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FUTURES: Multilevel Simulations of Emerging
Urban–Rural Landscape Structure Using a

Stochastic Patch-Growing Algorithm

Ross K. Meentemeyer,∗ Wenwu Tang,∗ Monica A. Dorning,∗ John B. Vogler,∗ Nik J. Cunniffe,†

and Douglas A. Shoemaker∗

∗Department of Geography and Earth Sciences, University of North Carolina at Charlotte
†Department of Plant Sciences, University of Cambridge

We present a multilevel modeling framework for simulating the emergence of landscape spatial structure in

urbanizing regions using a combination of field-based and object-based representations of land change. The

FUTure Urban-Regional Environment Simulation (FUTURES) produces regional projections of landscape

patterns using coupled submodels that integrate nonstationary drivers of land change: per capita demand, site

suitability, and the spatial structure of conversion events. Patches of land change events are simulated as

discrete spatial objects using a stochastic region-growing algorithm that aggregates cell-level transitions based

on empirical estimation of parameters that control the size, shape, and dispersion of patch growth. At each

time step, newly constructed patches reciprocally influence further growth, which agglomerates over time to

produce patterns of urban form and landscape fragmentation. Multilevel structure in each submodel allows

drivers of land change to vary in space (e.g., by jurisdiction), rather than assuming spatial stationarity across a

heterogeneous region. We applied FUTURES to simulate land development dynamics in the rapidly expanding

metropolitan region of Charlotte, North Carolina, between 1996 and 2030, and evaluated spatial variation in

model outcomes along an urban–rural continuum, including assessments of cell- and patch-based correctness and

error. Simulation experiments reveal that changes in per capita land consumption and parameters controlling

the distribution of development affect the emergent spatial structure of forests and farmlands with unique and

sometimes counterintuitive outcomes. Key Words: fragmentation, land change model, nonstationarity, object-based,

region growing algorithm.
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Utilizando una combinación de representaciones de cambios de la tierra basadas en campo y objeto, presentamos

un marco de modelización de nivel múltiple para simular cómo surge la estructura espacial del paisaje en

regiones en proceso de urbanización. La Simulación Ambiental Urbano-Regional FUTure (FUTURES) produce

proyecciones regionales de patrones paisajistas con el uso de sub-modelos acoplados que integran controles no

estacionarios de cambios de la tierra: demanda per cápita, idoneidad del sitio y la estructura espacial de eventos

de conversión. Los parches que representan eventos de cambios de la tierra se simulan como objetos espaciales

discretos utilizando un algoritmo estocástico de acrecentamiento regional que añade transiciones a nivel de celda

con base en estimativos empı́ricos de los parámetros que controlan el tamaño, forma y dispersión del crecimiento

del parche. En cada etapa temporal, los nuevos parches construidos influencian recı́procamente el crecimiento

adicional, el cual se aglomera con el tiempo para producir patrones de morfologı́a urbana y fragmentación del
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2 Meentemeyer et al.

paisaje. La estructura de nivel múltiple en cada sub-modelo permite que los determinadores de cambios de la

tierra varı́en en el espacio (por ejemplo, por jurisdicción), en vez de asumir estacionalidad espacial a través

de una región heterogénea. Aplicamos FUTURES para simular la dinámica del desarrollo de la tierra en la

región metropolitana de Charlotte, Carolina del Norte, en rápida expansión, entre 1996 y 2030, y evaluamos la

variación espacial en los resultados del modelo sobre un continuo urbano-rural, incluyendo las estimaciones de

propiedad y error en los contextos de celda y parche. Los experimentos de simulación revelan que los cambios en

el consumo de tierra per cápita y los parámetros que controlan la distribución del desarrollo afectan la emergente

estructura espacial de bosques y tierras de cultivo, con resultados singulares y a veces contra-intuitivos. Palabras

clave: fragmentación, modelo de cambio de la tierra, no estacionalidad, basado en objeto, algoritmo de acrecentamiento

regional.

E
ach year societies worldwide are demanding more
developed land on a per capita basis (United Na-
tions Population Fund 2007). This trend is es-

pecially common in rapidly urbanizing regions, where
conversion of forests and farmlands to built land uses
has compromised the sustainability and resilience of lo-
cal ecosystems and the resources they provide (Brown,
Johnson, et al. 2005; Radeloff, Hammer, and Stewart
2005; Berke et al. 2006). The natural amenities that
once fostered nascent urban economies, such as the
availability of clean water, rich farmlands, and produc-
tive forests, are being exhausted by more than half of the
world’s population, whose demands for these same es-
sential resources must now be filled by costly surrogates
(Wackernagel et al. 1999). In most metropolitan re-
gions, effects of urban sprawl are accelerating with little
sign of embracing alternative futures for urban growth
(Ewing, Pendall, and Chen 2002; Downs 2005).

The dispersion of low-density and “leapfrog”
development—characteristic of rapidly urbanizing
regions—dissects natural landscapes into highly frag-
mented patches (Radeloff, Hammer, and Stewart 2005;
Irwin and Bockstael 2007). Changes in the size, shape,
and connectivity of human-modified landscapes can
dramatically affect ecological processes by disrupting
exchanges of energy and matter (M. G. Turner 1989;
Alberti 2005). The spatial structure of urbanizing land-
scapes is also critical to the provision of ecosystem
services (Lovell and Johnston 2009; Alberti 2010).
For example, landscape configuration influences bio-
diversity (Gagné and Fahrig 2011) by altering dispersal
(Damschen et al. 2008) and spread of exotic species
(With 2002); impacts water quality and flood risk in re-
sponse to additions of impervious surfaces and sources
of pollution (Arnold and Gibbons 1996); and con-
tributes to local- and regional-scale climate changes
through heat island effects (Arnfield 2003), anthro-
pogenic emissions (Weathers, Cadenasso, and Pickett
2001), and reduced carbon sequestration (D. T. Robin-
son, Brown, and Currie 2009).

Simulation models are increasingly used to project
impacts of land change trajectories on urban form and
landscape fragmentation, but replicating the dynamic
and inherently spatial nature of landscape changes in
regional urban–rural systems continues to challenge
simulation models (Pontius, Cornell, and Hall 2001).
Herold, Couclelis, and Clarke (2005) asserted that pre-
dicting socio-ecological impacts of land change dynam-
ics will be possible only when models are capable of
simulating realistic spatial structures of development
outcomes at local to landscape scales. The degree to
which spatial structure is replicated in land change pro-
jections is often evaluated a posteriori to assess model
performance or to quantify patterns of fragmentation
and sprawl (e.g., Aguilera, Valenzuela, and Botequilha-
Leitão 2011). Less emphasis has been placed on incor-
porating algorithms specifically intended to simulate
spatial structure of land change and resultant fragmen-
tation. Notable examples are Brown et al. (2002) and
Jenerette and Wu (2001), who incorporated spatial pat-
terns of landscape change into models a priori using
semivariograms and a genetic algorithm. Models that
rely on cell-level state transitions (including cellular
automata and agent-based approaches), however, con-
tinue to struggle to generate realistic spatial structures
at relevant ecological and decision-making scales (Jantz
and Goetz 2005; Yeh and Li 2006). This perhaps illus-
trates the paradox between land change manifested as
discrete conversion events (or objects) and represen-
tations of change using raster cells—an arbitrary spa-
tial unit—that are unlikely to coincide with the spatial
structure of conversion. Accordingly, approaches are
needed that bridge cell- and object-based representa-
tions in land change modeling.

