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Abstract. Among various document clustering algorithms that have
been proposed so far, the most useful are those that automatically re-
veal the number of clusters and assign each target document to exactly
one cluster. However, in many real situations, there not exists an exact
boundary between different clusters. In this work, we introduce a fuzzy
version of the MajorClust algorithm. The proposed clustering method
assigns documents to more than one category by taking into account
a membership function for both, edges and nodes of the corresponding
underlying graph. Thus, the clustering problem is formulated in terms
of weighted fuzzy graphs. The fuzzy approach permits to decrease some
negative effects which appear in clustering of large-sized corpora with
noisy data.

1 Introduction

Clustering analysis refers to the partitioning of a data set into subsets (clusters),
so that the data in each subset (ideally) share some common trait, often proxim-
ity, according to some defined distance measure [[I23]. Clustering methods are
usually classified with respect to their underlying algorithmic approaches: hierar-
chical, iterative (or partitional) and density based are some instances belonging
to this classification. Hierarchical algorithms find successive clusters using pre-
viously established ones, whereas partitional algorithms determine all clusters
at once. Hierarchical algorithms can be agglomerative (“bottom-up”) or divisive
(“top-down”); agglomerative algorithms begin with each element as a separate
cluster and merge them into successively larger clusters. Divisive algorithms be-
gin with the whole set and proceed to divide it into successively smaller clusters.
Iterative algorithms start with some initial clusters (their number either being
unknown in advance or given a priori) and intend to successively improve the
existing cluster set by changing their “representatives” (“centers of gravity”,
“centroids”) , like in K-Means [3] or by iterative node-exchanging (like in [HI).



An interesting density-based algorithm is MajorClust [B], which automatically
reveals the number of clusters, unknown in advance, and successively increases
the total “strength” or “connectivity” of the cluster set by cumulative attraction
of nodes between the clusters.

MajorClust [B] is one of the most promising and successful algorithms for
unsupervised document clustering. This graph theory based algorithm assigns
each document to that cluster the majority of its neighbours belong to. The
node neighbourhood is calculated by using a specific similarity measure which
is assumed to be the weight of each edge (similarity) between the nodes (doc-
uments) of the graph (corpus). MajorClust automatically reveals the number
of clusters and assigns each target document to exactly one cluster. However,
in many real situations, there not exists an exact boundary between different
categories. Therefore, a different approach is needed in order to determine how
to assign a document to more than one category. The traditional MajorClust
algorithm deals with crisp (hard) data, whereas the proposed version, called F-
MajorClust, will use fuzzy data. We suggest to calculate a weigthed fuzzy graph
with edges between any pairs of nodes that are supplied with fuzzy weights
which may be either fuzzy numbers or linguistic variables. Thereafter, a fuzzy
membership function will be used in order to determine the possible cluster a
node belongs to. The main feature of the new algorithm, F-MajorClust, which
differs from MajorClust, is that all the items (for example, the documents to be
grouped) are allowed to belong to two and more clusters.

The rest of this paper is structured as follows. The following section recalls
the case study of the K-means algorithm and its fuzzy version. In Section
the traditional MajorClust algorithm is described whereas its fuzzy version is
discussed in Section @l Finally we give some conclusions and further work.

2 K-means and fuzzy K-means clustering

The widely known K-means algorithm assigns each point to the cluster whose
center is nearest. The center is the average of all the points of the cluster. That
is, its coordinates are the arithmetic mean for each dimension separately over
all the points in the cluster. The algorithm steps are (J3]):

1. Choose the number k of clusters.
2. Randomly generate k clusters and determine the cluster centers, or directly
generate k random points as cluster centers.
. Assign each point to the nearest cluster center.
. Recompute the new cluster centers.
5. Repeat the two previous steps until some convergence criterion is met (usu-
ally that the assignment has not changed).
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The main advantages of this algorithm are its simplicity and speed which
allows it to run on large datasets. This explains its wide applications in very many
areas. However, a number of questions arise of which some examples follow. Since
the choice of centers and assignment are random, and, hence, resulting clusters



can be different with each run, how to yield the best possible result? How can
we choose the “best” distance d among very many possible options? How can we
choose the “best” center if we have many possible competing variants? How do
we choose the number K of clusters, especially in large-scale data bases? Having
found multiple alternative clusterings for a given K, how can we then choose
among them?

Moreover, K-means has several pathological properties and limitations. The
algorithm takes account only of the distance between the centers and the data
points; it has no representation of the weight or size of each cluster. Consequently,
K-means behaves badly if several data bases strongly differ in size; indeed, data
points that actually belong to the broad cluster have a tendency to be incorrectly
assigned to the smaller cluster (see [I], for examples and details). Further, the
K-means algorithm has no way of representing the size or shape of a cluster.
In [1], there given an example when the data naturally fall into two narrow and
elongated clusters. However, the only stable state of the K-means algorithm is
that the two clusters will be erroneously sliced in half. One more criticism of
K-means is that it is a ’crisp’ rather than a ’soft’ algorithm: points are assigned
to exactly one cluster and all points assigned to a cluster are equals in that
cluster. However, points located near the border between two or more clusters
should, apparently, play a partial role in several bordering clusters. The latter
disadvantage is overcome by Fuzzy K-means described below, whereas another
mentioned-above disability of the K-means associated with the size and shape
of clusters, is treated by the algorithm F-MajorClust presented in Section Hl
In fuzzy clustering, data elements may belong to more than one cluster, and
associated with each element we have a set of membership levels. These indicate a
degree of belonging to clusters, or the “strength” of the association between that
data element and a particular cluster. Fuzzy clustering is a process of assigning
these membership levels, and then using them to assign data elements to one
or more clusters. Thus, border nodes of a cluster, may be in the cluster to a
lesser degree than inner nodes. For each point x we have a coefficient giving the
degree of being in the k-th cluster uy(z). Usually, the sum of those coefficients
is defined to be 1:
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In the fuzzy C-Means (developed by Dunn in 1973 [6] and improved by
Bezdek in 1981 [[]), the center (called “centroid”) of a cluster is the mean of all
points, weighted by their degree of belonging to the cluster:
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where m is a fuzzification exponent; the larger the value of m the fuzzier the

