
Illinois Journal of Mathematics
Volume 54, Number 4, Winter 2010, Pages 1239–1284
S 0019-2082

FUTURES TRADING WITH TRANSACTION COSTS

KAREL JANEČEK AND STEVEN E. SHREVE

Abstract. A model for optimal consumption and investment is
posed whose solution is provided by the classical Merton analysis

when there is zero transaction cost. A probabilistic argument

is developed to identify the loss in value when a proportional

transaction cost is introduced. There are two sources of this loss.
The first is a loss due to “displacement” that arises because one

cannot maintain the optimal portfolio of the zero-transaction-
cost problem. The second loss is due to “transaction,” a loss

in capital that occurs when one adjusts the portfolio. The first

of these increases with increasing tolerance for departure from

the optimal portfolio in the zero-transaction-cost problem, while

the second decreases with increases in this tolerance. This paper

balances the marginal costs of these two effects. The probabilis-
tic analysis provided here complements earlier work on a related

model that proceeded from a viscosity solution analysis of the
associated Hamilton–Jacobi–Bellman equation.

1. Introduction

The underlying risky asset in this paper is a futures contract. Investing
in futures is different from investing in stocks because the value of a futures
contract is reset to zero by marking to market at the end of each trading day.
With a stock, the share price determines the amount of capital an investor
must commit to trade in the asset, and the relative changes in the share price
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determine the return on investment. A geometric Brownian motion model is
frequently used for share prices so that these relative changes are normally
distributed. With a futures contract, the investor does not commit capital to
trade (the margin account that is set up is to guarantee credit-worthiness, not
to pay a purchase price), and hence the absolute changes in the futures price
determine the investor’s profits and losses. To capture the preeminence of
absolute changes in the futures price, we model the futures price as arithmetic
rather than geometric Brownian motion. Our model for the futures price is
thus

(1.1) F (t) = F (0) + αt + σW (t),

where F (0) and α are constants, σ is a positive constant, and W is a standard
Brownian motion under a (physical) measure P. We assume that α �= 0 in
order to achieve a nontrivial solution. More precisely, in this paper we assume
α > 0; the results for α < 0 are obtained by symmetry.

Consider an agent with initial capital X(0) > 0 who invests in a money
market and takes positions in futures contracts on some asset or index. Let
X(t) denote the wealth of the agent at time t, all of which is held in a money
market account with constant rate of interest r > 0. At each time t, the agent
consumes at rate C(t) ≥ 0 per unit time. In addition, the agent may take any
long or short position in futures contracts by paying a small transaction cost
λ > 0 times the size of the trade required to attain the position. In practice,
entering, adjusting, or closing a futures position is costless except for money
lost due to the bid–ask spread and other transaction fees. For large traders,
these costs are proportional to trade size.

Consider a one-parameter class of utility functions defined for C ≥ 0 by

(1.2) Up(C) =

{
1

1−pC1−p if p > 0, p �= 1,

logC if p = 1.

For p ≥ 1, we mean that Up(0) = −∞. Let β > 0 be a positive discount factor
chosen so that

(1.3) A(p) � β − r(1 − p)
p

− α2(1 − p)
2σ2p2

> 0.

The value function for the agent’s utility maximization problem is

(1.4) v(x, y) � supE

∫ ∞

0

e−βtUp

(
C(t)
)
dt,

where the supremum is taken over consumption and investment strategies
that ensure that the agent is solvent at all times, that is, at each time the
agent would have nonnegative wealth if he closed out his futures position.

This is an arithmetic Brownian motion version of the classical transaction
cost problem posed by Magill and Constantinides [12], solved under restrictive
assumptions by Davis and Norman [6], and thoroughly studied by Shreve and
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Soner [17]. If λ were zero, this problem could be solved by the method due
to Merton [14] and outlined in Section 3.4 below, and the optimal trading
strategy would keep the position in futures divided by total wealth at the
constant value

(1.5) θ � α

σ2p
.

When λ is positive one should instead keep this ratio in an interval [z∗
1 , z∗

2 ],
trading just enough to prevent the ratio from exiting the interval. This result
has been obtained rigorously for the geometric Brownian motion model; see
[6], [17]. The argument for the arithmetic Brownian motion model is not
provided here, in part because it parallels the arguments in the cited papers.
Our purpose is not to imitate those earlier works, which are based on analyses
of the associated Hamilton–Jacobi–Bellman partial differential equation, but
rather to take the form of the optimal solution as given and provide a purely
probabilistic derivation, based on balancing the two costs discussed below, of
the values of z∗

1 and z∗
2 . One cannot analytically solve for z∗

1 and z∗
2 , but

it is possible to conduct an asymptotic analysis of these quantities. In this
paper we use a probabilistic argument to show that θ − z∗

1 and z∗
2 − θ are

of order λ1/3, to determine the coefficients multiplying λ1/3, and to estimate
the loss in expected utility due to the positive transaction cost. This loss in
utility is shown to be of order λ2/3 and the coefficient multiplying λ2/3 is also
determined.

The first hint of the O(λ1/3) result just reported appears in the appendix of
[17]. A detailed but heuristic asymptotic analysis was carried out by Whalley
and Wilmott [20]. A rigorous analysis based on viscosity sub- and supersolu-
tion arguments that determined the loss in utility and suggested but did not
rigorously establish the location of z∗

1 and z∗
2 was conducted by Janeček and

Shreve [7]. At the end of [7], a short but heuristic argument was provided
for the main results of the paper. A more compelling heuristic argument was
later developed by Rogers [16]. In both cases, the argument was built around
the observation that there are two types of loss in the problem with positive
transaction costs. The first is the loss due to displacement, a loss incurred
because one cannot keep the ratio of position in risky asset to total wealth at
the desired constant θ. The second is the loss due to paying the transaction
cost. The loss due to displacement increases and the loss due to transaction
decreases as the agent becomes more tolerant of departures from θ. By es-
timating these losses and equating the marginal losses, one discovers that z∗

1

and z∗
2 should differ from θ by O(λ1/3) and that the optimal expected utility

in the problem with transaction cost λ > 0 is O(λ2/3) less than the optimal
expected utility in the problem with zero transaction cost. In this paper, we
provide rigorous bounds on these losses and these bounds are sufficiently tight
to enable us to determine the location of z∗

1 and z∗
2 up to order λ1/3. More
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precisely, under Assumption 4.1 below, this argument determines the highest
order terms in the loss in value and in the location of z∗

1 and z∗
2 (Theorem 4.8).

The argument in [16] provides a useful change of measure idea that is instru-
mental in developing the rigorous argument of this paper (see Sections 5.2
and 5.3).

In all the papers cited, the risky asset is a stock modeled as a geometric
Brownian motion. In this paper, we take the risky asset to be a futures price
processes modeled as an arithmetic Brownian motion. This removes some
technicalities that occur when the agent has 100% of his wealth in the risky
asset (see Remark 3.2). Otherwise, the two problems seem to be entirely
parallel. We have chosen the arithmetic Brownian motion model in order to
remove these technicalities and highlight the main features of the analysis.

Papers that perform asymptotic analysis on related transaction cost prob-
lems are [1], [9], [10]. Numerical treatments of transaction costs problems can
be found in [2], [4], [15], [18], [19]. Analysis of finite-horizon problems can be
found in [3], [5], [11].

2. The model

We return to the futures price process (1.1). Let L and M be nondecreas-
ing, right-continuous processes with L(0−) = M(0−) = 0. We interpret L(t)
(M(t)) as the cumulative number of futures contracts bought (sold) by time t.
The number of futures contracts owned by an agent at time t is

(2.1) Y (t) = Y (0−) + L(t) − M(t).

The wealth X(t) of the agent then evolves according to the equation

(2.2) dX(t) = Y (t)dF (t) − λ
(
dL(t) + dM(t)

)
+ rX(t)dt − C(t)dt.

So long as X(u−) > 0, 0 ≤ u ≤ t, we may define �(t) =
∫ t

0
dL(u)
X(u−) , m(t) =∫ t

0
dM(u)
X(u−) , and c(t) =

∫ t

0
C(u)du
X(u−) , and rewrite (2.1), (2.2) as

dY (t) = X(t−)
(
d�(t) − dm(t)

)
,(2.3)

dX(t) = Y (t)
(
αdt + σ dW (t)

)
− λX(t−)

(
d�(t) + dm(t)

)
(2.4)

+ X(t)
(
r − c(t)

)
dt.

When � and m are continuous, the ratio process θ(t) � Y (t)/X(t) satisfies

dθ(t) = θ(t)
(

−r + c(t) − αθ(t) + σ2θ2(t)
)
dt − σθ2(t)dW (t)(2.5)

+
(
1 + λθ(t)

)
d�(t) −

(
1 − λθ(t)

)
dm(t).

We require the agent to always have sufficient capital to close out the
futures position and still be solvent. In other words, he must trade so that
(X(t), Y (t)) stays in the closure S of the solvency region

S �
{
(x, y);x + λy > 0, x − λy > 0

}
.
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By computing d(X(t)+λY (t)) and d(X(t) − λY (t)), one can see that if (X,Y )
ever reaches the boundary ∂S of S , then to keep from exiting S , (X,Y ) must
jump to the origin and then the agent must make no further trades and must
cease consumption. Hence, for purposes of the utility maximization problem
described below, we only need to determine the optimal policy in the open
region S . In this region, the reformulation of (2.1), (2.2) as (2.3), (2.4) is
legitimate because S ⊂ {(x, y);x > 0}.

Let (x, y) ∈ S be given. Let � and m be nondecreasing, right-continuous
processes with �(0−) = m(0−) = 0, and let c be a nonnegative process. We
say (�,m, c) is admissible at (x, y) and write (�,m, c) ∈ A(x, y) provided that
when we take X(0−) = x and Y (0−) = y and use �, m and c in (2.3), (2.4),
the resulting processes X and Y satisfy (X(t), Y (t)) ∈ S for all t ≥ 0. Note
that because � and m may jump at time zero, X(0) = x − λx(�(0)+m(0)) and
Y (0) = y+x(�(0) − m(0)). We shall see that except for a possible initial jump,
the optimal � and m for the utility maximization problem defined below are
continuous.

We now define v(x, y) by (1.4) for all (x, y) ∈ S . The supremum in (1.4)
is over (�,m, c) ∈ A(x, y). For (x, y) ∈ ∂S , we necessarily have (X(t), Y (t)) =
(0,0) for all t ≥ 0, and hence define for (x, y) ∈ ∂S ,

v(x, y) =

{
0 if 0 < p < 1,

−∞ if p ≥ 1.

3. Properties of the value function

3.1. Homotheticity. For γ > 0, A(γx, γy) = A(x, y), and when (�,m, c)
is chosen from this set, the pair of processes (Xγ , Y γ) corresponding to the
initial condition (γx, γy) is the same as (γX,γY ), where (X,Y ) corresponds
to the initial condition (x, y). Because

Up

(
c(t)Xγ(t)

)
=

{
γ1−pUp

(
c(t)X(t)

)
if p > 0, p �= 1,

logγ + U1

(
c(t)X(t)

)
if p = 1,

v has the homotheticity property that for all γ > 0 and (x, y) ∈ S ,

(3.1) v(γx, γy) =

{
γ1−pv(x, y) if p > 0, p �= 1,

v(x, y) + 1
β logγ if p = 1.

From this homotheticity one can argue (see [6] or [17] for details in the geo-
metric Brownian motion model) that the optimal policy when (X(t), Y (t)) ∈ S
must depend on the ratio Y (t)/X(t). In particular, there are two num-
bers z∗

1 = z∗
1(λ) and z∗

2 = z∗
2(λ) satisfying −1/λ < z∗

1 < z∗
2 < 1/λ that de-

fine the no-trade region NT � {(x, y) ∈ S : z∗
1 < y/x < z∗

2 } (see Figure 1).
If −1/λ < Y (0−)/X(0−) < z∗

1 , the agent should immediately buy futures to
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Figure 1. Solvency region.

bring Y (0)/X(0) to z∗
1 . If z∗

2 < Y (0−)/X(0−) < 1/λ, the agent should im-
mediately sell futures to bring Y (0)/X(0) to z∗

2 . In particular, v(x, y) for
(x, y) ∈ S \ NT can be specified in terms of v on the boundary {x > 0 : y/x =
z∗
1 or y/x = z∗

2 } of NT by

v(x, y) =

⎧⎨⎩v
(

x+λy
1+λz∗

1
,

z∗
1 (x+λy)
1+λz∗

1

)
if − 1

λ < y
x ≤ z∗

1 ,

v
(

x−λy
1−λz∗

2
,

z∗
2 (x−λy)
1−λz∗

2

)
if z∗

2 ≤ y
x < 1

λ .

Once the pair (X,Y ) is in NT , the agent should trade only at the bound-
aries y/x = z∗

2 and y/x = z∗
1 , and trade only enough to prevent (X,Y ) from

exiting NT . In the open set NT , there should be consumption but no trading.

3.2. Homotheticity of type II. The futures trading setup has another
useful property, which we call homotheticity of type II. Homotheticity of type
II does not require that we have a utility function of the form (1.2).
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Theorem 3.1. For any (x, y) ∈ S, α ≥ 0, λ ≥ 0, the value function satisfies

(3.2) v(x, y,α,σ,λ) = v

(
x,ky,

α

k
,
σ

k
,
λ

k

)
∀k > 0,

where we have explicitly indicated the dependence of the value function on α
and σ appearing in (1.1), (2.4), and on the transaction cost parameter λ.

Proof. The control (�,m, c) is in A(x, y) with parameters α,σ,λ if and
only if the control (k�, km, c) is in A(x,ky) with parameters α/k,σ/k,λ/k.
Moreover, the Y process resulting from the control (k�, km, c) ∈ A(x,ky) is k
times the Y process resulting from (�,m, c) ∈ A(x, y). The X processes are
identical. The result follows. �

Remark 3.2. In the geometric Brownian motion stock model, when the
agent who is faced with zero transaction cost would choose to invest $100% of
his wealth in the stock (θ = 1), we have an anomalous case because the agent
can maintain this position without trading. Because of this, the presence of
a positive transaction cost λ reduces the value function by only O(λ) rather
than O(λ2/3) (see Remark 1, p. 199 of [7]). One of the consequences of
homotheticity of type II is that in the arithmetic Brownian motion futures
model, the case θ = 1 has no special properties. Indeed, under the scaling of
α, σ and λ implicit in (3.2), θ is multiplied by k. Thus, the case of θ = 1 can
be scaled into a case with θ �= 1.