The presence of spatial nonstationarity—a condition
that occurs when processes differ across space—poses
another challenge to simulating land use change across
large, heterogeneous regions (Munroe and Müller 2007;
Sohl et al. 2010). Regional models that concentrate on
global processes of a system, assuming stationarity, often
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FUTURES: Multilevel Simulations of Emerging Urban–Rural Landscape Structure 3

fail to capture variation that occurs at subregional levels
(B. L. Turner, Lambin, and Reenberg 2007; Verburg and
Overmars 2009). Methods designed to address spatially
varying processes have been explored in simulations of
land change, such as using heuristics (F. Wu 2002) and
by developing separate models for each subregion (Li,
Yang, and Liu 2008). Multilevel statistical approaches
might offer a more objective and efficient option to
simultaneously account for global and local trends by
allowing hypothesized relationships between land use
and explanatory factors to vary across a region, thereby
minimizing assumptions of spatial stationarity (Pan and
Bilsborrow 2005; Overmars and Verburg 2006). The
ability of multilevel approaches to help account for im-
measurable processes at multiple scales (Verburg et al.
2004) will also move us closer to developing multi-
scale simulations of land change—a key requirement
of a comprehensive land change modeling framework
(Irwin, Jayaprakash, and Munroe 2009).

In this article, we describe a multilevel modeling
framework for simulating the emergence of landscape
spatial structure in urbanizing regions using a combi-
nation of field-based and object-based representations
of land change. The FUTure Urban-Regional Envi-
ronment Simulation (FUTURES) couples submodels
of three key drivers of land change: per capita demand,
site suitability, and the spatial structure of conversion
events. Discrete patches of land change events are
simulated using a stochastic region growing algorithm
that aggregates cell-level transitions based on empirical
estimation of parameters that control the size, shape,
and dispersion of patch growth (Figure 1). Multilevel
structure in each submodel allows drivers of land change
to vary in space (e.g., by jurisdiction), rather than
assuming spatial stationarity across a heterogeneous
region. We calibrated FUTURES in the rapidly grow-
ing metropolitan region of Charlotte, North Carolina,
and assessed the framework’s ability to simulate spatial
complexity along the urban–rural continuum using
cell- and patch-based metrics of correctness and error
(Chen and Pontius 2010). Charlotte sits in the middle
of the “Char-lanta” megalopolis, a biologically diverse
and productive region that still supports substantial
forest and agricultural resources (Figure 2). We used
Charlotte as a case study of fast-growing urban regions
in the developed world to explore feedbacks between
alternative scenarios of growth and fragmentation
of natural and agricultural landscapes through the
year 2030 in anticipation of FUTURES being
deployed as a multijurisdictional, spatial decision
support tool.

Simulation Framework

Overview

FUTURES is a land change modeling framework
made up of three interacting submodels (Figure 1) that
accommodates multilevel drivers of land change across
a heterogeneous region. The POTENTIAL submodel
quantifies the development potential of a cell based
on multilevel relationships between land change and
hypothesized environmental, infrastructural, and so-
cioeconomic factors; DEMAND quantifies differences
in per capita land demand among subregions based
on increases in population concurrent with the rate
of development specific to each subregion or level;
and PGA is a stochastic patch-growing algorithm that
bridges field-based and object-based representations of
change by constructing discrete land conversion events
prescribed by DEMAND from cell-level state transi-
tions on the POTENTIAL surface. At each time step,
newly constructed objects reciprocally influence fur-
ther growth, which agglomerates over time to pro-
duce spatial patterns of urban form and landscape
fragmentation.

POTENTIAL: Multilevel Gradients
of Development Suitability

The POTENTIAL submodel uses site suitability
modeling approaches to quantify spatial gradients of
land development potential or likelihood based on mul-
tilevel relationships between observed change and the
socioeconomic, infrastructural, and environmental di-
mensions of a region. The model uses multilevel logistic
regression to (1) account for hierarchical characteristics
of the land use system (Verburg et al. 2004), including
variation among jurisdictional structures that might re-
flect policies that are otherwise difficult to quantify; (2)
improve the description of land use choices (Pan and
Bilsborrow 2005; Overmars and Verburg 2006); and
(3) account for divergent relationships between predic-
tor and response variables (Gelman and Hill 2007). In
FUTURES, levels are defined subregionally (e.g., a
county or census tract) to consider variation in relation-
ships according to spatial context and processes acting
at multiple scales (Jones and Duncan 1996; Fother-
ingham and Brunsdon 1999). This spatial classifica-
tion addresses nonstationary processes that occur across
discrete regional boundaries and is therefore particu-
larly useful to account for jurisdictional policy effects
(Fotheringham and Brunsdon 1999). Integration of
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4 Meentemeyer et al.

Figure 1. The FUTURES land change

modeling framework.

spatially and temporally explicit factors, including pos-
itive feedbacks that estimate the influence of new and
extant land development on future change (develop-
ment pressure; see Equation 2), allows POTENTIAL to

model dynamic probability gradients of land change
that underpin regional growth patterns and provide
a “playing field” on which FUTURES simulates land
change (Figure 3A).

Figure 2. The Charlotte Metropolitan region located within (A) the “Char-lanta” megalopolis in the Southeastern United States. (B) The

study system gained 8.3 percent developed land between 1996 and 2006 and was 24 percent developed by 2006 with substantial remaining

tracts of forest and farmland. (C) Cabarrus County (FUTURES calibration site) exhibits a clear urban–rural gradient with growth rates and

patterns representative of the study system. (Color figure available online.)
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FUTURES: Multilevel Simulations of Emerging Urban–Rural Landscape Structure 5

Figure 3. (A) Spatially explicit surface of the development poten-

tial submodel (POTENTIAL) ranges from high (red) to low (blue)

development likelihood. Gray denotes development as of 1996. (B)

County-level forecasts of per capita land consumption (DEMAND).

Status quo trendlines are shown in blue. Gray dashed lines denote

alternative scenarios of land consumption. (C) Range of power func-

tions (INCENTIVES) for transforming the development potential

(P) surface. (Color figure available online.)

DEMAND: Per Capita Demand for Development
by Level

DEMAND estimates the rate of per capita land con-
sumption specific to each subregion or level (e.g., Figure
3B). Forecasts of land consumption are based on extrap-
olations between historical changes in population and
land conversion given expected or hypothetical scenar-
ios of future population growth. Either prescribed or
statistical approaches can be used to construct the per
capita demand relationship for any level of population
aggregation (e.g., county, census tract, census block),
depending on the user’s preferred level of observation
or data availability. Inputs for land area converted over
a given time interval can be obtained through change
analysis of existing maps (e.g., National Land Cover
Dataset) or custom analysis of remote sensing data (see
the section “Remote Sensing of Land Change” later
in this article). Projections of land consumption at
subregional extents reduce assumptions of stationarity
and prescribe how much land to convert at a given
time step.

