effective HSV vaccine is
on the horizon. The first vaccine candidate for genital chlamydia infection has entered Phase | trials, and
several more are in the pipeline. Use of novel technological approaches will likely see viable vaccine
candidates for gonorrhea and syphilis in the future. The global STI vaccine roadmap outlines key activities
to further advance STl vaccine development.

Summary
Major progress is being made in addressing the large global unmet need for STI vaccines. With continued
collaboration and support, these critically important vaccines for global sexual and reproductive health can

become a reality.
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INTRODUCTION

To address the profound negative impact of sexually
transmitted infections (STIs) on global sexual and
reproductive health, in 1989 the World Health
Organization (WHO) convened an expert advisory
meeting to examine prospects for developing STI
vaccines [1]. The participants’ assessment was rather
disheartening. They noted that the only available
STIvaccine at the time, against hepatitis B virus, had
been only minimally implemented, and they con-
sidered the likelihood of developing a vaccine
against human papillomavirus (HPV) to be very
slim. Some experts felt that HPV vaccine develop-
ment should not even be pursued [1]. Less than
15 years later, over half the world’s infants had been
immunized against hepatitis B, and the first HPV
vaccines were shown to be efficacious in rando-
mized controlled trials [2,3]. Currently, 95% of all
countries include hepatitis B vaccination in their
infant immunization programs, with 84% of new-
borns globally receiving three doses of the vaccine
[3]. Because the first HPV vaccines were introduced
in 2006, dramatic declines in HPV prevalence and
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HPV-related outcomes like genital warts have been
observed in countries implementing the vaccine
[4"]. A new nine-valent HPV vaccine is highly effica-
cious in preventing HPV types causing 90% of
cervical cancers [5"], a disease that still affects more
than half a million women a year, primarily in low-
income and middle-income countries (LMICs) [6].
With financing support through Gavi, the Vaccine
Alliance, HPV vaccines will soon be introduced
across the hardest-hit countries, with the potential
to avert millions of cervical cancer deaths.
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Sexually transmitted diseases

KEY POINTS

e New STl vaccines are critically needed to address the
large global burden of STls and the many ongoing and
emerging barriers to effective STI control.

e Promising results from several therapeutic HSV vaccine
candidates in early clinical trials suggest that an
effective HSV vaccine may soon be a reality.

e Recent scientific advances make development of an
effective chlamydial vaccine increasingly likely, and a
novel vaccine candidate is being evaluated in Phase |
clinical trials.

e Evolving challenges, such as antimicrobial-resistant
gonorrhea and new surges in syphilis incidence in
some seftings, highlight the renewed importance of
vaccine development for these pathogens.

e The global STl vaccine roadmap outlines critical next
steps to advance STI vaccine development.

These public health success stories provide
inspiration for development of new STI vaccines.
Although progress has been made over the past few
decades in scaling up interventions to combat STIs,
many existing and new challenges make the need
for STI vaccines greater than ever [7]. For example,
behavioral risk reduction efforts are cornerstones of
STI prevention but have had limits in curbing STI
transmission, and recent developments such as
broadened use of pre-exposure prophylaxis for
HIV prevention have paralleled increases in bac-
terial STIs in some settings [8]. STIs that have been
easily treatable in the past are being threatened by
new obstacles such as increasing resistance to ceph-
alosporins for gonorrhea [9™"]. Lack of feasible,
affordable STI diagnostic tests in many settings
and the complexity and cost of screening programs
have been longstanding barriers. Despite available
prevention strategies, recent global estimates
suggest that more than a million STIs are acquired
every day [10%,11%]. An estimated 377 million new
cases of Chlamydia trachomatis (chlamydia), Neisseria
gonorrhoeae (gonorrhea), Treponema pallidum (syph-
ilis), Trichomonas vaginalis (trichomoniasis), and
herpes simplex virus type 2 (HSV-2) infections
occurred in 2012 [10%11"]. These infections result
in a number of adverse outcomes, thus effectively
addressing STIs can have a range of benefits, includ-
ing: improving neonatal outcomes, for example,
preventing mother-to-child transmission of syphilis
[12%]; decreasing the burden of infertility, of which
chlamydia and gonorrhea are important causes
[13%,14]; reducing HIV transmission, as STIs such
as HSV-2 lead to increased HIV acquisition and
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transmission [15]; combating antimicrobial resist-
ance, a major concern for gonorrhea [16]; and sup-
porting the health of young people, as the genital
symptoms and psychosocial consequences of STIs
have important effects on quality of life.