Remark 3.3. For sufficiently small k > 0, the transaction cost parameter
λ/k on the right-hand side of (3.2) can be arbitrarily large. If this transaction
cost parameter exceeds one, the agent must pay for changing the bet size Y (t)
more than the size of the change. However, it can still be the case that an
agent would want to increase the bet size because of high return α/k and
small initial bet size. It might also be the case that the agent would want
to reduce the bet size. In either case, the subsequent changes in Y (t) are
“marked to market” and affect the agent’s wealth X(t) without incurring
further transaction costs (see (2.4)).

Remark 3.4. In the geometric Brownian motion model of [17], the authors
show that the Merton proportion is inside the NT region for θ < 1 (see The-
orem 11.2 and remarks on p. 675). For θ > 1, this is the case for sufficiently
small transaction costs (see Theorem 2 in [7]), but θ is outside the solvency
region and hence outside NT for sufficiently high values of λ.

In the arithmetic model, the inclusion of θ in NT and the relationship
between θ and 1 are not connected. Indeed, let us fix the parameters r, β
and p. Then homotheticity of type II shows that there exist values for the
parameters α, σ and λ for which θ < 1 and θ ∈ NT if and only if there exist
other values of these parameters such that θ ≥ 1 and θ ∈ NT . Similarly, there
exist values for α, σ, and λ such that θ < 1 and θ /∈ NT if and only if there
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exist other values for these parameters such that θ ≥ 1 and θ /∈ NT . Finally,
for any α and σ, there exists sufficiently large λ such that θ /∈ S , and thus
θ /∈ NT .

In this paper, we consider only parameter values for which θ is in the
interior of NT ; see Assumption 4.1.

3.3. Hamilton–Jacobi–Bellman (HJB) equation. The Hamilton–Jaco-
bi–Bellman (HJB) equation for the model with λ > 0 is

min
{

βv(x, y) − (rx + αy)vx(x, y) − 1
2
σ2y2vxx(x, y) − Ũp

(
vx(x, y)

)
,(3.3)

λvx(x, y) − vy(x, y), λvx(x, y) + vy(x, y)
}

= 0,

where Ũp : (0, ∞) → R is the convex dual (Legendre transform) of Up:

(3.4) Ũp(C̃) � max
C>0

{
Up(C) − CC̃

}
=

{
p

1−p C̃(p−1)/p if p > 0, p �= 1,

− log C̃ − 1 if p = 1.

The maximizing C in (3.4) is C = C̃−1/p.
It was shown in [17] that as long as the region NT does not contain the

positive x-axis nor the positive y-axis, the value function for the geomet-
ric Brownian motion model is concave, twice continuously differentiable, and
solves the appropriate HJB equation. Adapted to our case, in which θ is
strictly positive, those arguments show that for sufficiently small λ > 0 our
value function v(x, y) is concave, twice continuously differentiable, and satis-
fies the HJB equation (3.3) everywhere in S . Because the focus of this paper is
to obtain probabilistic estimates for the losses associated with positive values
of λ, we do not present the necessary modifications of the lengthy analysis in
[17] that justify these assertions.

For λ > 0, the minimum in (3.3) breaks down into three cases:

βv(x, y) − (rx + αy)vx(x, y) − 1
2
σ2y2vxx(x, y) − Ũp

(
vx(x, y)

)
(3.5)

= 0 if z∗
1 ≤ y

x
≤ z∗

2 ,

λvx(x, y) − vy(x, y)(3.6)

= 0 if −1
λ

<
y

x
≤ z∗

1 ,

λvx(x, y) + vy(x, y)(3.7)

= 0 if z∗
2 ≤ y

x
<

1
λ

.

3.4. Zero transaction cost. If λ = 0, the problem with dynamics (2.3)
and (2.4) is ill posed because the agent should keep Y (t)/X(t) equal to the
constant θ, and this is not possible when Y is of bounded variation and X



FUTURES TRADING WITH TRANSACTION COSTS 1247

is not. Instead of (2.3) and (2.4), we let Y be a control variable and have a
single state X with dynamics

(3.8) dX(t) = Y (t)
(
αdt + σ dW (t)

)
+ X(t)

(
r − c(t)

)
dt.

The solvency region for the λ = 0 problem is {x : x > 0}. This is a classical
problem that can be solved as in Merton [14]. The value function is

(3.9) v0(x) =

{
1

1−pA−p(p)x1−p if p > 0, p �= 1,
1
β logβx + r−β

β2 + α2

2β2σ2 if p = 1,

which is finite for x > 0 because A(p) given by (1.3) is assumed to be positive.
The function v0(x) solves the HJB equation

min
y∈R,c≥0

{
βv0(x) − (rx + αy)v′

0(x) − 1
2
σ2y2v′ ′

0 (x) + cxv′
0(x) − Up(cx)

}
(3.10)

= 0.

The optimal ratio for y/x, found by minimizing over y in (3.10), is θ given
by (1.5). The optimal consumption level, found by minimizing over c in (3.10),
is A(p).

Remark 3.5. The fact that v0(x) < ∞ for x > 0 implies that the value
function v(x, y) for the less favorable problem with λ > 0 also satisfies v(x, y) <
∞ for (x, y) ∈ S . Of course, v(x, y) > −∞ for all (x, y) ∈ S because the agent
can immediately trade to a zero position in futures and thereafter simply
consume at rate c = r, which leaves X constant. We see in fact that on
each compact subset of S (S corresponding to some λ0), v(x, y) is bounded
uniformly over λ ∈ (0, λ0].

3.5. Initial estimates. The maximizing C in (3.4) when C̃ = vx(x, y) is
C = (vx(x, y))−1/p. We use the notation C = cx (see, e.g., (2.4) and (1.4)),
and the maximizing c is thus 1

x (vx(x, y))−1/p. Because of the homotheticity
(3.1), v(x, y) = x1−pv(1, y

x ) if p �= 1 and v(x, y) = v(1, y
x )+ 1

β logx if p = 1, and
hence

vx(x, y) =

{
x−p
(
(1 − p)v(1, θ) − θvy(1, θ)

)
if p �= 1,

1
x

(
1
β − θvy(1, θ)

)
if p = 1,

where θ = y/x. For z∗
1 ≤ θ ≤ z∗

2 , the maximizing c,

(3.11) c∗(θ) =

{(
(1 − p)v(1, θ) − θvy(1, θ)

)−1/p if p �= 1,(
1
β − θvy(1, θ)

)−1 if p = 1,

is a function of θ. We take (3.11) to be the definition of c∗(θ) for all θ ∈
(−1/λ,1/λ). This function is locally Lipschitz on (−1/λ,1/λ) because v is
twice continuously differentiable.
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Proposition 3.6. Let [z1, z2] be a compact subinterval of R which, for
sufficiently small λ, contains z∗

1 , z∗
2 and θ. For θ ∈ [z1, z2], we have1

(3.12) c∗(θ) =

{(
(1 − p)v(1, θ)

)−1/p + O(λ) if p �= 1,

β + O(λ) if p = 1,

and

(3.13) v(1, θ) = v(1, θ) + (θ − θ)O(λ).

Proof. From (3.6) and (3.7) we have

λvx(x, z1x) − vy(x, z1x) = 0, λvx(x, z2x) + vy(x, z2x) = 0.

For i = 1,2, the homotheticity v(x, zix) = x1−pv(1, zi) for p �= 1 or v(x, zix) =
v(1, zi) + 1

β logx for p = 1 implies that

vx(x, zix) + zivy(x, zix) =

{
(1 − p)x−pv(1, zi) if p �= 1,
1

βx if p = 1.

We solve these equations for vy :

vy(x, z1x) =

{
λ(1−p)x−p

1+λz1
v(1, z1) if p �= 1,

λ
(1+λz1)βx if p = 1,

vy(x, z2x) =

{
− λ(1−p)x−p

1−λz2
v(1, z2) if p �= 1,

− λ
(1−λz2)βx if p = 1.

Since v is concave, vy(x, ·) is decreasing, and this yields the bounds

vy(x, z2x) ≤ vy(x, y) ≤ vy(x, z1x), z1x ≤ y ≤ z2x.

Both bounds are x−pO(λ), so vy(1, θ) = O(λ) for z1 ≤ θ ≤ z2. Equation (3.13)
follows immediately. A Taylor series expansion of (3.11) using (3.13) yields
(3.12). �

Remark 3.7. If 0 < p ≤ 1, then pA(p) + (1 − p)c∗(θ) ≥ pA(p), which is
strictly positive. On the other hand, if p > 1, then v(1, θ) ≤ v0(1) = 1

1−pA−p(p)

and thus ((1 − p)v(1, θ))− 1
p ≤ A(p). It follows that for sufficiently small λ0 > 0

and θ in an arbitrary compact subinterval of (−1/λ0,1/λ0),

pA(p) + (1 − p)c∗(θ) ≥ A(p) + O(λ),

which is bounded away from zero as λ ranges over (0,1/λ0].

1 We mean by O(λ) in (3.12) and (3.13) a term whose absolute value is bounded by λ times

a constant that does not depend on θ in the compact subinterval [z1, z2] nor on λ ∈ (0, ε)
for some ε > 0, although the bound may depend on z1 and z2. See Remark 4.7 for a fuller

discussion of the O(·) notation as it is used in this paper.



FUTURES TRADING WITH TRANSACTION COSTS 1249

Corollary 3.8. For sufficiently small λ0 > 0, let −1/λ0 < z1 < z2 < 1/λ0,
and let ν be a probability measure on [z1, z2]. Then for λ ∈ (0, λ0] and y ∈
[z1, z2], we have

v(1, y) =
∫ z2

z1

v(1, θ)ν(dθ) + (z2 − z1)O(λ),

where the bound on the O(λ) term depends on z1 and z2 but not on ν.

4. Main results

We want to estimate the difference in v(x, y) given by (1.4) and v0(x) given
by (3.9). We separate this difference into two parts, the loss due to transaction
costs and the loss due to displacement, where “displacement” refers to the
fact that in the problem with positive λ, we cannot keep θ(t) at θ. We then
minimize the sum of these losses by equating marginal losses.

4.1. Decomposing the loss. In order not to digress into a lengthy analysis
of the HJB equation, we assume rather than prove that there exists an optimal
policy and it has the following form. This assumption is valid for nearly all
choices of parameters in the geometric Brownian motion model (see [17]), and
we conjecture that it holds for all choices of parameters satisfying (1.3) in the
arithmetic Brownian motion model considered here.

Assumption 4.1. We denote the dependence of z∗
i = z∗

i (λ) on λ. We
assume that for λ > 0 sufficiently small, 0 < z∗

1(λ) < θ < z∗
2(λ) and there is

a function ϕ(λ) satisfying limλ↓0 ϕ(λ) = 0 and z∗
2(λ) − z∗

1(λ) ≤ θϕ(λ) for λ

sufficiently small. Without loss of generality, we take ϕ(λ) > O(λ1/3).

For the remainder of the paper, we consider only the case that the initial
capital in the money market is X(0) = 1. We can do this without loss of
generality because of homotheticity. For the computations below, we initially
hold the consumption proportion rate c in (3.8) constant. We fix c > 0 so that
it satisfies

(4.1) pA(p) + (1 − p)c > 0.

We then obtain estimates that hold uniformly in c, provided that c is bounded
and c and pA(p) + (1 − p)c are bounded away from zero. If 0 < p ≤ 1, the
second condition imposes no constraint on c.

We first set up a utility corresponding to zero displacement and zero trans-
action cost. To do this, we use c(t) ≡ c and Y (t) = θX(t) in (3.8). We denote
the resulting X process by X0, which is given by

X0(t) = exp
{(

r − c + αθ − 1
2
σ2θ

2
)

t + σθW (t)
}

,(4.2)

EX1−p
0 (t) = exp

{
(1 − p)

(
r − c +

1
2
αθ

)
t

}
,(4.3)
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where we have used (1.5). One can further verify that

(4.4) (1 − p)
(

r − c +
1
2
αθ

)
= β − pA(p) − (1 − p)c.

Therefore, for p �= 1, EX1−p
0 (t) = e(β−pA(p)−(1−p)c)t, whereas for p = 1,

E logX0(t) = (r − c + α2

2σ2 )t. It is now straightforward to compute

(4.5) u0(c) � E

∫ ∞

0

e−βtUp

(
cX0(t)

)
dt =

{
c1−p

(1−p)(pA(p)+(1−p)c) if p �= 1,
1
β log c + r−c

β2 + α2

2β2σ2 if p = 1.

When p > 1, the expression on the right-hand side of (4.5) is negative because
of (4.1). For all values of p, the expression on the right-hand side of (4.5) is
maximized over c by A(p), that is,

(4.6) u0

(
A(p)

)
= v0(1).

We next set up a utility corresponding to positive displacement and positive
transaction cost. To do this, we choose positive numbers w1 and w2. We
consider the value that can be achieved by trading just enough to keep the
ratio of position in futures to wealth in money market inside the interval
[θ(1 − w1), θ(1 + w2)]. Eventually, we will optimize over w1 and w2.

Let X2(0) = 1 and let Y2(0) = θ2(0), where θ2(0) is a random variable
independent of W and taking values in [θ(1 − w1), θ(1 + w2)]. If we took
(X2(·), Y2(·)) to be the solution of (2.3) and (2.4) where c(t) is some Lipschitz
function c(θ2(t)) of θ2(t) = Y2(t)/X2(t) and where � = �2 and m = m2 are the
minimal continuous, nondecreasing processes such that

(4.7) θ2(t) � Y2(t)/X2(t) ∈
[
θ(1 − w1), θ(1 + w2)

]
∀t ≥ 0,

then we would have �2(0) = m2(0) = 0, X2(·), Y2(·) and θ2(·) would be con-
tinuous, and (2.5) in this case would become

dθ2(t) = θ2(t)
(

−r + c
(
θ2(t)

)
− αθ2(t) + σ2θ2

2(t)
)
dt − σθ2

2(t)dW (t)(4.8)

+
(
1 + λθ(1 − w1)

)
d�2(t) −

(
1 − λθ(1 + w2)

)
dm2(t).