PGA: Patch-Growing Algorithm

The PGA is a stochastic simulation that maps the
allocation and spatial structure of land change using
iterative site selection and a contextually aware region
growing mechanism that changes cells from “undevel-
oped” to terminal “developed” states. PGA constructs
conversion event objects by combining cell- and object-
based representations of land change. Developed cells
organize themselves over time into new patches of pre-
scribed sizes and shapes, which can further aggregate
into superpatches. Simulations of change at each time
step feed development pressure back to the POTEN-
TIAL submodel, influencing site suitability. Proxies
for nonrationalities or human agency enter PGA as
stochastic elements (Garcı́a et al. 2011) that influence
both site selection and patch configuration.

For a given time interval, patches are constructed in
three steps. First, a seed for the initiation of a patch is al-
located randomly across the POTENTIAL probability
gradient. Using a Monte Carlo approach, this seed sur-
vives if the probability value in POTENTIAL is larger
than a random number (0–1). Allocation and selection
processes are repeated until a seed survives and its resi-
dent cell is selected to convert. Second, PGA examines
the POTENTIAL suitability of contiguous cells and
the spatial context of the cells in relation to the seed
cell using a four-neighbor search rule. The inclusion of
a cell (cell i) within a growing patch is determined
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6 Meentemeyer et al.

by a composite suitability score, denoted as si in
Equation 1.

s i = s ′
i ∗ d −α (1)

where s′i is the underlying development potential of the
cell in question, d is its distance from the seed cell, and α

is an adjustable scaling factor that controls patch com-
pactness through a distance decay effect—that is, α in
this equation is the parameter of patch compactness. As
α increases, cells closer to the initial seed become rel-
atively more attractive, promoting compact patch pro-
duction. The composite score of each cell is then listed
and ranked for each candidate neighbor cell. Third,
PGA uses these ranked candidate cells to guide the
neighborhood search for further patch growth; this pro-
cess continues until a stopping criterion is met, such
as patch size or total composite score (which can be
informed by data on historical development), and the
aggregate, contiguous cells are converted to a “changed”
state. Conversion trajectory is assumed to be unidirec-
tional: Once a cell is converted it remains in a static
developed state. PGA continues to allocate patches un-
til the per capita land DEMAND for growth is satisfied.
The PGA approach provides a stochastic alternative to
deterministic region-growing algorithms often used in
site selection and conservation planning (Church et al.
2003).

Development pressure is a dynamic spatial variable
derived from the patch-building process of PGA and
associated with the POTENTIAL submodel. It is used
to estimate the influence of surrounding land devel-
opment on the likelihood that a cell changes states.
The development pressure (noted as p ′

i in Equation 2)
on cell i is given by:

p ′
i =

ni∑

k=1

Statek/d
γ

i k (2)

where Statek is a binary variable that indicates whether
the kth neighboring cell is developed (1) or undevel-
oped (0), dik is the distance between the kth neighboring
cell and the current cell i, γ is a coefficient that controls
the influence of distance between neighboring cells and
cell i, and ni is the number of neighboring cells within
a specific range with respect to cell i. Assuming the in-
fluence of a neighboring developed cell on the current
cell is distance-decayed, the development pressure on
an undeveloped cell is a function of neighboring de-
veloped cells and the distance between these cells and
the cell in question. At each time step, PGA updates

the POTENTIAL probability gradient as land change
events occur, and the new development pressure in turn
affects future land change in a path-dependent man-
ner with positive feedbacks (Brown, Page, et al. 2005).
Because stochastic path-dependent systems are sensi-
tive to initial conditions (Brown, Page, et al. 2005), we
programmed PGA to produce multiple outcomes from
a series of independent runs with model performance
metrics reported as mean values.

User-set parameters within the PGA submodel al-
low FUTURES to be calibrated for accuracy and used
to explore alternative futures of urbanization and land-
scape fragmentation (Table 1). For example, the patch
compactness parameter (i.e., α in Equation 1) allows a
user to control the spatial complexity of patch shapes
produced during the region growing process by influ-
encing the amount of exploration in the neighborhood
search mechanism. Scenarios involving policies that
encourage infill versus sprawl can be explored using
the incentive parameter, which uses a power function
to transform the evenness of the probability gradient
in POTENTIAL (Figure 3C). This transformation al-
lows users to increase or decrease the likelihood of land
change by altering site suitability in planning scenarios.
The degree to which incentive transforms urban form
and patterns of landscape fragmentation is assessed in
our application of FUTURES later.

Model Application

We used FUTURES to project scenarios of land
change in the metropolitan region of Charlotte, North
Carolina, between 2006 and 2030. We first describe
the methodologies that enable FUTURES to produce
projections of forest and farmland conversion given a
continuation of historical trends, including our data
selection, analytical approaches, and calibration proce-
dures. We then evaluated FUTURES’s performance in
simulating change between 1996 and 2006 using cell-
based metrics of error due to quantity and error due to
allocation (Chen and Pontius 2010) and patch-based
metrics of spatial structure along an urban–rural gra-
dient. We conclude with three simulation experiments
designed to demonstrate the capability of FUTURES to
analyze alternative futures of urban form and landscape
fragmentation.

Study System

Located in the middle of the “Char-lanta” megalopo-
lis, the third largest megaregion in the United States
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FUTURES: Multilevel Simulations of Emerging Urban–Rural Landscape Structure 7

Table 1. FUTURES submodel parameters

Submodel Parameter Description Base data Year(s) Data source

Potential Environmental Forest-farmland Lands designated as forest

or farmland

LiDAR vegetation

height; Landsat

TM imagery

1996, 2006 Charlotte-

Mecklenburg

County Storm

Water Services;

USGS

Open space Proximity to protected

open space

Lands managed for

conservation and

open space

1996, 2006 Conservision-NC

Topography 1. Elevation 1-arc second

National

Elevation

Dataset

2006 USGS

2. Slope

Hydrography Proximity to water bodies Rivers, recreational

lakes, and

reservoirs

1996, 2006 NC OneMapa

Infrastructural Accessibility 1. Proximity to roads Primary and

secondary road

networks

1996 NCDOT

2. Proximity to

interchanges

3. Density of roads

4. Travel cost (time)

Municipal centers Proximity to

municipalities

Locations of cities,

towns, and other

municipalities

1996 U.S. Census

Water and sewer Proximity to water and

sewer service lines

Water Services

Assessment

database

1996 Conservision-NC

Socioeconomic Age and income Age/income structure and

distribution

Census statistics 1996 U.S. Census

Employment

attraction

Proximity to urban

centers weighted by

number of jobs

provided

Traffic analysis

zone (TAZ) and

place-of-work

statistics

1996 U.S. Census

Multilevel structure Proxy for varying policy

effects

Census statistical

geographies

1996 U.S. Census

Dynamic Development

pressure

Number of neighboring

developed cells within

search distance and

weighted by distance

Historical and

forecast

development

patterns

1996–2030 Remote sensing

and simulationsb

Demand Population Historical population and

projections

State demographic

data

1976, 1985,

1996–2030

NCOSBM

Development Area of developed land Landsat MSS &

TM imagery

1976, 1985,

1996, 2006

USGS

Patch-growing

algorithm

Parameter range

Patch size Controls area of each new

development patch

Area ≥ 0.09 ha,

total region area

Patch compactness Controls shape

complexity of each new

development patch

Shape ≥ 1, no limit

(Continued on next page)
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8 Meentemeyer et al.