In 2013, WHO and the National Institutes of
Allergy and Infectious Diseases (NIAID) held a sec-
ond technical consultation on STI vaccines, almost
25 years after the first, and found that while chal-
lenges remain, the prospects for new STI vaccines are
decidedly more promising [17]. Scientific advances,
in conjunction with a confluence of global efforts
related to improving sexual and reproductive health
and reducing vaccine-preventable diseases [18,19],
provide an opportune time to make these vaccines a
reality. The latest STI vaccine consultation resulted
in a global roadmap to advance STI vaccine develop-
ment [20"%,21""]. In this article, we review the need
and development status for vaccines against HSV,
chlamydia, gonorrhea, and syphilis, and discuss key
STI vaccine roadmap activities to accelerate
their advancement.

SEXUALLY TRANSMITTED INFECTION
VACCINE DEVELOPMENT

The current status of the development pathway for
STI vaccines is shown in Fig. 1. HSV vaccine candi-
dates are furthest along in the pathway, with several
candidates in Phase I and II trials [22%]. For years,
genital chlamydia vaccine development was firmly
in the preclinical stage; however, the first Phase I
human clinical trials started in 2016, and others may
soon follow [23]. Vaccine development for gonor-
rhea and syphilis is in earlier stages, but renewed
commitment to these pathogens could result in new
candidates over the next several years. Understand-
ing prospects for vaccine development for tricho-
moniasis will require better epidemiologic, natural
history, and basic science data, and will not be
discussed in detail in this review [24].

Herpes simplex virus

HSV-2 is the most common cause of genital herpes,
with an estimated 417 million people aged 14-49
infected worldwide [10%]. In addition, 140 million
adults are estimated to have genital infection with
HSV-1, which is often acquired orally in childhood
but is now an important cause of genital herpes in
many high-income countries (HICs) [25%]. Genital
HSV infection leads to chronic infection with a
lifelong reservoir in the sacral ganglia. Viral reacti-
vation occurs frequently, particularly for HSV-2,
leading to recurrent genital ulcers or asymptomatic
viral shedding at the genital skin or mucosa, during
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FIGURE 1. Research and development pipeline for STl vaccines.

Five vaccine candidates, four for HSV [31,32"®,33,34",35"]

and one for CT [47"®,54], are in Phase | or |l clinical studies. Multiple additional HSV and CT vaccine candidates are being
evaluated in preclinical/animal studies; the main types of candidates or vaccine approaches are presented. Vaccine
development for NG and TP is at earlier stages in the pathway; key strategies for developing viable candidates are
highlighted. More data are needed to understand the path toward TV vaccine development. No current vaccine candidates
are in Phase lll clinical trials, but information from previous trials is provided (dotted line) [29]. MOMP, major outer membrane

protein; OMV, outer membrane vesicle.

which HSV can be transmitted. A major negative
public health consequence of HSV-2 infection is its
role in propagating the HIV epidemic, as chronic
genital inflammation from HSV-2 increases HIV
acquisition risk by two-fold to three-fold [15]. In
Kenya, the estimated population attributable frac-
tion of HIV infection due to HSV-2 is 48% [26].
Mother-to-child HSV transmission causing neonatal
herpes is rare but often leads to infant death or
devastating neurologic damage. Prevention tools
including antivirals and condoms can partially
reduce HSV transmission risk for individuals, but
no method provides adequate protection, and an
HSV vaccine is a much needed prevention strategy.