We indeed take θ2(·) to be the solution of (4.8), leaving the choice of the
distribution of θ2(0) and the function c(·) open. However, for X2(·), we fix a
constant c > 0 satisfying (4.1) and let X2(·) be the solution of the equation

(4.9) dX2(t) = X2(t)
[(

r − c+αθ2(t)
)
dt+σθ2(t)dW (t) − λ

(
d�2(t)+dm2(t)

)]
.

The value associated with X2 is defined to be

(4.10) u2

(
c, c(·),w1,w2

)
� E

∫ ∞

0

e−βtUp

(
cX2(t)

)
dt.

Remark 4.2. We obtain estimates for u2(c, c(·),w1,w2) that are uniform
over c(·) (provided the class of c(·) considered is uniformly bounded, pA(p) +
(1 − p)c(·) is uniformly bounded away from zero, and each c(·) in the class
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varies by not more than κλ in [θ(1 − w1), θ(1 + w2)], where the constant κ is
uniform over the class) and uniform over c (provided that c and pA(p) + (1 −
p)c are bounded from above and away from zero). The two choices of c(·)
that we will need to consider are c(·) = c∗(·) given by (3.11) and c(·) equal to
a constant c. The desired properties of c∗(·) follow from Remarks 3.5 and 3.7
and Proposition 3.6.

Remark 4.3. If c(·) is c∗(·) given by (3.11) and if θ(1 − w1) = z∗
1 and

θ(1 + w2) = z∗
2 , then θ2(t) given by (4.8) is the optimal portfolio proportion

process, albeit with a random initial condition. We denote this process by θ∗,
i.e.,

θ∗(t) = θ∗(t)
(

−r + c∗(θ∗(t)
)

− αθ∗(t) + σ2
(
θ∗(t)

)2)
dt(4.11)

− σ
(
θ∗(t)

)2
dW (t) +

(
1 + λz∗

1

)
d�∗(t) −

(
1 − λz∗)dm∗(t),

where �∗ and m∗ are the minimal continuous, nondecreasing processes such
that θ∗(t) given by (4.11) stays in the interval [z∗

1 , z∗
2 ]. If, in addition, we

replace the constant c in (4.9) by c∗(θ∗(t)) and call the resulting process X∗,
i.e., X∗(0) = 1 and

dX∗(t) = X∗(t)
[(

r − c∗(θ∗(t)
)
+ αθ∗(t)

)
dt + σθ∗(t)dW (t)(4.12)

− λ
(
d�∗(t) + dm∗(t)

)]
,

then X∗ is the optimal amount to be invested in the money market. In
particular,

(4.13) Ev
(
1, θ∗(0)

)
= E

∫ ∞

0

e−βtUp

(
c∗(θ∗(t)

)
X∗(t)

)
dt.

Finally, we set up a utility for the intermediate situation of positive dis-
placement but zero transaction cost. We define the process X1(·) by setting
X1(0) = 1 and

(4.14) dX1(t) = X1(t)
[(

r − c + αθ2(t)
)
dt + σθ2(t)dW (t)

]
.

The process θ2(·) in (4.14) is the process determined by (4.8). The process
X1 does not incur transaction costs but it does incur a “displacement cost”
because θ2(t) is not identically equal to θ. We define the associated value

(4.15) u1

(
c, c(·),w1,w2

)
� E

∫ ∞

0

e−βtUp

(
cX1(t)

)
dt.

The remainder of the paper develops the estimates reported in the following
theorems. The proofs are deferred to Section 5.

Theorem 4.4 (Transaction loss). Let w1 > 0 and w2 > 0 be given and
define w � w1 + w2. Then there exist positive constants C1 and C2 such that

u1

(
c, c(·),w1,w2

)
− u2

(
c, c(·),w1,w2

)
(4.16)

≥ max
{
min
{
C1λw−1,C2

}
+ O(λ),0

}
.



1252 K. JANEČEK AND S. E. SHREVE

Furthermore, if λ/w = o(1), then

u1

(
c, c(·),w1,w2

)
− u2

(
c, c(·),w1,w2

)
(4.17)

=
c1−pσ2θ

3

(pA(p) + (1 − p)c)2
· λ

w
+ O(λ) + O

(
λ2w−2

)
.

Theorem 4.5 (Displacement loss). Let w1 > 0 and w2 > 0 be given and
define w � w1 + w2. Let θ2(0) have the distribution under P corresponding to
the stationary distribution of the solution to (5.56) below. Then

0 ≤ u0(c) − u1

(
c, c(·),w1,w2

)
(4.18)

=
c1−ppσ2θ

2
(w2

1 − w1w2 + w2
2)

6(pA(p) + (1 − p)c)2
+ O
(
λw2
)
+ O
(
w3
)
.

Summing (4.17) and (4.18), we obtain the following corollary.

Corollary 4.6 (Total loss). Under the hypotheses of Theorem 4.5, if
λ/w = o(1), then

0 ≤ u0(c) − u2

(
c, c(·),w1,w2

)
(4.19)

=
c1−pσ2θ

2

(pA(p) + (1 − p)c)2

[
λθ

w1 + w2
+

p

6
(
w2

1 − w1w2 + w2
2

)]
+ O(λ) + O

(
w3
)
+ O
(
λ2w−2

)
.

Remark 4.7. Constants appearing in the estimates in this work are per-
mitted to depend on the model parameters r, α, σ and p, but not on λ, w1

and w2, provided these are sufficiently small positive numbers. Constants also
may not depend on t and ω. When we consider processes constrained to stay
in an interval [a, b], constants used in estimates may not depend on a and b.
In some cases, to achieve this independence from a and b, we shall restrict
attention to a and b for which b − a is sufficiently small. Finally, the notation
O(1), O(λ), O(λw−1), etc., is used to indicate any term whose absolute value
is bounded by a constant times the argument appearing in the notation, so
long as λ and w are sufficiently small (although terms like λw−1 might not
be small). Moreover, λ/w = o(1) means that λ ↓ 0 and w ↓ 0 in such a way
that λ/w → 0. In the case of (4.16)–(4.19), where c and c(·) appear in the
relations, the constants and O(·) terms do not depend on c and c(·) when c
ranges over a set of positive numbers for which c and pA(p) + (1 − p)c are
bounded and bounded away from zero and c(·) ranges over a set of functions
that are all bounded by the same bound, pA(p)+ (1 − p)c(·) is bounded away
from zero by a bound independent of c(·), and each function in the set varies
by no more than O(λ) on compact subintervals (the properties enjoyed by
c∗(·); see Remark 4.2).
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4.2. Equating marginal losses. If we could ignore the O(·) terms in Corol-
lary 4.6, in order to optimize over investment strategies we would minimize
the convex function

(4.20) gλ(w1,w2) � λθ

w1 + w2
+

p

6
(
w2

1 − w1w2 + w2
2

)
appearing in (4.19). For future reference, we note that

∇gλ(w1,w2) =

[
− λθ

(w1+w2)2
+ p

6 (2w1 − w2)

− λθ
(w1+w2)2

+ p
6 (2w2 − w1)

]
,(4.21)

∇2gλ(w1,w2) =
2λθ

(w1 + w2)3

[
1 1
1 1

]
+

p

3

[
1 − 1

2
− 1

2 1

]
.(4.22)

The minimum of gλ is attained by

(4.23) w1(λ) = w2(λ) �
(

3λθ

2p

)1/3

,

so that λ/(w1(λ) + w2(λ)) = o(1), the minimal value of gλ is

(4.24) gλ

(
w1(λ),w2(λ)

)
= θ2/3λ2/3

(
9p

32

)1/3

,

and substitution of this into the right-hand side of (4.19) results in

u2

(
c, c(·),w1(λ),w2(λ)

)
(4.25)

= u0(c) − c1−pσ2θ
8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

λ2/3 + O(λ).

With w1(λ) = w2(λ) given by (4.23), equation (4.25) is a direct consequence
of Corollary 4.6.

If p = 1 and we ignore the O(λ) term in (4.25) when maximizing over c, we
find the maximal value at A(1) = β. Substitution into (4.25) yields (see (4.6))

(4.26) u2

(
β,β,w1(λ),w2(λ)

)
= v0(1) − σ2θ

8/3

A1+p(p)

(
9p

32

)1/3

λ2/3 + O(λ).

The maximization of (4.25) over c is more difficult when p �= 1, but we shall
see (Lemma 5.13) that the maximizer is nearly A(p). Substitution of this
value of c into (4.25) leads to (4.26) even when p �= 1.

Because the argument just given ignores the O(·) terms in Corollary 4.6
when maximizing over w1, w2 and c, we cannot immediately assert that
u2(A(p),A(p),w1(λ),w2(λ)) is, up to O(λ), the maximal utility that can be
achieved in the problem with positive transaction cost λ. Our main result,
Theorem 4.8 below, asserts that this is almost the case.
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Theorem 4.8 (Value function). Under Assumption 4.1,

v(1, θ) = v0(1) − σ2θ
8/3

A1+p(p)

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)
,(4.27)

z∗
i (λ) = wi(λ) + O

(
λ5/12

)
, i = 1,2,(4.28)

where we explicitly indicate the dependence of z∗
i = z∗

i (λ) on λ > 0.

We note from Proposition 3.6 that so long as y lies in a compact subset of
R, we have v(1, y) = v(1, θ) + O(λ), so (4.27) applies to v(1, y) as well. Using
homotheticity, we can extend the formula to v(x, y).

5. Proofs

This section contains the proofs of Theorems 4.4, 4.5 and 4.8. To help
the reader follow the flow of the argument, we provide diagrams showing the
dependencies of the results in this section and Theorems 4.4, 4.5 and 4.8 and
Corollary 4.6. We use A −→ B to mean that the proof of B uses the result A.
The argument leading to Corollary 4.6 is diagrammed in Figure 2. After
obtaining Theorems 4.4 and 4.5 and Corollary 4.6, the argument leading to
Theorem 4.8 is organized as indicated in Figure 3.

5.1. Local time estimates. The proofs of Theorems 4.4, 4.5 and 4.8 require
estimates pertaining to the processes �2 and m2 appearing in (4.8). This
section provides these.

Let a, b ∈ R be given with a < b. For i = 1,2, let fi : [0, ∞) → R be a contin-
uous function with a ≤ fi(0) ≤ b. Let �i and mi be the minimal nondecreasing
functions such that

gi(t) � fi(t) + �i(t) − mi(t) ∈ [a, b] ∀t ≥ 0.

Figure 2. Dependencies to obtain Corollary 4.6.
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Figure 3. Dependencies to obtain Theorem 4.8.

The processes �i and mi push only when gi is at the boundary a or b, respec-
tively. In other words, they satisfy

(5.1) �i(t) =
∫ t

0

I{gi(s)=a} d�i(s), mi(t) =
∫ t

0

I{gi(s)=b} dmi(s) ∀t ≥ 0.

Theorem 1.6 of [8] implies the following result.

Lemma 5.1. Define h � f2 − f1 and assume that h is nondecreasing and
h(0) ≥ 0. Then for t ≥ 0,

(5.2) �2(t) ≤ �1(t) ≤ �2(t) + h(t), m1(t) ≤ m2(t) ≤ m1(t) + h(t).

Corollary 5.2. In the context of Lemma 5.1, suppose a ≤ x ≤ y ≤ b and
for some continuous function f with f(0) = 0, we have f1(t) = x + f(t) and
f2(t) = y + f(t) for all t ≥ 0. Then �2(t) ≤ �1(t) ≤ �2(t) + y − x and m1(t) ≤
m2(t) ≤ m1(t) + y − x.

Let a, b ∈ R be given with 0 < b −a ≤ 1. Consider ψ(·) satisfying ψ(0) ∈ [a, b]
and

(5.3) dψ(t) = μ
(
ψ(t)
)
dt + σ

(
ψ(t)
)
dW (t) + d�(t) − dm(t), t ≥ 0,

where W is a Brownian motion and μ(·) and σ(·) are Lipschitz continuous
functions defined on some compact interval I containing [a, b]. Here, �(·)
and m(·) are the minimal nondecreasing processes such that ψ(t) ∈ [a, b] for
all t ≥ 0. We define μ � minx∈I μ(x), μ � maxx∈I μ(x), σ � minx∈I σ(x),
σ � maxx∈I σ(x), and we assume σ > 0.

Lemma 5.3. Let ψ be given by (5.3) with ψ(0) ∈ [a, b], and assume that
σ(x) = 1 for all x. Let ψ0(0) ∈ [a, b] be given and define ψ0(·) by

(5.4) ψ0(t) = ψ0(0) + W (t) + �0(t) − m0(t),
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where �0(·) and m0(·) are the minimal nondecreasing processes such that
ψ0(t) ∈ [a, b] for all t ≥ 0. Then

�0(t) − μ+t − (b − a) ≤ �(t) ≤ �0(t) + μ−t + (b − a),

m0(t) − μ−t − (b − a) ≤ m(t) ≤ m0(t) + μ+t + (b − a).

Proof. According to Corollary 5.2, a change of the initial condition in (5.4)
by an amount less than or equal to b − a changes the �0 and m0 terms by no
more than b − a. Therefore, it suffices to prove

(5.5) �0(t) − μ+t ≤ �(t) ≤ �0(t)+μ−t, m0(t) − μ−t ≤ m(t) ≤ m0(t)+μ+t

under the assumption ψ0(0) = ψ(0).
We prove the first inequality in (5.5); the others are similar. For this,

we define f(t) = ψ(0) +
∫ t

0
μ(ψ(s))ds + W (t). Then � and m in (5.3) are

the minimal nondecreasing processes for which f + � − m ∈ [a, b]. We set
f0(t) = ψ(0) + W (t), so that �0 and m0 appearing in (5.4) are the minimal
nondecreasing processes for which f0 + �0 − m0 ∈ [a, b]. If μ ≤ 0, then h �
f0 − f is nondecreasing, and the first inequality in (5.5) follows from the first
inequality in (5.2). If μ > 0, then we also define f2(t) = ψ(0) + μt + σW (t),
and denote by �2 and m2 the minimal nondecreasing processes for which
f2 + �2 − m2 ∈ [a, b]. Now f2 − f and f2 − f0 are both nondecreasing. The
first inequality in (5.2) implies �2 ≤ � and the second implies �0(t) ≤ �2(t)+μt.
Combining these, we again obtain the first inequality in (5.5). �

Proposition 5.4. Let ψ be given by (5.3). For each positive integer k,

(5.6) E�k(t) = O

(
(t + 1)k

(b − a)k

)
, Emk(t) = O

(
(t + 1)k

(b − a)k

)
∀t ≥ 0.