Table 1. FUTURES submodel parameters (Continued)

Submodel Parameter Description Base data Year(s) Data source

Incentive Power transformation

of probability surface

Incentive > 0, no

limit

Time step Time interval over

simulation period

Time step ≥ 1,

simulation

period

Stochasticity Controls degree of

random allocation of

new seeds of

development

0–1

Note: LiDAR = light detection and ranging; USGS = United States Geological Survey (www.usgs.gov); Conservision-NC = One NC Naturally’s Con-

servation Planning Tool (www.conservision-nc.net); NCDOT = North Carolina Department of Transportation (www.ncdot.org); U.S. Census = United

States Census Bureau (www.census.gov); NCOSBM = State Demographics Branch of the North Carolina Office of State Budget and Management

(http://www.osbm.state.nc.us/).
aNorth Carolina ONEmap is distributed by the North Carolina Center for Geographic Information & Analysis (www.nconemap.com).
bLandsat satellite image analysis and FUTURES simulations.

(Florida, Gulden, and Mellander 2008; see Figure 2A),
Charlotte is a rapidly growing metropolitan area and the
major economic hub for the eleven-county, 13,400 km2

study region (Figure 2B). Charlotte is situated in the
center of the Southern Piedmont province, a biologi-
cally diverse and productive ecoregion that still supports
large areas of forest and farmland. Home to more than
2 million people (North Carolina Office of State Bud-
get and Management [NCOSBM] 2010), the region’s
rolling landscape is connected via a high-speed inter-
state system and has some of the highest densities of sec-
ondary and tertiary road networks in the United States.
The region holds few environmental obstacles for devel-
opment, and with the exception of impounded river sys-
tems to the east and west, there are no geographic bar-
riers. In this strong property rights state (Wang, Thill,
and Meentemeyer 2012), planning is primarily imple-
mented through zoning; alternative controls such as
adequate public facility ordinances have not been sup-
ported by the state judiciary. Despite recent economic
recession conditions, Charlotte–Mecklenburg and its
ten surrounding North Carolina counties are projected
to gain nearly 700,000 people by 2030, a 30 percent
increase in population (NCOSBM 2010).

Remote Sensing of Land Change

We developed an empirical understanding of trends
in land change by tracking urban and rural develop-
ment over four decadal time steps (1976, 1985, 1996,
and 2006) from three data sources: moderate-resolution
Landsat MSS and TM satellite imagery, aerial or-
thophotography, and high-resolution light detection

and ranging data (LiDAR). We used three sequential
procedures to classify remote sensing data into three
terrestrial land cover classes (development, forest, and
farmland) at each time step: (1) subpixel modeling of
Landsat data into vegetation–impervious surface–soil
(VIS) fraction components (Lee and Lathrop 2005;
Gluch and Ridd 2010), (2) classification of developed
and undeveloped land covers from the VIS fractions
with manual correction using orthophotography, and
(3) further discrimination of spectrally similar forest
and farmland vegetation within the undeveloped class
using vegetation structure data derived from LiDAR.
We mapped patterns of land cover change ourselves
because the study system contains numerous areas of
low-density land cover types prone to misclassification
by commonly used land cover data such as the National
Land Cover Dataset (Irwin and Bockstael 2007).

In the first step, we used VIS modeling and uncon-
strained linear spectral unmixing analysis to produce
fractional components representing the relative pro-
portion of vegetation, impervious surfaces, and soil for
each Landsat image pixel (Lee and Lathrop 2005). Im-
age preprocessing included both radiometric calibration
of image data to at-sensor reflectance and across-band
brightness normalization (C. S. Wu 2004). We used
aerial orthophotography to select training sites repre-
senting pure end members for green vegetation, imper-
vious surfaces, and exposed soil. The spectral unmixing
process generated representative fractional images of
the region that were rescaled to sum to one.

Second, we used logistic regression to classify the
continuous VIS fractions into developed or undevel-
oped categories based on interpretation of 550 points
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FUTURES: Multilevel Simulations of Emerging Urban–Rural Landscape Structure 9

in concurrent 2006 orthophotography. The two-class
system reduces the likelihood of error as compared to
three or more classes (Pontius and Malizia 2004). We
classified agricultural lands and industrial forests as un-
developed, whereas highly managed “green” areas, such
as golf courses and irrigated lawns, were assigned to the
developed class. We then used heads-up digitizing to
correct obvious misclassifications.

Third, we further distinguished forest and farmland
types of undeveloped land cover using LiDAR data col-
lected in 2004. Our model of vegetation height derived
from the first and last LiDAR returns clearly discrim-
inated forests from farmlands (Singh et al. forthcom-
ing). Within a geographic information system (GIS),
we used the height model in overlay analysis to update
the 1996 land cover maps under the reasonable assump-
tion that forests in 2006 were also forested in 1996. We
assessed map accuracy using concurrent high-resolution
aerial photography. For each time step, we evaluated a
total of 150 randomly located points for the presence
of development per satellite image. Overall accuracy
for classifications ranged from 78 percent (1976) to
86 percent (2006).

Our analysis of historical imagery revealed rapid and
extensive conversions of agricultural and natural land-
scapes between 1976 and 2006. During the thirty-year
period, more than 280,000 ha of forest and farmlands
converted to developed land, increasing the total built
environment to 24 percent of the nonwater area. Lands
converted at a rate of 35 ha per day between 1985 and
1996 and 32.5 ha per day between 1996 and 2006.

Development Potential Submodel (POTENTIAL)

To build the multilevel statistical model, we devel-
oped a response variable based on conversions of un-
developed to developed lands identified from remote
sensing between 1996 and 2006. Analysis revealed that
this period (1996–2006) experienced robust yet slow-
ing growth preceded by a decade (1985–1996) of rapid
expansion. We assumed that factors driving develop-
ment suitability during the more recent decade would
also drive suitability for the period of projection. We
generated a binary, developed–undeveloped response
variable using a stratified-random sample of 1,450 grid
cells distributed across the eleven-county study extent
(n = 848 transitioning cells; n = 602 forest and farm-
land cells). We excluded from analysis all water bodies
and areas protected from development (e.g., no-build
buffers, conservation areas). Prior to fitting the model,
we selected a set of significant (p < 0.05) and uncorre-

Table 2. Results of generalized linear mixed model: Fixed
effects including interaction between development pressure
and land cover followed by random effects for intercept and

development pressure which vary by county

Fixed effects Estimate SE p value

Intercepta 0.39 0.25 0.12

Development pressure (DP)a 0.27 0.05 < 0.001

Distance to interchanges −0.02 0.01 0.01

Distance to roads −0.52 0.09 < 0.001

Land cover −0.35 0.17 0.04

Forest (1)/Farmland (0)

DP: Land cover 0.11 0.05 0.02

Random effects

Development

County Intercept pressure

Anson –0.08 0.45

Cabarrus 1.18 0.26

Catawba 0.54 0.31

Cleveland –0.14 0.33

Gaston 0.17 0.11

Iredell 0.70 0.08

Lincoln 0.77 0.29

Mecklenburg 0.82 0.20

Rowan –0.01 0.33

Stanly –0.22 0.29

Union 0.68 0.24

Note: SE = standard error.
aVaries by county, see random effects.

lated predictors of change from our initial list of hypoth-
esized site suitability variables (Table 1) using forward
and backward stepwise regression techniques. We also
tested for a hypothesized interaction between develop-
ment pressure and land cover (forest vs. farmland). We
included “county” as the group-level indicator in the
multilevel model to account for spatially nonstation-
ary processes inherent across jurisdictional boundaries.
The varying intercept-varying slope model explained
overall differences in development potential as well as
variation in relationships between potential and the
predictors among counties. Here, we allowed only the
slope of the development pressure variable to differ by
county (Table 2).