Two strategies are being pursued for HSV-2
vaccine development. The classic approach uses a
prophylactic vaccine targeting people who are not
infected to prevent HSV acquisition. Alternatively, a
therapeutic vaccine is designed for people who
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already have HSV-2 infection to reduce shedding
and recurrences. Whether these two approaches will
require different types of immunologic responses is
unknown. Both neutralizing antibody responses
and cell-mediated immunity may be important
for a prophylactic vaccine [27], whereas stimulation
of recently described tissue-resident memory T cells
is likely essential for therapeutic vaccination [28].
Several adjuvanted subunit vaccines targeting HSV
glycoprotein D2 (gD2) with or without glycoprotein
B2 (gB2) have been tested in Phase III clinical trials
as prophylactic vaccines. Despite eliciting strong
neutralizing antibody responses, none prevented
HSV-2 acquisition. The most recent trial (Herpevac),
which tested an adjuvanted gD2 vaccine in HSV-1/
HSV-2-seronegative women, failed to prevent symp-
tomatic genital herpes disease overall [29]. However,
this vaccine did prevent genital herpes due to
HSV-1, with a vaccine efficacy of 58%. Increasing
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antibody titers to gD2 were associated with increased
vaccine efficacy against HSV-1, providing the first
immune correlate of protection [30]. Although these
secondary findings are promising, investment in
prophylactic HSV vaccine development has declined
following the results of these studies.

In contrast, the past 5 years has seen intense
interest in development of a therapeutic HSV-2
vaccine, with multiple novel platforms and adju-
vants under evaluation (Fig. 1). Three such candi-
dates are currently in Phase II trials. The most
advanced, GEN-003, is a subunit vaccine containing
a deletion mutant of gD2 and a portion of infected
cell protein 4 (ICP4), with Matrix-M2 adjuvant. In a
Phase I/Ila study, participants receiving the most
efficacious dose of GEN-003 had a 50% decrease in
viral shedding and a 65% decrease in days with
genital lesions, persisting for 12 months postvacci-
nation [31]. T cell and antibody responses to gD2
and ICP4 also remained elevated for 12 months
[32""]. A second Phase II trial is evaluating an opti-
mized formulation of GEN-003. Another candidate,
VCL-HBO1, is a DNA vaccine containing two codon-
optimized genes (gD2+VP11/12) with Vaxfectin
adjuvant. In a Phase I/II study among HSV-2-sero-
positive people, VCL-HBO1 did not meet the
primary endpoint of decreased HSV shedding, but
vaccine recipients had a 57% decrease in lesion
frequency at 9 months and reduction in quantity
of virus detected [33]. The vaccine also induced
UL46-specific T cell responses. Another DNA
vaccine candidate, COR-1, contains codon-opti-
mized gD2 and ubiquitin-fused truncated gD2 to
enhance generation of cytotoxic T cells. COR-1 was
safe in HSV-1/2-seronegative participants in a Phase
I study and induced gD2-specific T cell but not
antibody responses [34"]. Results of a Phase II evalu-
ation of COR-1 are forthcoming.

In earlier stages of development, HSV529 is a
novel live, replication-defective HSV-2 with
deletions in UL5 and UL29, which reduced
mortality, genital disease severity, and viral shed-
ding in animal models [35%]. Phase I testing of
HSVS529 in HSV-2-seropositive and HSV-2-seroneg-
ative people and evaluation of genital immune
responses is ongoing. All of these vaccine studies
are providing valuable information about immunity
to genital HSV and insights into optimal trial design
for future Phase II trials. Current vaccine candidates
target HSV-2, but identification of cross-reactive
epitopes against HSV-1 and HSV-2 raise the possib-
ility that a vaccine targeting both HSV types could
be developed [36%]. In addition, genomic sequenc-
ing of HSV-2 from different regions, revealing many
highly conserved antigens, could ensure a geo-
graphically unrestricted vaccine [37].
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Chlamydia trachomatis

Genital chlamydia infection is a concern in all world
regions, with an estimated 131 million incident
cases globally in 2012 [11"]. Young people, and
adolescents in particular, are disproportionately
affected [38]. Without treatment, chlamydia can
ascend to the upper genital tract in women to cause
acute pelvic inflammatory disease (PID), which can
in turn lead to longer-term complications including
tubal factor infertility, ectopic pregnancy, and
chronic pelvic pain. The vast majority of chlamydia
infections are asymptomatic and because tests are
lacking in many settings, especially in LMICs, most
infections are not diagnosed. Even when tests are
available, chlamydia screening programs have had
difficulty achieving high coverage levels in HICs
[39], do not appear to have reduced chlamydia
transmission [40], and even in the best case scenario
might be expected to prevent only about 60% of
chlamydia-related PID [41%]. Recent comprehensive
models suggest that every 1000 chlamydia infec-
tions result in five women with tubal factor infer-
tility in HICs [41"]. Given the estimated 68 million
chlamydial infections among women each year
[117], the global burden of chlamydia-related seque-
lae is likely substantial.