Proof. We consider first the case that [a, b] = [0,1], μ(x) = 0 and σ(x) = 1
for all x ∈ [0,1]. We let ψ(0) have the stationary distribution for this case
(which happens to be uniform), so that the distribution of �(n + 1) − �(n) is
independent of n = 0,1, . . . . We prove by induction that

(5.7) E�k(n) ≤ nk
E�k(1), n = 1,2, . . . .

For n = 1, (5.7) holds. Assume (5.7) holds for some value of n ≥ 1. Then

E�k(n + 1) = E
[(

�(n) +
(
�(n + 1) − �(n)

))k]
=

k∑
i=0

(
k
i

)
E
[
�i(n)

(
�(n + 1) − �(n)

)k−i]
≤

k∑
i=0

(
k
i

)(
E
[
�k(n)

]) i
k ·
(
E
[(

�(n + 1) − �(n)
)k]) k−i

k
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≤
k∑

i=0

(
k
i

)
ni
(
E
[
�k(1)

]) i
k ·
(
E
[
�k(1)

]) k−i
k

= E�k(1) ·
k∑

i=0

(
k
i

)
ni1k−i

= (n + 1)k
E�k(1).

Since � is nondecreasing, we have the first equality in (5.6) with O((t+1)k) =
(t + 1)k

E�k(1). We further have

(5.8) E
[(

�(t) + 1
)k]= 2kO

(
(t + 1)k

)
+ 2k = O

(
(t + 1)k

)
.

If ψ(0) is a nonrandom initial condition in [a, b], then Lemma 5.3 shows that
�(t) changes by no more than b − a, and (5.8) gives us (5.6) even in this case.

We now permit μ to be a Lipschitz continuous function on [0,1], but con-
tinue with the assumptions that [a, b] = [0,1] and σ(x) = 1 for all x ∈ [0,1]. We
obtain (5.6) for this case of doubly reflected Brownian motion with bounded
drift on [0,1] from Lemma 5.3 and the case just considered.

For the case of general [a, b] with 0 < b − a ≤ 1, general μ and σ, we define
the time change A(t) � 1

(b−a)2

∫ t

0
σ2(ψ(u))du for all t ≥ 0, and its inverse

T (s) � A−1(s), so that B(s) � 1
b−a

∫ T (s)

0
σ(ψ(u))dW (u) is a Brownian motion.

We note that σ2t/(b − a)2 ≤ A(t) ≤ σ2t/(b − a)2. We have

ϕ(s) � 1
b − a

[
ψ
(
T (s)
)

− a
]

= ϕ(0) + (b − a)
∫ s

0

μ((b − a)ϕ(v) + a)
σ2((b − a)ϕ(v) + a)

dv + B(s)

+
1

b − a
�
(
T (s)
)

− 1
b − a

m
(
T (s)
)
.

The process ϕ is a doubly reflected Brownian motion on [0,1] with drift
bounded below by μ/σ2 and above by μ/σ2. The processes 1

b−a�(T (s)) and
1

b−am(T (s)) are the minimal nondecreasing processes that cause this reflec-
tion, and hence the case already considered implies

1
(b − a)k

E�k
(
T (s)
)

= O
(
(s + 1)k

)
,

1
(b − a)k

Emk
(
T (s)
)

= O
(
(s + 1)k

)
.

Replacing s by A(t) and using the upper bound on A(t), we obtain (5.6). �

Proposition 5.5. Let ψ be given by (5.3). We assume ψ(0) has the sta-
tionary distribution of the solution to (5.3) so that the marginal distribution
of ψ(t) does not depend on t, nor do k1 � 1

t E�(t) and k2 � 1
t Em(t). Let

f : [a, b] → R be twice continuously differentiable. We have

(5.9) Ef
(
ψ(t)
)

= k2g(b) − k1g(a),
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where

(5.10) g(x) � 1
h(x)

∫ x

x

2f(y)h(y)
σ2(y)

dy, h(x) � exp
{∫ x

x

2μ(y)
σ2(y)

dy

}
,

and x ∈ [a, b]. Furthermore,

(5.11) k2 − k1 = Eμ
(
ψ(t)
)
, k2h(a) = k1h(b).

Proof. It is straightforward to verify that 1
2σ2(x)g′(x) + μ(x)g(x) = f(x).

Let G(x) =
∫ x

x
g(y)dy, and apply Itô’s formula to obtain

G
(
ψ(t)
)

= G
(
ψ(0)
)
+
∫ t

0

f
(
ψ(u)

)
du +

∫ t

0

g
(
ψ(u)

)
σ
(
ψ(u)

)
dW (u)

+ g(a)�(t) − g(b)m(t).

Taking expectations, we obtain (5.9). Equation (5.3) implies

ψ(t) = ψ(0) +
∫ t

0

μ
(
ψ(u)

)
du +

∫ t

0

σ
(
ψ(u)

)
dW (u) + �(t) − m(t),

and taking expectations, we have the first part of (5.11). Finally, the function
H(x) =

∫ x

x
1

h(y) dy satisfies 1
2σ2(x)H ′ ′(x) + μ(x)H ′(x) = 0, and applying Ito’s

formula to H , we obtain

H
(
ψ(t)
)

= H
(
ψ(0)
)
+
∫ t

0

H ′(ψ(u)
)
σ
(
ψ(u)

)
dW (u) +

�(t)
h(a)

− m(t)
h(b)

.

Taking expectations, we obtain the second part of (5.11). �

Corollary 5.6. Under the assumptions of Proposition 5.5, with μ(x) = 0
and σ(x) = 1 for every x, we have E�(t) = Em(t) = t

2(b−a) .

Proof. In this case, h(x) = 1 for every x and (5.11) implies E�(t) = Em(t).
Taking f(y) = 1 for every y and x = a, we obtain the desired result from
(5.9). �

Corollary 5.7. Let ψ be given by (5.3), and assume that σ(x) = 1 for
all x. Then for all t ≥ 0, E�(t) = t

2(b−a) + O(b − a) + O(t) and Em(t) =
t

2(b−a) + O(b − a) + O(t).

Proof. If μ(·) is identically zero and ψ(0) is a random variable having the
stationary distribution of ψ(·) on [a, b], then Corollary 5.6 implies E�(t) =

t
2(b−a) . If ψ(0) is a nonrandom initial condition in [a, b] and μ(·) is not identi-
cally zero, then Lemma 5.3 implies |E�(t) − t

2(b−a) | ≤ b − a + (μ+ ∨ μ−)t. The
proof for m(t) is the same. �
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Proposition 5.8. With ψ(·) as in (5.3) and with 0 < b − a ≤ 1, let γ0, γ1

and γ2 be arbitrary positive constants. Then there exist constants γ3, γ4 and
γ5 depending only on γ0, γ1, γ2, μ, μ, and σ (and not depending on a, b, λ
or t) such that for all λ satisfying

(5.12) 0 < λ ≤ γ3 ∧
(
γ4(b − a)

)
,

we have Eeγ1λ�(t)+γ2λm(t) ≤ γ5e
γ0t for all t ≥ 0.

Proof. We first construct a positive convex solution u(x) to the Hamilton–
Jacobi–Bellman equation

(5.13) max
μ≤μ≤μ

σ≤σ≤σ

{
−γ0u(x) + μu′(x) +

1
2
σ2u′ ′(x) + 1

}
= 0

with boundary conditions

(5.14) u′(a) + γ1λu(a) = 0, u′(b) − γ2λu(b) = 0.

In (5.14), λ is a positive number satisfying (5.12) with γ3 and γ4 to be chosen
later. We seek a solution of the form

−γ0u(x) + μu′(x) +
1
2
σ2u′ ′(x) + 1 = 0, a ≤ x ≤ δ,(5.15)

−γ0u(x) + μu′(x) +
1
2
σ2u′ ′(x) + 1 = 0, δ ≤ x ≤ b,(5.16)

where a < δ < b and

(5.17) u(δ) = min
a≤x≤b

u(x) > 0, u′(δ) = 0.

A convex function satisfying (5.15)–(5.17) will satisfy (5.13) (recall σ > 0).
From (5.15) and (5.16), we see that u must be given by

(5.18) u(x) =

{
1
γ0

+ A+exp+ + A−exp− if a ≤ x ≤ δ,
1
γ0

+ B+exq+ + B−exq− if δ ≤ x ≤ b,

where p± � 1
σ2 (−μ ±

√
μ2 + 2σ2γ0) and q± � 1

σ2 (−μ ±
√

μ2 + 2σ2γ0). Note
that p+ and q+ are strictly positive and p− and q− are strictly negative. In
order for u to satisfy (5.14) and the smooth pasting conditions u(δ−) = u(δ+)
and u′(δ−) = 0 = u′(δ+), we must have

A+(p+ + γ1λ)eap+ + A−(p− + γ1λ)eap− +
γ1λ

γ0
= 0,(5.19)

B+(q+ − γ2λ)ebq+ + B−(q− − γ2λ)ebq− − γ2λ

γ0
= 0,(5.20)

A+eδp+ + A−eδp− − B+eδq+ − B−eδq− = 0,(5.21)

p+A+eδp+ + p−A−eδp− = 0,(5.22)

q+B+eδq+ + q−B−eδq− = 0.(5.23)
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Define

f(x) = p+(p− + γ1λ)e−(x−a)p− − p−(p+ + γ1λ)e−(x−a)p+ ,(5.24)

g(x) = −q+(q− − γ2λ)e(b−x)q− + q−(q+ − γ2λ)e(b−x)q+ .(5.25)

Then (5.19), (5.22) and (5.20), (5.23) imply

A+ =
γ1λp−
γ0f(δ)

e−δp+ ,

(5.26)
A− = − p+

p−
eδ(p+−p−)A+ = − γ1λp+

γ0f(δ)
e−δp− ,

B+ =
γ2λq−
γ0g(δ)

e−δq+ ,

(5.27)
B− = − q+

q−
eδ(q+−q−)B+ = − γ2λq+

γ0g(δ)
e−δq− .

In order for (5.21) to hold, δ must satisfy

(5.28)
f(δ)

γ1(p+ − p−)
=

g(δ)
γ2(q+ − q−)

.

To obtain a solution to this equation, we define

(5.29) γ3 � |p− |
2γ1

∧ q+

2γ2
, γ4 � γ0

(γ1 + γ2)σ2

and consider only λ satisfying (5.12). For such λ we have p− + γ1λ < 0 and
q+ − γ2λ > 0 so f ′(x) < 0 and g′(x) > 0 for a ≤ x ≤ b. Since

(5.30)
f(a)

γ1(p+ − p−)
= λ =

g(b)
γ2(q+ − q−)

,

there must exist a unique δ ∈ (a, b) satisfying (5.28). We need also to show
that f(δ) < 0 and g(δ) < 0 so A± and B± are positive. This will establish the
convexity and positivity of u. Denote by

δ1 = a +
1

p+ − p−
log

p−(p+ + γ1λ)
p+(p− + γ1λ)

, δ2 = b − 1
q+ − q−

log
q+(q− − γ2λ)
q−(q+ − γ2λ)

the unique solutions of f(δ1) = 0, g(δ2) = 0. Since log(1 + x) < x for x > 0,

δ1 = a +
1

p+ − p−
log
(

1 +
(p− − p+)γ1λ

p+(p− + γ1λ)

)
< a − γ1λ

p+(p− + γ1λ)
,

δ2 = b − 1
q+ − q−

log
(

1 +
(q− − q+)γ2λ

q−(q+ − γ2λ)

)
> b +

γ2λ

q−(q+ − γ2λ)
.

But (5.12) and (5.29) imply p− + γ1λ ≤ 1
2p− < 0 and q+ − γ2λ ≥ 1

2q+ > 0.
Therefore,

δ2 − δ1 > b − a +
2γ2λ

q−q+
+

2γ1λ

p+p−
= (b − a) − σ2(γ1 + γ2)λ

γ0
≥ 0
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by the fact that λ ≤ γ4(b − a). Since δ2 > δ1, we have δ ∈ (δ1, δ2) and f(δ) < 0
and g(δ) < 0.

We now take the argument of u to be the process ψ of (5.3) and use (5.13)
and (5.14) to obtain

d
[
e−γ0t+γ1λ�(t)+γ2λm(t)u

(
ψ(t)
)]

≤ e−γ0t+γ1λ�(t)+γ2λm(t)
[

−1dt + σ
(
ψ(t)
)
u′(ψ(t)

)
dW (t)

]
.

Integration yields

0 ≤ e−γ0t+γ1λ�(t)+γ2λm(t)u
(
ψ(t)
)

(5.31)

≤ u
(
ψ(0)
)

−
∫ t

0

e−γ0s+γ1λ�(s)+γ2λm(s) ds

+
∫ t

0

e−γ0s+γ1λ�(s)+γ2λm(s)σ
(
ψ(s)
)
u′(ψ(s)

)
dW (s).

We see that the Itô integral in (5.31) is bounded below and hence is a super-
martingale. Taking expectations in (5.31) and using the fact that 0 < u(δ) ≤
u(ψ(t)), we obtain Eeγ1λ�(t)+γ2λm(t) ≤ eγ0tu(ψ(0))/u(δ) for all t ≥ 0. It re-
mains only to show that there is a constant γ5 depending only on p±, q±, γ0,
γ1, and γ2 such that

(5.32)
u(x)
u(δ)

≤ γ5 ∀x ∈ [a, b].

Being convex, the function u attains its maximum over [a, b] at either a
or b. Thus, to prove (5.32), it suffices to obtain a positive lower bound on
u(δ)
u(a) and u(δ)

u(b) . We compute

u(δ)
u(a)

=
1
γ0

+ A+eδp+ + A−eδp−

1
γ0

+ A+eap+ + A−eap−

=
f(δ) + γ1λp− − γ1λp+

f(δ) + γ1λp−e−(δ−a)p+ − γ1λp+e−(δ−a)p−

= 1 +
γ1λ

p+p−

[
p+(e−(δ−a)p− − 1) − p−(e−(δ−a)p+ − 1)

e−(δ−a)p− − e−(δ−a)p+

]
= 1 − σ2γ1λ

2γ0
h1(δ − a),

where

h1(x) =
p+(e−xp− − 1) − p−(e−xp+ − 1)

e−xp− − e−xp+
.