We used Laplace approximation, suitable for multi-
level modeling with binary response variables (Bolker
et al. 2009), to estimate model parameters with the lme4
package (Bates and Maechler 2009) in R Version 2.10.0
(R Development Core Team 2009). The probability, p,
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10 Meentemeyer et al.

that an undeveloped cell, i, becomes developed is

p i =
e s i

1 + e s i
(3)

where si is the composite development potential for
cell i in Equation 1, which is a function of the origi-
nal development potential s′i and distance d. Further,
the original development potential s′i is a function of
environmental, infrastructural, and socioeconomic pre-
dictor variables of site suitability (Table 1). Specifically,
in this study, s′i is described by:

s ′
i = a j [i] +

n∑

h=1

β j [i ]h ∗ xi h + β j [i ]∗p ′
i (4)

where, for the ith undeveloped cell and varying across j
groups (i.e., the level), aj[i] is the intercept, β j[i] is the re-
gression coefficient, h is a predictor variable represent-
ing conditions in 1996, n is the number of predictor
variables, xih is the value of h at i, and p ′

i is the dy-
namic development pressure variable (see Equation 2).
We determined the value of the development pressure
variable by running the statistical analysis for values of
γ ranging from 1 to 100 and choosing the value (γ =

1.8) that resulted in peak model performance based on
likelihood profile estimates (Hilborn and Mangel 1997;
Meentemeyer et al. 2008).

Overall model results indicated that the probability
of development was greatest in farmlands surrounded
by high development pressure and close to roads and
highway interchanges (Table 2). As development pres-
sure increased, there was a shift toward greater prob-
ability of development in forested areas close to road
networks. Because we implemented a multilevel model
to establish these relationships, the effect of develop-
ment pressure varies spatially with unique, county-level
parameter estimates for β (Table 2). We applied the
most parsimonious multilevel model (Table 2) to the
mapped predictor variables in the GIS to produce a
spatially explicit surface of development potential for
initiating simulations (POTENTIAL; Figure 3A).

Land Demand Submodel (DEMAND)

We projected future rates of per capita land con-
sumption (DEMAND) based on relationships between
trends in population growth and demand for develop-
ment that occurred between 1976 and 2006 (Figure 3B).
For each of our historical time steps (1976, 1985, 1996,
and 2006), we obtained county-level population totals

from the State Demographics Branch of the NCOSBM.
We acquired annual projections of population growth
by county through the year 2030 from the same source.
For each of the eleven counties, we used ordinary least
squares regression—allowing for linear or logarithmic
relationships—to estimate a “best fit” model of pop-
ulation versus area of development (1976–2006) as
mapped from our remote sensing of land change. We
then used each regression equation to extrapolate per
capita land consumption through 2030 based on fu-
ture population projections (Figure 3B). Forecasts of
land consumption provided by the submodel DEMAND
drive the rate of development in the PGA submodel for
the simulation of future land development.

Calibration of the PGA

We used empirical distributions of patch size and
shape metrics (compactness, as defined later) of new
development patterns identified in our analysis of 1996
and 2006 imagery as references to calibrate our model.
We assumed that the factors driving spatial configura-
tion of development events during this period would
continue throughout the period of projection. Starting
with 1996, we conducted simulations at one-year time
steps, assuming that an equal number of cells converted
into development each year.

To calibrate PGA’s annual simulations of develop-
ment events, we first derived simulated distributions of
patch size and shape that, when accreted over ten years,
closely matched observed patch metrics. We derived the
patch size distribution for our simulation model fs i m

by converting the empirical distribution of patch size
fobs, using:

fs i m(ps i ze) = θ ∗ fobs (ps i ze) (5)

where θ is a discounted factor that varies between zero
and one, and psize is the variable of patch size (Table 1).
We compared a range of ten-year simulation outcomes
generated by various discount factors and tuned θ to 0.6
to obtain reasonable agreement between simulated and
observed patch size (Figure 4A).

The shape metric (noted as SHAPE) used in calibra-
tion was defined as:

SHAPE = Pk/ min Pk (6)

where Pk is the perimeter of patch k, and min Pk is the
perimeter of a circle given the same patch area (see
McGarigal et al. 2002).

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
N

o
rt

h
 C

ar
o
li

n
a 

C
h
ar

lo
tt

e]
 a

t 
0
8
:2

9
 0

4
 O

ct
o
b
er

 2
0
1
2
 



FUTURES: Multilevel Simulations of Emerging Urban–Rural Landscape Structure 11

Figure 4. Calibration of FUTURES

patch-growing algorithm (PGA). Fre-

quency distributions for calibrated

landscape show strong agreement be-

tween simulated and observed patch

(A) size and (B) shape metrics.

We analyzed the mean output of fifty stochastic re-
alizations and iteratively adjusted the patch compact-
ness parameter α (Equation 1) until the distribution of
simulated and observed patch shape matched closely
(Figure 4B). Comparison of histograms of the shape in-
dex between simulated and observed patterns was used
to support shape calibration (Figure 4B). The range
of the patch compactness parameter α was calibrated
to [0.32, 0.48], where a uniform distribution was used
to draw distributed values of α to generate alternative
shape parameters for patches to be simulated. For this
application, we reduced computational complexity by
parameterizing PGA’s patch-building capabilities using
a representative region of the metropolitan area (Cabar-
rus County; Figure 2C), though FUTURES’ multilevel
structure allows patch characteristics to be calibrated
separately for all levels in the model. The urban–rural
continuum across Cabarrus County encompasses the
range of patch characteristics across the study region
(Figure 4).

FUTURES Model Performance

We applied the calibrated version of FUTURES to
simulate land change between 1996 and 2006 in the
eleven-county region and assessed its ability to sim-
ulate patterns of urban, suburban, and rural develop-
ment. Because FUTURES aggregates cell-level change
to produce patches of land change events, we evalu-
ated the geographical variation of simulations—based
on the mean of fifty stochastic model runs—using both
cell- and patch-level diagnostics along an urban–rural
gradient instituted by imposing a 6 km × 6 km lattice
over the study area (Figure 5A; Figure 5B for detail) and
ranking each lattice block by percentage of developed

lands as of 1996, hereafter referred to as the development
density gradient.

We conducted model diagnostics recommended by
Chen and Pontius (2010) with one modification: We
partitioned null successes into eligible and ineligible
categories to reflect heuristics that prevent FUTURES
from simulating growth in developed areas (Figure 5).
FUTURES simulated 9.2 percent change for the
rurally biased study extent (Figure 5C), whereas ob-
served change was 8.3 percent. On average, hits (2.1
percent) and combined null successes (84.6 percent)
constituted 86.7 percent of the landscape. Figure of
merit, the measure of statistical agreement between ob-
served and simulated change (Pontius et al. 2008), was
13.6 percent. Assessing simulated landscape composi-
tion relative to development density aggregated on the
6 km × 6 km lattice revealed a relative evenness in
correctness and error of simulated change except in the
most rural areas (Figure 5D).