Fortunately, development of chlamydia
vaccines is advancing. A wealth of animal data
and several human studies show that natural infec-
tion results in short-lived partial protective immun-
ity [42,43]. In one study, women whose chlamydial
infections cleared spontaneously between testing
and treatment were less likely to become re-infected
on follow-up [44]. The precise mechanisms of
immunity are not completely understood, but inter-
feron-y (IFN-y)-producing CD4" T cells play a
critical role, and tissue-resident memory T cells
may be particularly important for vaccine develop-
ment [45,46""]. Antibodies play some role, whether
from enhancement of Thl effector responses or
direct pathogen neutralization [47""]. Novel anti-
gens for chlamydial vaccine development have been
identified through reverse vaccinology approaches,
which start with computer-based analysis of the
whole genome to predict likely vaccine targets,
and immunoproteomics, which involves high-
throughput evaluation of large protein sets to inves-
tigate antigens interacting with the host immune
system [48,49%,50]. Immune profiling of well-
characterized clinical cohorts has further clarified
potential vaccine targets [51%]. Genetic manipula-
tion of C. trachomatis [52], combined with work on
novel adjuvants and delivery systems [53"], is also
expanding the list of vaccine candidates.

The main vaccine approaches include subunit
vaccines based on the chlamydial major outer

Volume 30 e Number 1 o February 2017



Vaccines against STIs Gottlieb and Johnston

membrane protein (MOMP), whole inactivated
vaccines, and live attenuated vaccines. A recombi-
nant MOMP subunit vaccine candidate promoted
strong neutralizing antibody titers and Thl
responses and showed protection against vaginal
chlamydial infection in mini-pigs and against upper
genital tract disease in mice [47"%,54]. This candidate
entered human Phase I clinical trials in 2016 [23].
Combination of MOMP with polymorphic mem-
brane proteins identified by immunoproteomics is
another promising approach [49%]. A major advance
in the field has been the ability to generate vaccine-
induced seeding of genital mucosa with CD4™" tis-
sue-resident memory T cells, which was the key to
long-lived protection against chlamydial infection
in mice [46™]. This was achieved using mucosal
immunization with UV-inactivated C. trachomatis
combined with a novel nanoparticle-based adjuvant
[46™]. An attenuated plasmid-free chlamydial strain
being evaluated as a vaccine against ocular C. tra-
chomatis infection (trachoma) may also inform
vaccine development for genital infection [55].

Neisseria gonorrhoeae

STI control strategies based on prompt antibiotic
treatment for symptomatic patients and focused
partner management have been effective at reduc-
ing the incidence of gonorrhea [56]. However,
increasing evidence of resistance to cephalosporins,
the only remaining first-line drugs for gonorrhea
[57], reports of multidrug resistance [58], and pro-
gressive resistance to sequential antibiotics [16]
create an urgent need for new prevention strategies.
A high burden of gonorrhea exists in many LMICs,
with an estimated 78 million incident infections
globally in 2012 [11%]. In addition, there has been
a resurgence of gonorrhea incidence in many HICs,
especially among men who have sex with men [8].
Genital gonorrhea has adverse outcomes similar to
those of chlamydia, such as PID and infertility, but
there is even more limited understanding of the
burden of gonorrhea-related sequelae globally.
Thus, the potential threat of untreatable gonorrhea
with expanding antimicrobial resistance makes
vaccine development crucial.

Many biological challenges exist to gonococcal
vaccine development. There is no naturally acquired
immunity to the infection; N. gonorrhoeae has a
highly antigenically variable surface and is well
adapted to evade host responses, and robust animal
models to study the infection are limited [59].
Multiple potential gonorrhea vaccine targets have
been identified based on their relative antigenic
conservation and stability among strains [60%], but
these have not yet yielded viable vaccine candidates.
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However, more sophisticated mouse models are now
available to evaluate immune responses and disease
in a way that more closely mimics human infection
[61"]. In addition, new high-throughput techniques
such as proteome mining, which uses bioinfor-
matics to select proteins with desired characteristics
from large datasets, have narrowed the search for
promising antigenic targets [62"]. Translational
studies applying molecular techniques to clinical
specimens allow assessment of genes expressed
during gonococcal infection [63].