We have limx↓0 h1(x) = 0 and limx→∞ h1(x) = p+. Hence, γ6 � supx>0 h1(x)
is finite and depends only on p± and q±. So long as 0 < λ ≤ γ0

σ2γ1γ6
, we have

u(δ)
u(a) ≥ 1

2 . We reduce γ3 given by (5.29) if necessary so that γ3 ≤ γ0
σ2γ1γ6

.
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A similar computation shows that

u(δ)
u(b)

= 1 − σ2γ2λ

2γ0
h2(b − δ),

where

h2(x) =
q+(exq− − 1) − q−(exq+ − 1)

exq+ − exq−
.

We have limx↓0 h2(x) = 0 and limx→∞ h2(x) = −q−. Hence, γ7 � supx>0 h2(x)
is finite and depends only on p± and q±. So long as 0 < λ ≤ γ0

σ2γ2γ7
, we have

u(δ)
u(a) ≥ 1

2 . We reduce γ3 if necessary so that γ3 ≤ γ0
σ2γ2γ7

. For λ satisfying
(5.12), the bound (5.32) and hence the conclusion of the proposition holds
with γ5 = 2. �

Proposition 5.9. With ψ(·) as in (5.3), let γ0 > 0, γ1 < 0, and γ2 < 0 be
given. For a, b ∈ R with b − a > 0 and sufficiently small and 0 < λ ≤ 1,

E

∫ ∞

0

e−γ0t+γ1λ�(t)+γ2λm(t) dt(5.33)

≤ 1
γ0

[
1 +

λσ2

(b−a)γ0
γ1∨γ2

− λσ2 + O((b − a)2)

]
.

Proof. We first construct a concave solution u(x) to the Hamilton–Jacobi–
Bellman equation (5.13) satisfying the boundary conditions (5.14). Instead of
(5.15)–(5.17), here we seek a concave solution of the form

−γ0u(x) + μu′(x) +
1
2
σ2u′ ′(x) + 1 = 0, a ≤ x ≤ δ,(5.34)

−γ0u(x) + μu′(x) +
1
2
σ2u′ ′(x) + 1 = 0, δ ≤ x ≤ b,(5.35)

where a < δ < b and

(5.36) u(δ) = max
a≤x≤b

u(x), u′(δ) = 0.

A concave function satisfying (5.34)–(5.36) will satisfy (5.13).
From (5.34) and (5.35), we see that u must be given by (5.18), where now

p± � 1
σ2 (−μ ±

√
μ2 + 2σ2γ0) and q± � 1

σ2 (−μ ±
√

μ2 + 2σ2γ0). Then p+ and
q+ are strictly positive, p− and q− are strictly negative, and

(5.37) p+p− = q+q− = − 2γ0

σ2
.

In order for u to satisfy (5.14) and the smooth pasting conditions u(δ−) =
u(δ+) and u′(δ−) = u′(δ+) = 0, equations (5.19)–(5.23) must hold. These
imply (5.26), (5.27), where f and g are defined by (5.24) and (5.25). In order
for (5.21) to hold, δ must satisfy (5.28). However, in contrast to the proof of
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Proposition 5.8, here we do not need to restrict λ in order to obtain a solution
to this equation. Because γ1 and γ2 are negative,

f ′(x) = e−(x−a)p+p+p−
[

−(p− + γ1λ)e(x−a)(p+−p−) + p+ + γ1λ
]

≤ e−(x−a)p+p+p−
[

−(p− + γ1λ) + p+ + γ1λ
]
< 0,

g′(x) = e(b−x)q− q+q−
[
q− − γ2λ − (q+ − γ2λ)e(b−x)(q+−q−)

]
≥ e(b−x)q− q+q−

[
q− − γ2λ − (q+ − γ2λ)

]
> 0.

Since (5.30) holds, there must exist a unique δ ∈ (a, b) satisfying (5.28). Fur-
thermore, f(a) = γ1λ(p+ − p−) and g(b) = γ2λ(q+ − q−) are both negative, so
f(δ) and g(δ) are also negative. This shows that A± and B± are negative,
so u is concave. We have solved (5.13), (5.14) for the case of positive γ0 and
negative γ1 and γ2. Furthermore, our solution satisfies (5.34)–(5.36).

From (5.13) and (5.14), we obtain (5.31). Taking expectations and then
letting t → ∞ in (5.31), we obtain

(5.38) E

∫ ∞

0

e−γ0t+γ1λ�(t)+γ2λm(t) dt ≤ u
(
ψ(0)
)

≤ u(δ).

To complete the proof, it remains only to show that the right-hand side
of (5.33) dominates u(δ).

We begin by observing that if a < δ ≤ a+b
2 , then f(a+b

2 ) ≤ f(δ), whereas, if
a+b
2 ≤ δ < b, then g(a+b

2 ) ≤ g(δ). According to (5.18), (5.26), and (5.27)

(5.39) u(δ) =
1
γ0

[
1 − γ1λ(p+ − p−)

f(δ)

]
=

1
γ0

[
1 − γ2λ(q+ − q−)

g(δ)

]
.

Because − γ1λ(p+−p−)
f(δ) is negative, we increase this term by replacing f(δ) by

a negative quantity with larger absolute value, that is, by a quantity smaller
than f(δ). If a < δ ≤ a+b

2 , we replace f(δ) by f(a+b
2 ) and obtain

(5.40) u(δ) ≤ 1
γ0

[
1 − γ1λ(p+ − p−)

f(a+b
2 )

]
.

If a+b
2 ≤ δ < b, we replace g(δ) by g(a+b

2 ) in the last expression in (5.39) and
instead obtain

(5.41) u(δ) ≤ 1
γ0

[
1 − γ2λ(q+ − q−)

g(a+b
2 )

]
.

According to (5.24), (5.37), and Taylor’s theorem,

f

(
a + b

2

)
= p+(p− + γ1λ)e− 1

2 (b−a)p− − p−(p+ + γ1λ)e− 1
2 (b−a)p+

=
(

γ1λ − (b − a)γ0

σ2

)
(p+ − p−) + O

(
(b − a)2

)
,
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g

(
a + b

2

)
= −q+(q− − γ2λ)e

1
2 (b−a)q− + q−(q+ − γ2λ)e

1
2 (b−a)q+

=
(

γ2λ − (b − a)γ0

σ2

)
(q+ − q−) + O

(
(b − a)2

)
.

Substitution of these formulas into (5.40) and (5.41) shows that u(δ) is dom-
inated by 1/γ0 times the maximum of[
1 +

γ1λ
(b−a)γ0

σ2 − γ1λ + O((b − a)2)

]
and

[
1 +

γ2λ
(b−a)γ0

σ2 − γ2λ + O((b − a)2)

]
.

This is the right-hand side of (5.33), provided b − a is sufficiently small. �

5.2. Proof of Theorem 4.4. Solving (4.9) and (4.14), we see that

X2(t) = exp
{∫ t

0

(
r − c + αθ2(u) − 1

2
σ2θ2

2(u)
)

du(5.42)

+
∫ t

0

σθ2(u)dW (u) − λ
(
�2(t) + m2(t)

)}
,

X1(t) = exp
{∫ t

0

(
r − c + αθ2(u) − 1

2
σ2θ2

2(u)
)

du(5.43)

+
∫ t

0

σθ2(u)dW (u)
}

.

We consider first the case p �= 1, for which we have

X1−p
1 (t) − X1−p

2 (t)(5.44)

= X1−p
1 (t)

[
1 − e−λ(1−p)(�2(t)+m2(t))

]
= Z2(t)ζ(t) exp

{
(1 − p)

∫ t

0

(
r − c + αθ2(u) − 1

2
pσ2θ2

2(u)
)

du

}
,

where

Z2(t) � exp
{

(1 − p)σ
∫ t

0

θ2(u)dW (u) − 1
2
(1 − p)2σ2

∫ t

0

θ2
2(u)du

}
,

ζ(t) � 1 − e−λ(1−p)(�2(t)+m2(t)).

The right-hand side of (5.44) has the same sign as ζ(t), which is positive
if 0 < p < 1 and negative if p > 1. Regardless of whether 0 < p < 1 or p > 1,
Up(cX1(t)) = c1−p

1−p X1−p
1 (t) ≥ c1−p

1−p X1−p
2 (t) = Up(cX2(t)), which implies

(5.45) u1

(
c, c(·),w1,w2

)
− u2

(
c, c(·),w1,w2

)
≥ 0.
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We introduce a Brownian motion W̃ under a probability measure P̃ and
consider an auxiliary process θ̃(·) satisfying θ̃(0) = θ2(0) and

dθ̃(t) = θ̃(t)
(

−r + c
(
θ̃(t)
)

− αθ̃(t) + pσ2θ̃2(t)
)
dt − σθ̃2(t)dW̃ (t)(5.46)

+
(
1 + λθ(1 − w1)

)
d�̃(t) −

(
1 − λθ(1 + w2)

)
dm̃(t),

where �̃(·) and m̃(·) are the minimal nondecreasing processes that keep θ̃(·)
in the interval [θ(1 − w1), θ(1 + w2)]. Following (5.42)–(5.43), we introduce

X̃2(t) = exp
{∫ t

0

(
r − c + αθ̃(u) − 1

2
σ2θ̃2(u)

)
du

+
∫ t

0

σθ̃(u)dW̃ (u) − λ
(
�̃(t) + m̃(t)

)}
,

X̃1(t) = exp
{∫ t

0

(
r − c + αθ̃(u) − 1

2
σ2θ̃2(u)

)
du +

∫ t

0

σθ̃(u)dW̃ (u)
}

.

Then just as in (5.44), we have

X̃1−p
1 (t) − X̃1−p

2 (t)

= Z̃2(t)ζ̃(t) exp
{

(1 − p)
∫ t

0

(
r − c + αθ̃(u) − 1

2
pσ2θ̃2(u)

)
du

}
,

where

Z̃2(t) � exp
{

(1 − p)σ
∫ t

0

θ̃(u)dW̃ (u) − 1
2
(1 − p)2σ2

∫ t

0

θ̃2(u)du

}
,

ζ̃(t) = 1 − e−λ(1−p)(�̃(t)+m̃(t)).

Because θ2(·) is bounded, Z2 is a martingale. Fix T > 0 and define a new
probability measure P

T
2 by dP

T
2

dP
= Z2(T ). Under P

T
2 , the process

WT
2 (t) � W (t) − (1 − p)σ

∫ t

0

θ2(u)du, 0 ≤ t ≤ T,

is a Brownian motion. We may rewrite (4.8) as

dθ2(t) = θ2(t)
(

−r + c
(
θ2(t)

)
− αθ2(t) + pσ2θ2

2(t)
)
dt(5.47)

− σθ2
2(t)dWT

2 (t) +
(
1 + λθ(1 − w1)

)
d�2(t)

−
(
1 − λθ(1 + w2)

)
dm2(t).

Comparing (5.47) and (5.46), we conclude that the four-dimensional process
(X1(t),X2(t), ζ(t), θ2(t); 0 ≤ t ≤ T ) has the same law under P

T
2 as the process

(X̃1(t), X̃2(t), ζ̃(t), θ̃(t); 0 ≤ t ≤ T ) under P̃.
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The term exp{(1 − p)
∫ t

0
(r − c + αθ2(u) − 1

2pσ2θ2
2(u)du} in (5.44) is nearly

deterministic for small w1 and w2. To exploit this fact, we define

Δ(t) � (1 − p)
∫ t

0

(
α
(
θ2(u) − θ

)
− 1

2
pσ2
(
θ2
2(u) − θ

2))
du

and the analogue

Δ̃(t) � (1 − p)
∫ t

0

(
α
(
θ̃(u) − θ

)
− 1

2
pσ2
(
θ̃2(u) − θ

2))
du.

We consider only w1 > 0, w2 > 0 such that w � w1 + w2 ≤ 1, and for such w1,
w2, there exists a constant k independent of w1, w2 such that

(5.48)
∣∣Δ(t)

∣∣≤ kwt,
∣∣Δ̃(t)

∣∣≤ kwt.

Let t ≥ 0 be given and choose T ≥ t. Using (1.5) and (4.4), we may write

EX1−p
1 (t) − EX1−p

2 (t) = E
[
Z2(t)ζ(t)e(β−pA(p)−(1−p)c)t+Δ(t)

]
(5.49)

= e(β−pA(p)−(1−p)c)t
E

T
2

[
ζ(t)eΔ(t)

]
= e(β−pA(p)−(1−p)c)t

Ẽ
[
ζ̃(t)eΔ̃(t)

]
.

According to Taylor’s theorem,

(5.50) ζ̃(t) = λ(1 − p)
(
�̃(t) + m̃(t)

)
− 1

2
λ2(1 − p)2

(
�̃(t) + m̃(t)

)2
eξ(t),

where ξ(t) is between 0 and −λ(1 − p)(�̃(t) + m̃(t)). We introduce the time
change A(t) �

∫ t

0
σ2θ̃4(u)du, the inverse time change T (s) � A−1(s), and the

P̃-Brownian motion B(s) � −
∫ T (s)

0
σθ̃2(u)dW̃ (u). Defining ψ(s) � θ̃(T (s)),

we rewrite (5.46) as

dψ(s) =
1

σ2ψ3(s)
(

−r + c
(
ψ(s)
)

− αψ(s)+ pσ2ψ2(s)
)
ds+dB(s)+ �(s) − m(s),

where �(s) � (1 + λθ(1 − w1))�̃(T (s)) and m(s) � (1 − λθ(1 + w2))m̃(T (s)).
Corollary 5.7 implies Ẽ�(s) = s

2θw
+ O(w) + O(s), and since

�(σ2θ
4
(1 − w1)4t)

1 + λθ(1 − w1)
≤ �̃(t) ≤ �(σ2θ

4
(1 + w2)4t)

1 + λθ(1 − w1)
,

we see that

(5.51) Ẽ
[
�̃(t)
]
=

σ2θ
3
t

2w
+ O
(
λtw−1

)
+ O(1) + O(t).

The same applies to m̃(t), which leads to

(5.52) Ẽ
[
�̃(t) + m̃(t)

]
=

σ2θ
3
t

w
+ O
(
λtw−1

)
+ O(1) + O(t).
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Let ε be a fixed positive constant and assume w1 and w2 are sufficiently
small so that kw < ε. Then∫ ∞

0

e−εt
Ẽ
∣∣(�̃(t) + m̃(t)

)(
eΔ̃(t) − 1

)∣∣dt

≤
∫ ∞

0

e−εt
Ẽ
[(

�̃(t) + m̃(t)
)(

ekwt − 1
)]

dt

=
∫ ∞

0

[
e−εt+kwt − e−εt

][σ2θ
3
t

w
+ O
(
λtw−1

)
+ O(1) + O(t)

]
dt

=
(

σ2θ
3

w
+ O
(
λw−1

)
+ O(1)

)(
1

(ε − kw)2
− 1

ε2

)
+
(

1
ε − kw

− 1
ε

)
O(1)

= O(1).