Evaluation of cell-based change revealed error due
to quantity (1.2 percent) and error due to allocation
(12.1 percent) totaling 13.3 percent of the landscape
on average (Figure 6A). Distribution of these errors
along the development density gradient indicates that
FUTURES slightly overestimates development in rural
areas and underestimates in more urban settings (Fig-
ure 6B). Our patch-level assessment of spatial structure
first compared the area of observed patches to the area
of simulated patches of new development, averaged by
block. With respect to both the one-to-one line of per-
fect agreement and the development density gradient,
results indicate a bias in model performance for overesti-
mating patch area in more rural settings (Figures 7A, 7B,
and 7C). The number of patches constructed showed
a stronger correspondence between observed and simu-
lated with respect to the one-to-one line and along the

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
N

o
rt

h
 C

ar
o
li

n
a 

C
h
ar

lo
tt

e]
 a

t 
0
8
:2

9
 0

4
 O

ct
o
b
er

 2
0
1
2
 



12 Meentemeyer et al.

Figure 5. Cell-level model perfor-

mance based on simulation successes

and errors across study system. (A)

Spatial distribution of successes and

errors comparing 1996–2006 observed

and simulated change. The 6 × 6 km

lattice (white grid) used to analyze suc-

cesses and errors by block and along de-

velopment density gradient. (B) Suc-

cesses and errors in Cabarrus County.

(C) Proportions of successes and errors

for entire landscape. (D) Distribution

of block-summarized successes and er-

rors along development density gradi-

ent (bin interval of 0.1). Map legend

also applies to (C) and (D) with the

exception of excluded water and pro-

tected open space. (Color figure avail-

able online.)

development density gradient. Mapped residuals cor-
roborate these findings (Figures 7D, 7E, and 7F).

Simulation Experiments

Forest and agricultural landscapes along urban–
exurban gradients are often highly fragmented, with
compromised productivity and ecosystem function
compared to their bucolic counterparts; nonetheless,
these remnant landscapes are vital repositories of
cultural practice, refuges of natural heritage and
biodiversity, and essential providers of clean air, wa-
ter, and open space (McDonnell and Pickett 1990; Bol-
und and Hunhammar 1999). Despite the recognition
of these ecosystem services, policies designed to man-
age unsustainable growth have been largely ineffective
(Anthony 2004; Howell-Moroney 2007). Researchers
of coupled human–natural systems are increasingly rec-
ognizing the value of using land change models to ex-

plore potential impacts of growth on future landscapes
(B. L. Turner, Lambin, and Reenberg 2007). Inquiry-
and strategy-driven projections of long-term societal
and environmental change allow stakeholders to test
planning and policy interventions long before imple-
mentation (Alcamo 2008) and across large spatial scales
that cross municipal boundaries and stakeholder prior-
ities. Yet little is known about the efficacy of growth
management approaches to minimizing fragmentation
of natural areas due to a paucity of applied case his-
tories and the challenge of simulating fragmented spa-
tial structures as exemplified by parcel-based analyses
by Irwin, Bell, and Geoghegan (2003) and Irwin and
Bockstael (2004).

We used FUTURES to evaluate the emergence of
landscape spatial structure in response to two hypoth-
esized growth management approaches in the rapidly
urbanizing Charlotte metropolitan region and com-
pared those outcomes to projected patterns based
on recent development trajectories. Our simulation
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FUTURES: Multilevel Simulations of Emerging Urban–Rural Landscape Structure 13

Figure 6. Cell-level model performance based on accuracy of sim-

ulated change (1996–2006) across study system. (A) Proportions

of errors and correctly simulated change for entire landscape. (B)

Distribution of errors and correctly simulated change along devel-

opment density gradient (bin interval of 0.1). Overestimation in-

dicates false alarms > misses; underestimation indicates false alarms

< misses. Missing bars indicate no error in category.

experiments were conducted over a twenty-five-year
period (2006–2030) using the calibrated version of FU-
TURES where (1) the region continued the status quo
trend of growth observed between 1996 and 2006; (2)
per capita land consumption varied above and below
rates observed prior to 2006 using the DEMAND sub-
model (Figure 3B); and (3) we transformed develop-
ment suitability using the INCENTIVE parameter to
examine the change in the distribution and spatial
structure of new patches across the landscape (Figure
3C). At the end of each experiment, we quantified
changes to the spatial structure of forest and farmland
resources through 2030 using the landscape metrics soft-
ware, FRAGSTATS (McGarigal et al. 2002), which
aggregated pixels into patches based on a four-neighbor
rule and measured the area, number, and shape com-
plexity of new patches (Equation 6). We assumed sta-
tionarity in process during the projection period—that
is, the simulation of new patches of development (patch

size and patch shape) would closely emulate the ob-
served size and shape characteristics of patches formed
during the 1996 to 2006 historical time period (Figure
4)— to establish status quo benchmarks for comparison
to alternative development outcomes.

Benchmark: Historical Trajectory
of Landscape Change

To establish a benchmark, we first projected urban
growth in the eleven-county region through 2030
based on the continuation of land consumption trends
observed between 1996 and 2006. This period is
noteworthy for Charlotte because the land grab that
occurred in the previous decade (1985–1996) slowed
from 35 ha per day to 32.5 ha per day, given similar
economic conditions and a maturing of the land devel-
opment market. During this period, immigration to the
region remained strong and increased linearly (Figure
3B). Expansion of Charlotte’s transportation beltway
I-485 during this period lowered mean commute
times to twenty-eight minutes but increased access to
undeveloped lands (Charlotte Chamber of Commerce
2011).

FUTURES projected that continued growth trends
will convert an additional 212,650 ha of forest and farm-
land by 2030, increasing developed land use from 24
percent to 41 percent of the nonwater landscape (see
Figure 8A for detailed map). Projections of the rate of
development show a continuation of the slowing trend,
from an average of 27 ha per day between 2007 and
2016 to 21 ha per day by 2030. Many undeveloped ar-
eas experience substantially more fragmentation: Forest
remnants become smaller (9.7 ha vs. 17.8 ha), more nu-
merous (52,467 vs. 38,602), and slightly more complex
in shape (1.24 vs. 1.22) in 2030 than in 2006, on av-
erage (see SQ values in Table 3). Farmland responds
somewhat differently to projected growth: Patches be-
come smaller on average (2.9 ha vs. 4.5 ha) but sim-
ilar in number (88,413 vs. 90,000) and shape (1.22
vs. 1.24).

Landscape Response to Per Capita
Land Consumption

We simulated growth patterns over the benchmark
period (1996–2030) using a range of per capita land
consumption rates parameterized within the DEMAND
submodel. High projections of land consumption as-
sume that new populations demand more land per per-
son than currently experienced; low projections assume
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14 Meentemeyer et al.

Figure 7. Patch-level model performance comparing 1996–2006 observed and simulated patch area and number of patches, summarized by

blocks across study system. (A) Total patch area (ha) of observed and simulated development plotted along one-to-one line and with mean

absolute error (MAE) reported. (B) Residuals of total area (ha) of development plotted along development density gradient and (C) spatial

distribution of residuals indicate overestimates in North and East Charlotte and rural areas. (D) Number of observed and simulated patches

of development plotted along one-to-one line and with MAE reported. (E) Residuals of number of patches of development plotted along

development density gradient and (F) spatial distribution of residuals indicate over- and underestimation vary across region with overestimates

in transitioning areas of North and East Charlotte. Blocks with > 50 percent of area beyond study system boundary were excluded. (Color

figure available online.)

each individual uses less land (Figure 3B). Treatments
ranged from 40 percent below levels observed between
1996 and 2006 to 40 percent above (Table 3). We made
changes to per capita land consumption at the county
level and held all other factors constant, including de-
velopment suitability and PGA parameterizations. For
each treatment, we ran FUTURES fifty times to pro-
vide more reliable estimates of mean behavior. We con-
ducted patch analyses for each simulation with average
values reported.