A promising development for gonococcal
vaccine discovery relates to existing vaccines against
another Neisseria species, in particular the group B
meningococcal vaccine using the outer membrane
vesicle (OMV) antigen presentation strategy. N.
gonorrhoeae and N. meningitidis share 80-90%
homology of primary sequences and thus some
level of cross-protection is plausible. A recent case—
control study in New Zealand, wherein group B
OMV meningococcal vaccine has been used for
years, suggests a decrease in gonorrhea infection
in those who have received the OMV meningococ-
cal vaccination [64]. Expanding upon this platform
could provide a template for a successful gonococcal
vaccine or a broader Neisseria vaccine incorporating
gonococcal antigens.

Treponema pallidum

Syphilis incidence has decreased globally [11"] but
remains an important cause of fetal and neonatal
mortality in many LMICs, with over 200000 fetal
and neonatal deaths estimated annually [12%,65]. In
addition, in several HICs with very low syphilis
rates, there has been a resurgence in syphilis inci-
dence, especially among men who have sex with
men [66]. A main goal of the new Global Health
Sector Strategy for STIs, 2016-2021, is to reduce
global syphilis incidence by 90% by 2030 [67"].
However, most syphilis control programs in LMICs
focus on preventing congenital syphilis through
antenatal screening and treatment. It has been less
clear how to reduce population-wide incidence,
especially with barriers to effective partner treat-
ment programs in resource-poor settings. These
challenges are compounded by new concerns about
supply chain shortages of benzathine penicillin, the
only first-line treatment for syphilis [68]. These
considerations have led to renewed interest in syph-
ilis vaccine development.

Few investigators work on syphilis vaccine
development, primarily due to lack of consistent
funding and difficulties using the existing rabbit
model of infection [69]. In the early 1970s, rabbits
given multiple injections of irradiated T. pallidum
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over many weeks became immune to disease on
subsequent challenge [70]. Although the immuniz-
ation regimen used was not tenable for humans, this
provided proof of concept that protection against
syphilis is possible. Current efforts focus on reverse
vaccinology and targeted functional studies to
identify antigens important for pathogen-host
interactions and pathogenesis [71,72]. Sequencing
circulating syphilis strains provides additional infor-
mation on potential cross-protection across selected
targets [73]. The challenge now is to generate the
right combination of these potential vaccine targets,
with appropriate adjuvants, to develop a viable
syphilis vaccine candidate [74%].

NEXT STEPS: THE ROADMAP FOR
SEXUALLY TRANSMITTED INFECTION
VACCINE DEVELOPMENT

Vaccine development progresses through a defined
set of stages, often over many years (Fig. 1). The
process is expensive and thus risky for vaccine devel-
opers, but several factors can help ‘de-risk’ the proc-
ess to facilitate vaccine development, for example, a
clearly defined market for the vaccine or an advance
in technology. The global STI vaccine roadmap out-
lines six main areas to accelerate vaccine develop-
ment: first, obtaining better epidemiologic data on
infection and sequelae; second, modeling the theor-
etical impact of STI vaccines; third, advancing basic
science and translational research; fourth, defining
preferred product characteristics (PPCs); fifth, facil-
itating clinical evaluation and vaccine introduction;
and finally, encouraging investment in STI vaccine
development [20™]. Within each area, the roadmap
delineates key action steps, many of which can be
pursued in parallel to catalyze vaccine development
[20%%,21™].

Table 1 shows selected roadmap activities that
are critical for STI vaccine development, all of which
help encourage investment in STI vaccines, the final
action area. For example, a key activity for obtaining
better epidemiologic data is research on the burden
of chlamydia-associated and gonorrhea-associated
PID, infertility, and ectopic pregnancy, especially in
LMICs. Newer serologic tests for C. trachomatis may
facilitate assessing the population attributable frac-
tion of these outcomes due to chlamydia [75%]. The
Child Health and Mortality Prevention Surveillance
(CHAMPS) network, which will explore causes of
neonatal deaths in developing countries, will collect
much needed data on fatal neonatal syphilis and
HSV infections [76]. Modeling theoretical impact is
essential for all vaccines and should consider differ-
ent epidemiologic and economic settings and
include cost-effectiveness analyses. Existing models
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for HSV and chlamydia vaccines demonstrate that
even vaccines with modest efficacy could have an
important health impact [77,78] and could be cost-
effective [79]. A 2015 WHO HSV vaccine modeling
meeting stressed including HSV-associated HIV inci-
dence and neonatal herpes as outcomes and incor-
porating protection against or attenuation due to
HSV-1 infection in updated models. Complemen-
tary models can explore the added benefit of a
gonorrhea vaccine under differing levels of antimi-
crobial resistance, and the potential for a vaccine to
thwart such resistance.