It follows that (recall (4.1))

Ẽ

∫ ∞

0

e−(pA(p)+(1−p)c)t
(
�̃(t) + m̃(t)

)
eΔ̃(t) dt(5.53)

= Ẽ

∫ ∞

0

e−(pA(p)+(1−p)c)t
(
�̃(t) + m̃(t)

)
dt

+ Ẽ

∫ t

0

e−(pA(p)+(1−p)c)t
(
�̃(t) + m̃(t)

)(
eΔ̃(t) − 1

)
dt

=
∫ ∞

0

e−(pA(p)+(1−p)c)t

(
σ2θ

3
t

w
+ O
(
λtw−1

)
+ O(1) + O(t)

)
dt

+ O(1)

=
σ2θ

3

(pA(p) + (1 − p)c)2w
+ O
(
λw−1

)
+ O(1).

Returning to (5.49) and using (5.50) and (5.53), we compute

u1

(
c, c(·),w1,w2

)
− u2

(
c, c(·),w1,w2

)
=

c1−p

1 − p

∫ ∞

0

e−βt
(
EX1−p

1 (t) − EX1−p
2 (t)

)
dt

=
c1−p

1 − p

∫ ∞

0

e−(pA(p)+(1−p)c)t
Ẽ
[
ζ̃(t)eΔ̃(t)

]
dt

= λc1−p
Ẽ

∫ ∞

0

e−(pA(p)+(1−p)c)t
(
�̃(t) + m̃(t)

)
eΔ̃(t) dt

− 1
2
λ2(1 − p)c1−p

Ẽ

∫ ∞

0

e−(pA(p)+(1−p)c)t
(
�̃(t) + m̃(t)

)2
eξ(t)+Δ̃(t) dt
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=
c1−pσ2θ

3

(pA(p) + (1 − p)c)2
· λ

w
+ O
(
λ2w−1

)
+ O(λ)

+
1
2
λ2(p − 1)c1−p

Ẽ

∫ ∞

0

e−(pA(p)+(1−p)c)t
(
�̃(t) + m̃(t)

)2
eξ(t)+Δ̃(t) dt.

If p > 1, the last term is nonnegative, and we have

u1

(
c, c(·),w1,w2

)
− u2

(
c, c(·),w1,w2

)
≥ C1λw−1 + O(λ)

for some positive constant C1. Combining this with (5.45), we obtain (4.16).
If p > 1 and λ/w = o(1), then the hypotheses of Proposition 5.8 are satisfied
by the process θ̃(·) of (5.46) with b − a = θw, γ1 = γ2 = 2(p − 1), and γ0 > 0
chosen to satisfy −(pA(p) + (1 − p)c) + kw + γ0 < 0 (w sufficiently small).
This proposition, together with Proposition 5.4 and Hölder’s inequality, im-
plies

Ẽ
[(

�̃(t) + m̃(t)
)2

eξ(t)+Δ̃(t)
]

≤ ekwt
Ẽ
[(

�̃(t) + m̃(t)
)2

eξ(t)
]

≤ ekwt
(
Ẽ
[(

�̃(t) + m̃(t)
)4])1/2(

Ẽ
[
e2ξ(t)

])1/2

= ekwt+γ0tO
(
(t + 1)2w−2

)
.

If follows that

(5.54) λ2
Ẽ

∫ ∞

0

e−(pA(p)+(1−p)c)t
(
�̃(t) + m̃(t)

)2
eξ(t)+Δ̃(t) dt = O

(
λ2w−2

)
,

and (4.17) is proved for the case p > 1.
If 0 < p < 1, then eξ(t) ≤ 1, so

Ẽ
[(

�̃(t) + m̃(t)
)2

eξ(t)+Δ̃(t)
]

≤ ekwtO
(
(t + 1)2w−2

)
.

For w sufficiently small so that −(pA(p) + (1 − p)c) + kw < 0, we again have
(5.54), which implies (4.17). The assumption λ/w = o(1) is not needed in the
proof of (4.17) in the case 0 < p < 1.

To obtain (4.16) when 0 < p < 1, we choose γ0 > pA(p) + (1 − p)c, set

γ1 =
p − 1

1 + λθ(1 − w1)
, γ2 =

p − 1
1 − λθ(1 + w2)

, σ = σθ
2
(1 − w1)2,

and note that γ1 ∨ γ2 = p−1

1+λθ(1−w1)
. Recalling (5.46), we see that Proposi-

tion 5.9 implies for sufficiently small w that

Ẽ

∫ ∞

0

e−γ0t+λ(p−1)�̃(t)+λ(p−1)m̃(t) dt

≤ 1
γ0

+
λ(p − 1)σ2θ

4
(1 − w1)4

γ2
0w(1 + λθ(1 − w1)) + λ(1 − p)γ0σ2θ

4
(1 − w1)4 + O(w2)
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≤ 1
γ0

− λ(1 − p)σ2θ
4
(1 − w1)4

2max{γ2
0w(1 + λθ(1 − w1)) + O(w2), λ(1 − p)γ0σ2θ

4
(1 − w1)4}

≤ 1
γ0

− 1
2

min
{

(1 − p)σ2θ
4
λ

2γ2
0w

,
1
γ0

}
=

1
γ0

− min
{
C ′

1λw−1,C ′
2

}
for positive constants C ′

1 and C ′
2. Because 0 < p < 1, we have ζ̃(t) ≥ 0 and

(5.48), (5.49) imply for w > 0 sufficiently small that EX1−p
1 (t) − EX1−p

2 (t) ≥
e(β−γ0)tẼζ̃(t). Therefore,

u1

(
c, c(·),w1,w2

)
− u2

(
c, c(·),w1,w2

)
(5.55)

=
c1−p

1 − p

∫ ∞

0

e−βt
(
EX1−p

1 (t) − EX1−p
2 (t)

)
dt

≥ c1−p

1 − p

∫ t

0

e−γ0t
Ẽζ̃(t)dt

=
c1−p

1 − p
Ẽ

[∫ ∞

0

e−γ0t
(
1 − eλ(p−1)(�̃(t)+m̃(t))

)
dt

]
≥ min

{
C1λw−1,C2

}
for positive constants C1 and C2. This combined with (5.45) yields (4.16).

If p = 1, then P
T
2 = P. Let t ≥ 0 be given and choose T ≥ t. We observe

from (5.42), (5.43), (5.51), and the counterpart of (5.51) for m̃(t) that

E logX1(t) − E logX2(t) = λE
[
�2(t) + m2(t)

]
= λE

T
2

[
�2(t) + m2(t)

]
= λẼ

[
�̃(t) + m̃(t)

]
=

λσ2θ
3
t

w
+ O
(
λ2tw−1

)
+ O(λ) + O(λt),

which is obviously nonnegative. Multiplying by e−βt and integrating from
t = 0 to t = ∞, we obtain (4.17) once we recall that A(1) = β. Indeed, we
obtain (4.17) with the term O(λ2w−1) (a special case of O(λ2w−2) in place
of the term O(λ2w−2)), and this version of (4.17) yields (4.16).

5.3. Proof of Theorem 4.5. We introduce a Brownian motion Ŵ under a
probability measure P̂ and consider the auxiliary process θ̂(·) satisfying

dθ̂(t) = θ̂(t)
(

−r + c
(
θ̂(t)
)

− αθ̂(t) + σ2θ̂2(t) − (1 − p)σ2θ̂2(t)θ
)
dt(5.56)

− σθ̂2(t)dŴ (t) + d�̂(t) − dm̂(t),

where �̂(·) and m̂(·) are the minimal nondecreasing processes that keep θ̂(·)
in the interval [θ(1 − w1), θ̂(1+w2)]. We assume the initial condition θ̂(0) has
the stationary distribution of the solution to (5.56), so the distribution of θ̂(t)
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under P̂ does not depend on t. This stationary distribution exists because the
drift term in (5.56) is bounded and the diffusion terms does not vanish, so
the process is recurrent, and hence the conditions of Theorem 3.3 of [13] are
satisfied.

Define the martingale Z(t) � exp{(1 − p)σθW (t) − 1
2 (1 − p)2σ2θ

2
t}. For

fixed T > 0, define the probability measure P
T

by dP
T

dP
= Z(T ), under which

W
T
(t) � W (t) − (1 − p)σθt, 0 ≤ t ≤ T , is a Brownian motion and (4.8) becomes

dθ2(t) = θ2(t)
(

−r + c
(
θ2(t)

)
− αθ2(t) + σ2θ2

2(t)(5.57)

− (1 − p)σ2θ2
2(t)θ

)
dt − σθ2

2(t)dW
T
(t) + d�(t) − dm(t),

where �(t) = (1 + λθ(1 − w1))�2(t), m(t) = (1 − λθ(1 + w2))m2(t). We as-
sume θ2(0) has the stationary distribution of the solution of (5.56), so that
(θ2(t); 0 ≤ t ≤ T ) has the same law under P

T
as the process (θ̂(t); 0 ≤ t ≤ T )

under P̂. In particular,

(5.58) E
T [(

θ2(t) − θ
)2]= Ê

[(
θ̂(t) − θ

)2]
, 0 ≤ t ≤ T.

We show that

(5.59) Ê
[(

θ̂(t) − θ
)2]= 1

3
θ
2(

w2
1 − w1w2 + w2

2

)
+ O
(
λw2
)
+ O
(
w3
)
.

To establish (5.59) we appeal to Proposition 5.5 with a = θ(1 − w1), b =
θ(1 + w2), σ(x) = −σx2 and μ(x) = x(−r + c(x) − αx + σ2x2 − (1 − p)σ2x2θ).
Recall that we consider only functions c(·) that are bounded uniformly in λ
and vary over [θ(1 − w1), θ(1 + w2)] by no more than O(λ) (see Remark 4.2).
Therefore, for y ∈ [θ(1 − w1), θ(1 + w2)], we have μ(y) = μ(θ) + O(λ) + O(w)
and σ2(y) = σ2θ

4
+ O(w). With x = θ in Proposition 5.5, for θ(1 − w1) ≤ x ≤

θ(1 + w2), we have∫ x

θ

2μ(y)
σ2(y)

dy =
∫ x

θ

[
2μ(θ)

σ2θ
4 + O(λ) + O(w)

]
dy

=
2μ(θ)

σ2θ
4 (x − θ) + O(λw) + O

(
w2
)
,

h(x) = 1 +
2μ(θ)

σ2θ
4 (x − θ) + O(λw) + O

(
w2
)
.

Equations (5.11) imply k2 − k1 = μ(θ) + O(λ) + O(w) and

k2

(
1 − 2μ(θ)w1

σ2θ
3 + O(λw) + O

(
w2
))

= k1

(
1 +

2μ(θ)w2

σ2θ
3 + O(λw) + O

(
w2
))

,

which yield

k1

(
2μ(θ)w

σ2θ
3 + O(λw) + O

(
w2
))

= μ(θ) + O(λ) + O(w),
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and this implies

k1 =
σ2θ

3

2w
+ O
(
λw−1

)
+ O(1), k2 =

σ2θ
3

2w
+ O
(
λw−1

)
+ O(1).

Following (5.10) with f(y) = (y − θ)2, we compute

g(x) =
1

h(x)

∫ x

θ

2(y − θ)2h(y)
σ2(y)

dy

=
1

1 + O(w)

∫ x

θ

2(y − θ)2(1 + O(w))

σ2θ
4
+ O(w)

dy

=
(

2

σ2θ
4 + O(w)

)∫ x

θ

(y − θ)2 dy

=
2

3σ2θ
4 (x − θ)3 + O

(
w4
)
.

According to (5.9), Ê[(θ̂(t) − θ)2] = k2g(θ(1 + w2)) − k1g(θ(1 − w1)), which is
(5.59).

We now consider the case p �= 1. From (5.43), (4.3) and (1.5), we have

X1−p
1 (t)

Z(t)EX1−p
0 (t)

= exp
{

(1 − p)
∫ t

0

(
α
(
θ2(u) − θ

)
− 1

2
σ2θ2

2(u) +
1
2
pσ2θ

2
)

du

+ (1 − p)
∫ t

0

σθ2(u)dW (u) − (1 − p)σθW (t) +
1
2
(1 − p)2σ2θ

2
t

}
= exp

{
(1 − p)σ

∫ t

0

(
θ2(u) − θ

)
dW

T
(u)

− 1
2
(1 − p)σ2

∫ t

0

(
θ2(u) − θ

)2
du

}
.

For arbitrary t ≥ 0, we choose T ≥ t and have

EX1−p
1 (t) = EX1−p

0 (t) · E
T

exp
{

(1 − p)σ
∫ t

0

(
θ2(u) − θ

)
dW

T
(u)(5.60)

− 1
2
(1 − p)σ2

∫ t

0

(
θ2(u) − θ

)2
du

}
= EX1−p

0 (t) · Ê exp
{

(1 − p)σ
∫ t

0

(
θ̂(u) − θ

)
dŴ (u)

− 1
2
(1 − p)σ2

∫ t

0

(
θ̂(u) − θ

)2
du

}
.
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Because

M(t) � exp
{

(1 − p)σ
∫ t

0

(
θ̂(u) − θ

)
dŴ (u) − 1

2
(1 − p)2σ2

∫ t

0

(
θ̂(u) − θ

)2
du

}
is a P̂-martingale, for 0 < p < 1,

Ê exp
{

(1 − p)σ
∫ t

0

(
θ̂(u) − θ

)
dŴ (u) − 1

2
(1 − p)σ2

∫ t

0

(
θ̂(u) − θ

)2
du

}
(5.61)

= Ê

[
M(t) exp

{
− 1

2
p(1 − p)σ2

∫ t

0

(
θ̂(u) − θ

)2
du

}]
≤ ÊM(t)
= 1,

and (5.60) implies EX1−p
1 (t) ≤ EX1−p

0 (t). If p > 1, the inequality in (5.61) is
reversed and EX1−p

1 (t) ≥ EX1−p
0 (t). Regardless of whether 0 < p < 1 or p > 1,

EUp(cX1(t)) = c1−p

1−p EX1−p
1 (t) ≤ c1−p

1−p EX1−p
0 (t) = EUp(cX0(t)). The inequality

in (4.18) follows from (4.15) and (4.5).
It remains to compute the Ê expectation on the right-hand side of (5.60).