Reducing per capita consumption by 40 percent,
from an average of 0.80 ha per person to 0.48 ha per per-
son, retained more than 38,500 ha of forest and 27,100
ha of farmland region-wide by 2030, conserving 19 per-
cent of the total green space as compared to losses antic-
ipated by the historical trend (Table 3 and Figure 8B).
Reductions in consumption also minimized fragmenta-

tion of forests as indicated by fewer patches and larger
patch areas. Farmlands were also conserved with re-
ductions in per capita consumption, but whereas patch
area increased, the number of patches also increased
(Table 3). Elevated levels of per capita consumption ex-
pectedly increased losses of forest and farmlands above
the historical trends (Table 3 and Figure 8B).

Impacts of INCENTIVE on Development
Distribution

We explored landscape responses to hypothesized
growth management practices that reward or discourage
the placement of new development by changing the
relative attractiveness of undeveloped lands. Cluster-
ing new development near existing infrastructure has
the potential to reduce service costs (Carruthers and
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16 Meentemeyer et al.

Figure 8. Detail views (20 km ×

20 km region of Rowan County) of

land change projections (1996–2030)

based on three simulation exper-

iments. (A) Experiment 1: Con-

tinuation of observed (1996–2006)

land consumption trends (status quo).

Experiment 2 (impacts of per capita

land consumption [PCLC]): Develop-

ment density treatments ranged from

(B1) 40 percent reduction in PCLC

below observed rates (1996–2006) to

(B2) 40 percent increase in PCLC

above observed rates. Experiment 3

(impacts of locational INCENTIVE):

Development potential gradient var-

ied by adjusting INCENTIVE in treat-

ments ranging from (C1) 0.25 (low in-

fill incentive, greater sprawl) to (C2)

4.0 (high infill incentive, greater in-

fill). (Color figure available online.)

Ulfarsson 2003), ease congestion and pollution associ-
ated with vehicle emissions (U.S. Environmental Pro-
tection Agency [EPA] 2001), and conserve forests and
farmlands by reducing disjunct or leapfrog develop-
ment. In practice, development suitability could be al-
tered through disincentives such as the establishment
of “growth boundaries” beyond which municipalities
restrict or deny provisioning of sewer and water sys-

tems to new settlement or economic incentives such as
priority funding areas (PFAs) that promote infill over
greenfield development (Cohen 2002). We used the IN-
CENTIVES parameter (Figure 3C) as a simple regional
proxy for varying POTENTIAL and evaluated land-
scape response to projected growth through the year
2030. INCENTIVE modifies the evenness of the em-
pirically derived POTENTIAL development suitability

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
N

o
rt

h
 C

ar
o
li

n
a 

C
h
ar

lo
tt

e]
 a

t 
0
8
:2

9
 0

4
 O

ct
o
b
er

 2
0
1
2
 



FUTURES: Multilevel Simulations of Emerging Urban–Rural Landscape Structure 17

surface, thereby changing the survival likelihood of
patch-starting seeds, an effect that in turn modifies
the distribution of patches. We applied five treatments
ranging from 0.25 (sprawl), which flattened develop-
ment suitability, to 4.0 (infill), which attenuated devel-
opment suitability. We held all other factors constant,
including population projections, per capita land con-
sumption, and the PGA parameterizations. For each
treatment, we ran FUTURES fifty times to characterize
stochasticity of human agency in land change dynam-
ics. We conducted patch analyses for each simulation
with average values reported.

Simulations with lower INCENTIVE treatments re-
sulted in diffuse growth (Figure 8C), with increased
fragmentation indicated by more patches of develop-
ment, forest, and farmland and reduced patch size for
development and forest (Table 4). In contrast, simu-
lations with higher INCENTIVE treatments increased
the relative suitability of undeveloped areas near ex-
tant high suitability (e.g., areas with high develop-
ment pressure and close to roads and highway in-
terchanges), resulting in more compact urban growth
(Figure 8C), which reduced fragmentation of forest and
farmland when compared with projections of histori-
cal trends (Table 4 and Figure 8A). Although higher
INCENTIVE treatments resulted in small changes (±1
percent) in both forest and farmland relative to sta-
tus quo historical growth, lower INCENTIVE values
unexpectedly consumed forests while preserving farm-
lands, with forests losing 18,000 ha (–3.6 percent)
and farmlands retaining 4,400 ha (6.2 percent) com-
pared to the status quo historical trend (Table 4 and
Figure 9).

Discussion

Societies structure landscapes in patterns that result
from complex combinations of decision processes (Bürgi
and Turner 2002), driving forces (Bürgi, Hersperger,
and Schneeberger 2004), and chance (Pontius and
Spencer 2005), the results of which are manifested as a
continuum of conversion events that consume and frag-
ment undeveloped lands. Over time these processes are
reciprocally influenced by the structures they create and
agglomerate to produce regional settlement patterns.
Here we present a methodology that diminishes the fun-
damental land change modeling dichotomy, whether
process drives pattern or pattern drives process, by first
reconciling the arbitrary process entity (cell, or grain)

Figure 9. Differential response of forest and farmland to varying

the locational INCENTIVE parameter.

with the structural object (land conversion events) and
then building feedbacks between simulated structures
and process-based transition probabilities. When ap-
plied to a series of hypothesized growth management
treatments, FUTURES projected regional scenarios of
land change that produced spatial structures of urban-
ization and fragmentation at landscape scales.

Multilevel structure is another characteristic that
makes FUTURES appropriate for modeling land change
dynamics at regional extents (Irwin, Jayaprakash, and
Munroe 2009). Analysis of change at the subregional
level (county) allowed us to account for socioeconomic
and policy factors that vary across a region but that are
not typically available as geospatial data (Fotheringham
and Brunsdon 1999). The implementation of multilevel
modeling also allowed relationships to diverge and vary
spatially, rather than assuming stationarity across the
entire metropolitan region (Gelman and Hill 2007).
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Model Performance

To explore the effects of growth along urban–rural
gradients, FUTURES was designed to simulate leapfrog
and exurban development objects in areas with low
development potential while still converting undevel-
oped remnants in areas of high development suitability.
These contrasting conversion events represent a mod-
eling challenge in how best to allocate the limited num-
ber of prescribed transitions to simulate both urban and
exurban growth with acceptable accuracy while main-
taining generic heuristics that avoid overfitting a model.
In analyzing error, relative evenness in correctness and
error along the development density gradient indicated
that FUTURES simulated new development in low-
and high-suitability areas; in contrast, clumping (e.g.,
correctness biased toward high-potential areas) would
have indicated that the spatial allocation of conversion
events was flawed even if overall accuracy was higher as
a result.