To advance basic science, NIAID has held work-
shops on HSV, chlamydia, and gonorrhea vaccine
development [61%,80]. These workshops have
brought scientists together to identity, standardize,
and share reagents, immunogens, assays, and
animal models to accelerate moving vaccine candi-
dates into clinical evaluation. Important next steps
include capitalizing on novel scientific advances,
such as exploiting the importance of tissue-resident
memory T cells in preventing HSV-2 and chlamydia
infection [46™], and using novel models to evaluate
vaccine candidates and conduct translational work,
such as the human male urethral challenge model
for gonorrhea [81]. It will be important to explore
vaccine mechanisms and adjuvants used for other
pathogens to find potential uses with STI vaccines,
for example the OMV group B meningococcal
vaccine for gonorrhea [65].

PPCs reflect WHO guidance on desired
parameters of a vaccine to meet priority public
health goals, primarily for LMICs [82]. PPCs describe
characteristics such as vaccine goals, target groups,
immunization strategies, and data needed to ensure
safety and efficacy. For example, PPCs may define
whether the vaccine goal is prevention of morbidity
or infection, and the minimum efficacy required to
achieve a public health benefit. PPCs are now being
developed for HSV vaccines. Important consider-
ations include whether prophylactic or therapeutic
vaccines are desired for LMICs, especially those with
high HIV prevalence, and whether HSV vaccines
should target HSV-2 only or both HSV types, which
may influence the target age for immunization.
Consensus building around clinical endpoints and
trial design is essential for all vaccines, but may be
particularly important for chlamydia vaccine. The
ultimate goal is to decrease upper genital tract
sequelae; however, there are challenges with
measuring PID as a clinical endpoint, an insensitive,
nonspecific, and multifactorial diagnosis [13"]. A
critical need is better measures of tubal involvement
and surrogate endpoints, including biomarkers or
radiologic measures of upper genital tract infection,
inflammation, and damage.
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Sexually transmitted diseases

Together, the roadmap activities can help gen-
erate comprehensive business cases to outline the
public health rationale for each vaccine and inform
decision-making, which are critical for needed invest-
mentin the field. Clearly defining disease burden and
costs enables modeling of vaccine impact and cost-
effectiveness and determines the vaccine market.
This can be weighed against vaccine development
costs, which depend on technology and the desired
characteristics of the vaccine. A heightened aware-
ness of the need for STI vaccines will also be para-
mount for building on current progress, as will
innovative product development partnerships,
which have been successful for vaccines against other
neglected diseases [83]. Toward this end, an STI
vaccine initiative is envisioned to bring together
public health institutions, academia, donor agencies,
and industry to facilitate collaboration and imple-
ment the STI vaccine roadmap [21"",84].

CONCLUSION

Twenty-five years ago, the outlook for development
and implementation of the first STI vaccines, against
HPV and hepatitis B, seemed bleak [1]. Yet in the
ensuing years, these vaccines became major advan-
ces for global public health. Following on these
successes, development of a new generation of STI
vaccines is now within reach. Multiple promising
vaccine candidates in early clinical trials provide real
hope that a therapeutic HSV vaccine is on the
horizon. The first new chlamydia vaccine candidate
has entered Phase I trials, and several more candi-
dates may soon follow. Emerging challenges to STI
control, such as antimicrobial resistance for gonor-
rhea and new syphilis outbreaks, create a new
urgency for these vaccines. Although challenges
remain, the STI vaccine roadmap provides a guide
for capitalizing on the momentum to develop STI
vaccines [20™,21""]. With continued support and
collaboration, these much needed vaccines can be
made a reality.
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