To simplify the notation, we set

I(t) � (1 − p)σ
∫ t

0

(
θ̂(u) − θ

)
dŴ (u), R(t) � − 1

2
(1 − p)σ2

∫ t

0

(
θ̂(u) − θ

)2
du,

so that the expectation we need to compute is

Ê
[
exp
(
I(t) + R(t)

)]
= Ê

[
1 + I(t) + R(t) +

1
2
(
I(t) + R(t)

)2](5.62)

+ Ê

∞∑
n=3

1
n!
(
I(t) + R(t)

)n
.

We first bound the remainder

(5.63)

∣∣∣∣∣Ê
∞∑

n=3

1
n!
(
I(t) + R(t)

)n∣∣∣∣∣≤
∞∑

n=3

2n

n!
Ê
[∣∣I(t)

∣∣n +
∣∣R(t)

∣∣n].
Because 〈I〉(t) ≤ k3w

2t, where k3 = (1 − p)2σ2θ
2
, there is a Brownian motion

B̂ such that max0≤s≤t |I(s)| ≤ max0≤s≤k3w2t |B̂(s)|. Doob’s maximal martin-
gale inequality implies that for integers n ≥ 2,

Ê

[
max

0≤s≤k3w2t

∣∣B̂(s)
∣∣n] ≤

(
n

n − 1

)n

Ê
[∣∣B̂(k3w

2t
)∣∣n]

=
(

n

n − 1

)n

k
n
2
3 wnt

n
2 Ê
[∣∣B̂(1)

∣∣n].
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It can be verified by integration by parts and induction that for n ≥ 1,

Ê
[∣∣B̂(1)

∣∣2n]= (2n)!
2nn!

, Ê
[∣∣B̂(1)

∣∣2n+1]=√ 2
π

2nn!.

Because (2nn!)2 ≤ (2n + 1)!,
∞∑

n=1

22n+1

(2n + 1)!
Ê
[∣∣I(t)

∣∣2n+1](5.64)

≤
√

2
π

∞∑
n=1

22n+1

(2n + 1)!

(
2n + 1

2n

)2n+1

k
n+ 1

2
3 w2n+1tn+ 1

2 2nn!

≤ 3w

√
2k3t

π

∞∑
n=1

1
n!

(
9
2
k3w

2t

)n

= O
(
w3t

3
2
)
eO(w2)t.

On the other hand,
∞∑

n=2

22n

(2n)!
Ê
[∣∣I(t)

∣∣2n](5.65)

=
∞∑

n=2

22n

(2n)!

(
2n

2n − 1

)2n

kn
3 w2ntn

(2n)!
2nn!

≤
∞∑

n=2

1
n!

(
32
9

k3w
2t

)n

= O
(
w4t2

)
eO(w2)t.

Finally,

(5.66)
∞∑

n=3

2n

n!
Ê
[∣∣R(t)

∣∣n]≤
∞∑

n=3

1
n!
(

|1 − p|σ2θ
2
w2t
)n = O

(
w6t3

)
eO(w2)t.

Combining (5.64)–(5.66), we have obtained the bound O(w3t3/2 + w4t2 +
w6t3)eO(w2)t on the expression in (5.63).

For the other terms in (5.62), we use (5.59) to compute

ÊI(t) = 0,

ÊR(t) = − 1
2
(1 − p)σ2

∫ t

0

Ê
(
θ2(u) − θ

)2
du

= − 1
6
(1 − p)σ2θ

2(
w2

1 − w1w2 + w2
2

)
t + O

(
λw2t

)
+ O
(
w3t
)
,

ÊI2(t) = (1 − p)2σ2

∫ t

0

Ê
(
θ2(u) − θ

)2
du

=
1
3
(1 − p)2σ2θ

2(
w2

1 − w1w2 + w2
2

)
t + O

(
λw2t

)
+ O
(
w3t
)
,
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ÊR2(t) = O
(
w4t2

)
,∣∣Ê[I(t)R(t)

]∣∣ ≤ Ê
1/2
[
I2(t)

]
Ê

1/2
[
R2(t)

]
= O
(
w3t

3
2
)
.

From (5.60), (5.62) and the above estimates, we see that

EX1−p
1 (t) = EX1−p

0 (t)
(

1 − 1
6
p(1 − p)σ2θ

2(
w2

1 − w1w2 + w2
2

)
t(5.67)

+ O
(
λw2t

)
+ O
(
w3t
)

+ O
(
w3t

3
2 + w4t2 + w6t3

)
eO(w2)t

)
.

Recall from (4.3), (4.4) that e−βt
EX1−p

0 (t) = e−(pA(p)+(1−p)c)t. For suffi-
ciently small w, the O(w2) term in (5.67) satisfies −pA(p) − (1 − p)c +
O(w2) < 0 (we are still working under the condition (4.1)), and this im-
plies (4.18):

u1

(
c, c(·),w1,w2

)
=

c1−p

1 − p

∫ ∞

0

e−βt
EX1−p

1 (t)dt

=
c1−p

1 − p

∫ ∞

0

e−βt
EX1−p

0 (t)dt

− 1
6
pσ2θ

2(
w2

1 − w1w2 + w2
2

)
c1−p

∫ ∞

0

te−(pA(p)+(1−p)c)t dt

+ O
(
λw2
)
+ O
(
w3
)

= u0(c) − pσ2θ
2
(w2

1 − w1w2 + w2
2)c

1−p

6(pA(p) + (1 − p)c)2
+ O
(
λw2
)
+ O
(
w3
)
.

If p = 1, then P
T

= P and (4.2), (5.43), the fact that α = σ2θ (see (1.5)),
and (5.58), (5.59) imply

E logX0(t) − E logX1(t)

=
1
2
σ2

∫ t

0

Ê
[(

θ̂(u) − θ
)2]

du

=
1
6
σ2θ

2(
w2

1 − w1w2 + w2
2

)
t + O

(
λw2t

)
+ O
(
w3t
)
.

Multiplying by e−βt and integrating out t, we obtain (4.18) (recall A(1) = β).

5.4. Optimizing over the c, w1 and w2. Recall the positive numbers
w1(λ) and w2(λ) of (4.23) that minimize gλ and satisfy (4.25).

Lemma 5.10. Let λ0 be a positive constant, and let x1(·) and x2(·) be
mappings from (0, λ0) into (0, ∞] such that limλ↓0 x1(λ) = limλ↓0 x2(λ) = 0.
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Assume that for some q ∈ (2/3,1], we have

(5.68) u2

(
c, c(·),w1(λ),w2(λ)

)
≤ u2

(
c, c(·), x1(λ), x2(λ)

)
+ O
(
λq
)
.

Then

(5.69) xi(λ) = O
(
λ1/3
)
, xi(λ) = wi(λ) + O

(
λq/2
)
, i = 1,2,

and

(5.70) u2

(
c, c(·),w1(λ),w2(λ)

)
= u2

(
c, c(·), x1(λ), x2(λ)

)
+ O
(
λq/2+1/3

)
.

In this lemma, u2 is computed under the assumption that θ2(·) has the sta-
tionary distribution of the processes θ̂(·) given by (5.56). The O(·) terms in
(5.68)–(5.70) are uniform over the number c and the function c(·) within the
class described by Remark 4.2.

Proof. Define x(λ) � x1(λ) + x2(λ). We first show that

(5.71) lim inf
λ↓0

x(λ)
λ1/3

> 0.

If this were not the case, then we could choose a sequence λn ↓ 0 and positive
numbers kn → ∞ such that

(5.72) λ1/3
n ≥ knx(λn) ∀n.

From (4.25), (5.68), (4.18), (4.16), and (5.72) we would have

c1−pσ2θ
8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

= λ−2/3
n

[
u0(c) − u2

(
c, c(·),w1(λn),w2(λn)

)]
+ O
(
λ1/3

n

)
≥ λ−2/3

n

[
u0(c) − u2

(
c, c(·), x1(λn), x2(λn)

)]
+ O
(
λq−2/3

n

)
≥ λ−2/3

n

[
u1

(
c, c(·), x1(λn), x2(λn)

)
− u2

(
c, c(·), x1(λn), x2(λn)

)]
+ O
(
λq−2/3

n

)
≥ min

{
C1λ

1/3
n

x(λn)
,C2λ

−2/3
n

}
+ O
(
λq−2/3

n

)
≥ min

{
C1kn,C2λ

−2/3
n

}
+ O
(
λq−2/3

n

)
.

The last term has limit infinity as n → ∞. This contradiction implies (5.71).
We next show that

(5.73) limsup
λ↓0

x(λ)
λ1/3

< ∞.

If this were not the case, then we could choose a sequence λn ↓ 0 and positive
numbers Kn → ∞ such that

(5.74) x(λn) ≥ Knλ1/3 ∀n.
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From (4.25), (5.68), (4.16), and (4.18) we would have

c1−pσ2θ
8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

= λ−2/3
n

[
u0(c) − u2

(
c, c(·),w1(λn),w2(λn)

)]
+ O
(
λ1/3

n

)
≥ λ−2/3

n

[
u0(c) − u2

(
c, c(·), x1(λn), x2(λn)

)]
+ O
(
λq−2/3

n

)
≥ λ−2/3

n

[
u0(c) − u1

(
c, c(·), x1(λn), x2(λn)

)]
+ O
(
λq−2/3

n

)
=

c1−ppσ2θ
2

6(pA(p) + (1 − p)c)2
· x2

1(λn) − x1(λn)x2(λn) + x2
2(λn)

λ
2/3
n

+ O
(
λq−2/3

n

)
+ O
(
λ1/3

n x2(λn)
)
+ O
(
λ−2/3

n x3(λn)
)
.

However, (5.71) implies that for some constant C,

λ1/3
n x2(λn) =

λ
1/3
n

x(λn)
x3(λn) ≤ Cx3(λn) ≤ Cλ−2/3

n x3(λn) = O
(
λq−2/3

n

)
.

Furthermore,

x2
1(λ) − x1(λ)x2(λ) + x2

2(λ) =
1
4
x2(λ) +

3
4
(
x1(λ) − x2(λ)

)2 ≥ 1
4
x2(λ).

Therefore,

c1−pσ2θ
8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

≥ 1
4

[
c1−ppσ2θ

2

6(pA(p) + (1 − p)c)2
+ O
(
x(λn)

)]x2(λn)
λ2/3

+ O
(
λq−2/3

n

)
.

This last expression has limit infinity as n → ∞ because of (5.74), and this
contradiction implies (5.73).

From (5.71), we see that λ/x(λ) = o(1). From (5.71) and (5.73) we conclude
that every cluster point of λ−1/3x(λ) is in (0, ∞) and a cluster point exists.
Let us call such a cluster point L, and passing to a subsequence if necessary,
we assume without loss of generality that L1 � limn→∞ λ

−1/3
n x1(λn) and L2 �

limn→∞ λ
−1/3
n x2(λn) exist and, of course, L = L1 + L2. Using the notation

(4.20), the equality in (4.19) implies

u0(c) − u2

(
c, c(·), x1(λn), x2(λn)

)
=

c1−pσ2θ
2

(pA(p) + (1 − p)c)2
gλ

(
x1(λn), x2(λn)

)
=

c1−pσ2θ
2

(pA(p) + (1 − p)c)2
g1

(
λ−1/3

n x1(λn), λ−1/3
n x2(λn)

)
λ2/3

n .
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Dividing this by λ2/3 and taking the limit as n → ∞, we now use (5.68) and
(4.25), to obtain

c1−pσ2θ
2

(pA(p) + (1 − p)c)2
g1(L1,L2)(5.75)

= lim
n→∞

u0(c) − u2(c, c(·), x1(λn), x2(λn))

λ
2/3
n

≤ lim
n→∞

u0(c) − u2(c, c(·),w1(λn),w2(λn))

λ
2/3
n

=
c1−pσ2θ

8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

.

But the minimal value of g1(L1,L2) over L1 ≥ 0 and L2 ≥ 0 such that L1 +
L2 = L ∈ (0, ∞), uniquely attained by

(5.76) L1 = L2 =
(

3θ

2p

)1/3

(cf. (4.23)), is θ
2/3

( 9p
32 )1/3. We conclude that the inequality in (5.75) is

equality and (5.76) holds. Since this is the case for every cluster point of
λ

−1/3
n x1(λn) and λ

−1/3
n x2(λn), then even without passing to a subsequence,

we must have

(5.77) lim
λ↓0

x1(λ)
λ1/3

= lim
λ↓0

x2(λ)
λ1/3

=
(

3θ

2p

)1/3

=
w1(λ)
λ1/3

=
w2(λ)
λ1/3

.

This provides the first equality in (5.69).
We show that

(5.78) limsup
λ↓0

1
λq/2

[∣∣x1(λ) − w1(λ)
∣∣+ ∣∣x2(λ) − w2(λ)

∣∣]< ∞,

which is just a restatement of the second equality in (5.69). If this were not the
case, there would exist a sequence λn ↓ 0 and a sequence of positive numbers
Kn → ∞ such that

(5.79)
∣∣x1(λn) − w1(λn)

∣∣+ ∣∣x2(λn) − w2(λn)
∣∣≥ Knλq/2

n ∀n.

We observe from (4.22) that

∇2gλ(w1,w2) ≥ p

3

[
1 − 1

2
− 1

2 1

]
,

where inequality of matrices is in the sense of a positive semidefinite difference.
The operator norm of ∇2gλ thus satisfies

(5.80)
∥∥∇2gλ(w1,w2)

∥∥2 ≥ p2

9
max

x2
1+x2

2=1
[x1, x2]

[
1 − 1

2
− 1

2 1

][
x1

x2

]
=

p2

6
.
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For 0 ≤ s ≤ 1 and i = 1,2, set yi(s,λn) = sxi(λn) + (1 − s)wi(λn). Then

d2

ds2
gλn

(
y1(s,λn), y2(s,λn)

)
=
[
x1(λn) − w1(λn)
x2(λn) − w2(λn)

]tr
∇2gλn

(
y1(s,λn), y2(s,λn)

)[x1(λn) − w1(λn)
x2(λn) − w2(λn)

]
≥ p2

6
[(

x1(λn) − w1(λn)
)2 +

(
x2(λn) − w2(λn)

)2]
.