Validation diagnostics for the entire landscape in-
dicated that FUTURES produced an overall accuracy
of 86.7 percent, a high value due in part to the major-
ity of the landscape being persistent, undeveloped land
cover (Figure 5). The figure of merit, a measure of sim-
ulation accuracy, was 13.6 percent, a value consistent
with other case studies where observed change is a rare
event (e.g., less than 10 percent; Pontius et al. 2008).
Analysis of error found 12.1 percent attributable to er-
rors of allocation and 1.2 percent attributable to quanti-
ties prescribed by the DEMAND submodel (Figure 6A).
Classification error for the interval (20 percent in 1996,
14 percent in 2006) could also account for a propor-
tion of cell error (Pontius and Lippitt 2006). Rela-
tive evenness of error and correctness across the de-
velopment density gradient (Figures 5D, 6B) support
FUTURES’s applicability to simulating change over a
range of regional contexts. Patch-level diagnostics ag-
gregated from our regional lattice (6 km × 6 km blocks)
showed some rural bias between simulated and observed
in terms of area of new patches of development (Figure
7A) and stronger correspondence in terms of the num-
ber of new patches of development (Figure 7D). When
residuals of patch area (Figure 7B) and number of new
patches (Figure 7E) are plotted along the development
density gradient, we see that the study system is skewed
toward rural land covers, but error exhibits relative ho-
moscedasticity. Mapped residuals shows overestimate in
rapidly transitioning areas of North and East Charlotte
(Figures 7C, 7F).

Our application of FUTURES covered a large geo-
graphical extent (174 km × 140 km; Figure 2), with
land change dynamics represented as cell- and patch-
level mechanisms operating on a relatively fine spatial
resolution (30 m × 30 m). This spatial grain and extent
made our application too computationally demanding
for desktop computing environments to meet the re-
quired compute time and memory capacity (Tang and
Wang 2009). We necessarily used high-performance
computing to conduct multiple stochastic simulation
runs distributed across multiple advanced computing
processors with large memory configuration in a paral-
lel manner (Wilkinson and Allen 2004). Smaller study
extents for calibration and simplifying the equation
for calculating development pressure at each time step
are two options for overcoming computational barriers
if a high-performance computing infrastructure is not
accessible.

Change in the Charlotte Region

Since the mid-1980s, the Charlotte region has ur-
banized in disjoint, low-density patterns where over
one third of an acre was developed for each regional
occupant by 2006. Our DEMAND analyses revealed
the alarming result that land conversions outpaced the
doubling population. FUTURES projected additional
losses of 212,650 ha of forested and agricultural land
by the year 2030 if the trends exhibited between 1996
and 2006 persist. These trends are notable given the
ongoing changes to infiltration zones, bioretention, and
losses of evapotranspiration that have already led to the
region’s primary source of drinking water and power, the
Catawba River Basin, being named America’s most en-
dangered river in 2008 by American Rivers (Hamilton,
Kober, and Hewes 2008).

Charlotte’s high and rising land consumption rates
match those of megaregion sibling Atlanta but, in con-
trast, Charlotte’s larger amount of remaining forests
and farmlands suggest that it is still early enough in
its growth trajectory to plan a more environmentally
benign future. Our simulations of alternative futures
of reduced landscape fragmentation and expansion of
impervious surfaces illustrate that the region still has
viable options. Despite growing interest in open space
and “green” development, however, little change in pol-
icy is expected in the near term. North Carolina is a
strong property rights state, with counties and munici-
palities limited to a few planning instruments, such as
temporary building moratoria, adequate public facility
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20 Meentemeyer et al.

ordinances (APFO), and zoning (Ott and Read 2006),
the latter being routinely adjusted to landowners’ wishes
once development pressure is high enough.

Simulation Experiments

When fragmentation is understood as an emergent
behavior generated by a complex system of multiple and
disparate forcings, evolving feedbacks, and nonlinear
trajectories of cause and effect, bottom-up approaches
offer new tools into a seemingly intractable situa-
tion that confounds top-down, prescriptive approaches
(Innes and Booher 1999). Given that current land use
policy in the Charlotte region is unlikely to reduce frag-
mentation and its associated impacts, we explored the
effects of two bottom-up treatments using simple global
parameters that we view as proxies for market-based
planning tools. Scenarios that lowered per capita land
consumption, ostensibly through “upzoning” or density
entitlements that permit builders to place more units per
area, were revealed to conserve forest and farmland and
reduce forest fragmentation (Table 3; Figure 8B). The
dominant paradigm in the United States for conserving
environmental and rural character, however, remains
low-density zoning ordinances (L. Robinson, Newell,
and Marzluff 2005), represented in the Charlotte region
as status quo land consumption (Table 3). Ironically,
our simulation results indicate that ordinances intended
to reduce environmental impacts by limiting occupancy
are likely to have the unwanted effect of increasing
fragmentation.

We controlled the distribution of new develop-
ment by changing the survival probabilities of seed-
ing events using adjustments to the development
suitability—analogous to the way policymakers influ-
ence construction starts using PFAs or APFOs. Sim-
ulated growth response to higher INCENTIVE values
resulted in clustering development and a reduction in
fragmentation of both forest and farmland while hold-
ing the absolute amount of converted land constant
(Table 4; Figure 8C). Low INCENTIVE values, which
made previously low- and mid-range development suit-
ability areas relatively more attractive, led to more dif-
fusive patterns of growth (Figure 8C) that conserved
farmland at the expense of forest (Table 4; Figure 9).
This counterintuitive effect can be explained by agri-
cultural abandonment (and subsequent forest regrowth)
that often occurs at the frontier of urbanization (Foster
1992; Brown, Pijanowski, and Duh 2000). These find-
ings suggest that locally contextualized or site-specific

planning strategies might be needed to produce specific
conservation outcomes.

Analysis of these land change scenarios provided
an important avenue for the exploration of potential
landscape-level impacts of future development on eco-
logical communities and conservation priorities. Al-
though no multijurisdictional body currently exists to
implement these regional initiatives, we anticipate that
our findings will nonetheless demonstrate FUTURES’s
capabilities to inform a range of stakeholders including
governmental bodies charged with protecting human
health and the environment (e.g., EPA, regional plan-
ning boards, environmental researchers).

Conclusion

FUTURES has two features that together make the
model novel and useful for regional projections of ur-
ban growth and fragmentation. First, the patch-growing
algorithm simulates the emergence of landscape spa-
tial structure using a combination of field-based
and object-based representations of land change. By
bridging field-based and object-based representations,
FUTURES scales up cell-level state transitions to form
discrete patches of land conversion events, which in
turn further agglomerate to produce multilevel pat-
terns of growth and landscape fragmentation. Second,
the multilevel modeling framework allows cross-scale
drivers of land change to vary in space rather than pro-
duce a single solution for an entire region.

Our assessment of FUTURES’s performance along
an urban development density gradient, using both
cell- and patch-based metrics, uniquely revealed spatial
variation of simulation error and correctness, thereby
informing the quantification of landscape fragmenta-
tion. The coupling of exogenous population demand
for development with endogenous development
suitability patterns promotes transparent interpretation
of land change drivers in a system. Inquiry- and
strategy-driven scenarios are made possible through
FUTURES’s adjustable parameters that control the
spatial diffusion and shape of land change. These
model characteristics support projections of long-term
societal and environmental change that allow diverse
stakeholders to test planning and policy interventions
and build consensus toward goals. Application of
FUTURES to the Charlotte metropolitan region
illustrates how patch-based land change modeling can
reference the spatial structure and multilevel nature of
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landscape changes with attention to size, shape, and
distribution characteristics of fragmentation.
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