Using the the fact that ∇gλn(w1(λn),w2(λn)) = 0, we integrate from s = 0 to
s = t to obtain
d

dt
gλn

(
y1(t, λn), y2(t, λn)

)
≥ p2

6
[(

x1(λn) − w1(λn)
)2 +

(
x2(λn) − w2(λn)

)2]
t.

A second integration, this time from t = 0 to t = 1, the equivalence of all
norms in R

2, and (5.79) yield

gλn

(
x1(λn), x2(λn)

)
(5.81)

≥ gλn

(
w1(λn),w2(λn)

)
+

p2

12
[(

x1(λn) − w1(λn)
)2 +

(
x2(λn) − w2(λn)

)2]
≥ gλn

(
w1(λn),w2(λn)

)
+ K ′(∣∣x1(λn) − w1(λn)

∣∣+ ∣∣x2(λn) − w2(λn)
∣∣)2

≥ gλn

(
w1(λn),w2(λn)

)
+ K ′K2

nλq
n

for some constant K ′ > 0. From (5.81), (4.19), the fact that x(λn) = O(λ1/3),
(5.68), (4.25) and (4.24), we have

c1−pσ2θ
3

(pA(p) + (1 − p)c)2

[
gλn(w1(λn),w2(λn))

λ
2/3
n

+ K ′K2
nλq−2/3

n

]
≤ c1−pσ2θ

3

(pA(p) + (1 − p)c)2
· gλn(x1(λn), x2(λn))

λ
2/3
n

= λ−2/3
n

[
u0(c) − u2

(
c, c(·), x1(λn), x2(λn)

)]
+ O
(
λ1/3

n

)
≤ λ−2/3

n

[
u0(c) − u2

(
c, c(·),w1(λn),w2(λn)

)]
+ O
(
λq−2/3

n

)
≤ c1−pσ2θ

2

(pA(p) + (1 − p)c)2
gλn(w1(λn),w2(λn))

λ
2/3
n

+ O
(
λq−2/3

n

)
.

Canceling the term involving gλn on both sides of this equality, we obtain

K ′K2
nλq−2/3

n ≤ O
(
λq−2/3

n

)
,

which is impossible because K ′K2
n → ∞. This shows that the second equality

in (5.69) must hold.
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Because w1(λ) is a positive constant times λ1/3, the second inequality in
(5.69) can be rewritten as xi(λ) = wi(λ)(1 + O(λq/2−1/3)), and hence

gλ

(
x1(λ), x2(λ)

)
=

λθ

w1(λ) + w2(λ)
(
1 + O

(
λq/2−1/3

))
+

p

6
(
w2

1(λ) − w1(λ)w2(λ) + w2
2(λ)
)(

1 + O
(
λq/2−1/3

))
= gλ

(
w1(λ),w2(λ)

)
+ O
(
λq/2+1/3

)
.

Equation (5.70) follows from Corollary 4.6. �
Remark 5.11. We actually expect u2(c, c2(·),w1,w2) to be maximized by

(x1(λ), x2(λ)) satisfying a slightly stronger version of (5.69), namely, x1(λ) =
w1(λ)+O(λ2/3) and x2(λ) = w2(λ)+O(λ2/3), in which case we could replace
(5.70) by u2(c, c1(·),w1(λ),w2(λ)) = u2(c, c2(·), x1(λ), x2(λ)) + O(λ).

We may now optimize u2(c, c(·),w1,w2) over (w1,w2) ∈ (0, ∞)2.

Corollary 5.12. Recall the function ϕ of Assumption 4.1. We have

sup
w1>0,w2>0

w1+w2≤ϕ(λ)

u2

(
c, c(·),w1,w2

)
(5.82)

= u0(c) − c1−pσ2θ
8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)
.

Here u2 is computed under the assumption that θ2(·) has the stationary dis-
tribution of the process θ̂(·) given by (5.56).

Proof. Because O(λ) is a special case of O(λ5/6), (4.25) implies

sup
w1>0,w2>0

w1+w2≤ϕ(λ)

u2

(
c, c(·),w1,w2

)
≥ u2

(
c, c(·),w1(λ),w2(λ)

)
= u0(c) − c1−pσ2θ

8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)
.

The reverse inequality follows from Lemma 5.10 with q = 1. �
Finally, we optimize over c. When p = 1, A(p) + (1 − p)c = A(1) = β and

the maximal value in (5.82), attained by c = A(1) = β, is (see (4.5) and (4.6))

u0

(
A(1)

)
− σ2θ

8/3

β2

(
9
32

)1/3

λ2/3 + O
(
λ5/6
)

(5.83)

= v0(1) − σ2θ
8/3

β2

(
9
32

)1/3

λ2/3 + O
(
λ5/6
)
.
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For p �= 1, we need the following lemma. Because A(1) = β, (5.83) is a special
case of (5.84) below.

Lemma 5.13. Choose a ∈ (0,A(p)) and b ∈ (A(p), ∞) if 0 < p ≤ 1 or b ∈
(A(p), pA(p)

p−1 ) if p > 1. Then

sup
c∈[a,b]

sup
w1>0,w2>0

w1+w2≤ϕ(λ)

u2

(
c, c(·),w1,w2

)
(5.84)

= sup
c∈[a,b]

[
u0(c) − c1−pσ2θ

8/3

(pA(p) + (1 − p)c)2

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)]

= v0(1) − σ2θ
8/3

A1+p(p)

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)
.

Proof. Because of (5.83), we only need to consider the case p �= 1. To
simplify notation, we denote η = σ2θ

8/3
(9p/32)

1
3 and recall the definition (4.5)

of u0 to write

(5.85) f(c) � u0(c) − c1−pηλ2/3

(pA(p) + (1 − p)c)2
= u0(c)

[
1 − (1 − p)ηλ2/3

pA(p) + (1 − p)c

]
.

We will show that

(5.86) sup
c∈[a,b]

f(c) = v0(1) − ηλ2/3

A1+p(p)
+ O(λ).

Because c in the maximization in (5.84) is restricted to [a, b], the O(λ5/6) term
in (5.84) is bounded by λ5/6 times a constant independent of c, the left-hand
side of (5.84) is equal to (supc∈[a,b] f(c)) + O(λ5/6), and (5.84) will follow.

We compute

f ′(c) =
c−p

(pA(p) + (1 − p)c)2

[
p
(
A(p) − c

)
+

(1 − p)ηλ2/3((1 + p)c − pA(p))
pA(p) + (1 − p)c

]
.

For sufficiently small λ > 0, f ′(a) > 0. The expression (1+p)c−pA(p)
pA(p)+(1−p)c is increas-

ing in c. If 0 < p < 1, this expression is bounded and its derivative with
respect to c is also bounded. Therefore, limc→∞ f ′(c) = −∞ and thus f ′ has
a zero in [a, ∞). For sufficiently small λ, the expression in square brackets
is strictly decreasing and hence f ′ cannot have more than one zero. If p > 1,
then lim

c↑ pA(p)
p−1

(1+p)c−pA(p)
pA(p)+(1−p)c = ∞, so lim

c↑ pA(p)
p−1

f ′(c) = −∞. In this case, the

term in square brackets is strictly decreasing, so again f ′ has exactly one
zero in [a, ∞). In both cases, the zero of f ′ corresponds to a maximum value
of f .
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For c ∈ [a, b],

f ′(c) =
c−p[p(A(p) − c) + O(λ2/3)]

(pA(p) + (1 − p)c)2
,

where the O(λ2/3) term is bounded by a constant independent of c ∈ [a, b]
times λ2/3. For ε > 0, f ′(A(p) − ελ1/2) is positive and f ′(A(p) + ελ1/2) is
negative for sufficiently small λ > 0. Therefore, the zero of f ′ is of the form
A(p) + O(λ1/2). For sufficiently small λ > 0, this point is in [a, b].

Because u′
0(A(p)) = 0, we can use (5.85) and a Taylor series expansion of

u0 around A(p) to obtain

sup
c∈[a,b]

f(c) = f
(
A(p) + O

(
λ1/2
))

= u0

(
A(p) + O

(
λ1/2
))[

1 − (1 − p)ηλ2/3

A(p) + O(λ1/2)

]
= u0

(
A(p)

)
− ηλ2/3

A1+p(p)
+ O(λ).

Equation (5.86) follows from (4.6). �

5.5. Proof of Theorem 4.8. According to Corollary 3.8, for (4.27) it
suffices to prove

(5.87)
∫ z∗

2

z∗
1

v(1, θ)dν(θ) = v0(1) − σ2θ
8/3

A1+p(p)

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)

for a distribution ν of our choosing. We begin by choosing w∗
1(λ) and w∗

2(λ)
so that z∗

1(λ) = θ(1 − w∗
1(λ)) and z∗

2(λ) = θ(1+w∗
2(λ)), where z∗

1(λ) and z∗
2(λ)

are described in Section 3.1 and Assumption 4.1. We let θ∗(0) have the
distribution described in Theorem 4.5, and in place of c(·) in (4.8) we use
c∗(·), the optimal consumption process given by (3.11), which satisfies (3.12).
We choose positive numbers c1(λ) and c2(λ) so that for some positive con-
stant k,

(5.88) c∗(θ) − kλ ≤ c1(λ) ≤ c∗(θ) ≤ c2(λ) ≤ c∗(θ) + kλ ∀θ ∈
[
z∗
1(λ), z∗

2(λ)
]
.

As indicated by the notation, c1(λ) and c2(λ) depend on λ but k does not.
Despite their dependence on λ, c1(λ) and c2(λ) are bounded above and away
from zero and pA(p) + (1 − p)ci(λ) is bounded away from zero, uniformly in
λ; see Remark 3.7. Therefore, we can choose a and b satisfying the con-
ditions in Lemma 5.13 so that a ≤ c1(λ) ≤ c2(λ) ≤ b for all λ sufficiently
small. A Taylor expansion of the function f(x) = x1−p around x = 1 shows
that

(5.89)
(

c2(λ)
c1(λ)

)1−p

= 1 + f ′(ξ)
c2(λ) − c1(λ)

c1(λ)
= 1 + O(λ),
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where we have used the fact that c1(λ) is bounded away from zero and also
used (5.88).

We continue under the assumption p �= 1. We use c1(λ) in (4.9) to define a
process X̂2 satisfying X̂(0) = 1 and

dX̂(t) = X̂(t)
[(

r − c1(λ) + αθ∗(t)
)
dt + σθ∗(t)dW (t)

− λ
(
d�∗(t) + dm∗(t)

)]
,

where θ∗ and �∗ and m∗ are defined by (4.11) and text following (4.11).
We take the distribution of θ∗(0) to be the one described in Theorem 4.5.
Recalling the process X∗ of (4.12), we compute

d log X̂(t) − d logX∗(t) =
(
c∗(θ∗(t)

)
− c1(λ)

)
dt ≥ 0.

Since X∗(0) = X̂(0) = 1, we see that X̂(t) ≥ X∗(t) for all t ≥ 0, almost surely.
From (4.13) and using (5.89), we see that

Ev
(
1, θ∗(0)

)
≤ E

∫ ∞

0

e−βtUp

(
c2(λ)X∗(t)

)
dt(5.90)

≤
(

c2(λ)
c1(λ)

)1−p

E

∫ ∞

0

e−βtUp

(
c1(λ)X̂(t)

)
dt

=
(

c2(λ)
c1(λ)

)1−p

u2

(
c1(λ), c∗(·),w∗

1(λ),w∗
2(λ)
)

= u2

(
c1(λ), c∗(·),w∗

1(λ),w∗
2(λ)
)(

1 + O(λ)
)

≤ v0(1) − σ2θ
8/3

A1+p(p)

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)
.

To establish (5.87), it remains to prove the reverse of inequality (5.90).
Let a and b be as in Lemma 5.13 and let c ∈ [a, b] be given. Let w1 > 0
and w2 > 0 also be given. Let θ2(t) be given by (4.8), where c(·) ≡ c and
θ2(0) has the distribution described in Theorem 4.5. Because c(·) in (4.8)
matches c in (4.9), the policy that uses constant consumption proportion c
and keeps θ2(t) in [θ(1 − w1), θ(1+w2)] is feasible in the transaction cost prob-
lem with random initial condition (1, θ2(0)). This implies u2(c, c,w1,w2) ≤
Ev(1, θ2(0)). But Corollary 3.8 implies Ev(1, θ2(0)) = Ev(1, θ∗(0)) + O(λ).
Consequently,

(5.91) sup
w1>0,w2>0

w1+w2≤ϕ(λ)

u2(c, c,w1,w2) ≤ Ev
(
1, θ∗(0)

)
+ O(λ).

When we maximize over c ∈ [a, b], Lemma 5.13 gives us the reverse of inequal-
ity (5.90).
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In the case that p = 1, we replace (5.90) by

Ev
(
1, θ2(0)

)
≤ E

∫ ∞

0

e−βt log
(
c2(λ)X∗(t)

)
dt

= log
c2(λ)
c1(λ)

+ E

∫ ∞

0

e−βt log
(
c1(λ)X̂(t)

)
dt

= log
c2(λ)
c1(λ)

+ u2

(
c1(λ), c∗(·),w∗

1 ,w∗
2

)
= u2

(
c1(λ), c∗(·),w∗

1 ,w∗
2

)(
1 + O(λ)

)
≤ v0(1) − σ2θ

8/3

β2

(
9
32

)1/3

λ2/3 + O
(
λ5/6
)

and proceed as before. This completes the proof of (4.27).
The equality we have established in (5.90) is

u2

(
c1(λ), c∗(·),w∗

1(λ),w∗
2(λ)
)

= v0(1) − σ2θ
8/3

A1+p(p)

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)
.

This along with (4.25) and the second equality in (5.84) imply

u2

(
c1(λ), c∗(·),w1(λ),w2(λ)

)
= u0

(
c1(λ)

)
− c1−p

1 (λ)σ2θ
8/3

(pA(p) + (1 − p)c1(λ))2

(
9p

32

)1/3

λ2/3 + O(λ)

≤ v0(1) − σ2θ
8/3

A1+p(p)

(
9p

32

)1/3

λ2/3 + O
(
λ5/6
)

= u2

(
c1(λ), c∗(·),w∗

1(λ),w∗
2(λ)
)
+ O
(
λ5/6
)
.

Equation (4.28) follows from (5.69) in Lemma 5.10 with q = 5/6.
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