solution. At m = 1, fuzzy C-Means collapses to the crisp K-means, whereas at
very large values of m, all the points will have equal membership with all the

centery =

(2)



clusters. The degree of belonging is related to the inverse of the distance to the
cluster:

1
d(centery, z)’

(3)

then the coefficients are normalised and fuzzyfied with a real parameter m > 1
so that their sum is 1. Therefore,

ug(z) =

1
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for m equal to 2, this is equivalent to linearly normalise the coefficient to make
the sum 1. When m is close to 1, then the closest cluster center to the point
is given a greater weight than the others. The fuzzy C'-Means algorithm is very
similar to the K-means algorithm: Its steps are the following ones:

1. Choose a number of clusters.
2. Assign randomly to each point coeflicients uy(z) for being in the clusters.
3. Repeat until the algorithm has converged (that is, the coefficients’ change
between two iterations is no more than ¢, the given “sensitivity threshold”):
(a) Compute the centroid for each cluster, using the formula above.
(b) For each point, compute its coefficients uy(x) of being in the clusters,
using the formula above.

The fuzzy algorithm has the same problems as K-means: the results depend
on the initial choice of centers, assignments and weights, and it has no way of
taking the shape or size of the clusters into account. The algorithm MajorClust
presented below is intended to overcome the latter disadvantage.

3 The MajorClust clustering algorithm

The algorithm is designed to find the cluster set maximizing the total cluster
connectivity A(C'), which is defined in [5] as follows:

K
A(C) = [Cr| A, (5)
k=1
where C' denotes the decomposition of the given graph G into clusters, Cy, Co,
-+, Cy, are clusters in the decomposition C, A\, designates the edge connectivity
of cluster G(Cy), that is, the mininum number of edges that must be removed
to make graph G(C}) disconnected.

MajorClust operationalises iterative propagation of nodes into clusters ac-
cording to the “maximum attraction wins” principle [§]. The algorithm starts
by assigning each point in the initial set its own cluster. Within the following re-
labelling steps, a point adopts the same cluster label as the “weighted majority
of its neighbours”. If several such clusters exist, one of them is chosen randomly.
The algorithm terminates if no point changes its cluster membership.



The MajorClust algorithm
Input: object set D, similarity measure ¢ : D x D — [0; 1], similarity threshold
T.
Output: function § : D — N, which assigns a cluster label to each point.

1. i := 0, ready := false
for all p from D do i := ¢ + 1, §(p) := i enddo
3. while ready = false do
(a) ready := true
(b) for all ¢ from D do
i 0% =14 if X{o(p,q)|e(p;q) >t and 6(p) = i} is maximum.
ii. if 6(q) # 6* then §(q) := ¢*, ready := false
(c) enddo
4. enddo

N

Remark. The similarity thershold 7 is not a problem-specific parameter but
a constant that serves for noise filtering purposes. Its typical value is 0.3.

The MajorClust is a relatively new clustering algorithm with respect to other
methods. However, its characteristic of automatically discovering the target num-
ber of clusters make it even more and more attractive [QUTOUTTITZ], and hence
the motivation of fuzzifying it.

In the following section, we will describe in detail the proposed fuzzy ap-
proach for the traditional MajorClust clustering algorithm.

4 Fuzzification of MajorClust

4.1 Fuzzy weights of edges and nodes in F-MajorClust

The measure of membership of any edge ¢ in a cluster k is presented by a mem-
bership function gz, where 0 < p, < 1, and >, pi = 1 for any i.

In order to understand the way it is emplyed, we will need the following
definitions. A node j is called inner if all its neighbours belong to the same
cluster as the node j. If an edge i connects nodes x and y, we will say that x
and y are the end nodes of the edge i. A node j is called boundary if some of
its neighbours belong to a cluster (or several clusters) other than the cluster
containing the node j itself.

The main ideas behind the above concept of the fuzzy membership function
Wi is that the edges connecting the inner nodes in a cluster may have a larger
“degree of belonging” to a cluster than the “peripheral” edges (which, in a
sense, reflects a greater “strength of connectivity” between a pair of nodes). For
instance, the edges (indexed i) connecting the inner nodes in a cluster (indexed
k) are assigned p;r, = 1 whereas the edges linking the boundary nodes in a cluster
have p;r < 1. The latter dependence reflects the fact that in the forthcoming
algorithm the boundary nodes have more chances to leave a current cluster than
the inner ones, therefore, the “strength of connectivity” of a corresponding edge



in the current cluster is smaller. As a simple instance case, we define p;; = a"’_" ,
where a;; is the number of those neighbours of the end nodes of 7 that belong to
the same cluster k£ as the end nodes of i, and b; is the number of all neighbours
to the end nodes of ¢. In a more advanced case, we define p;;, = %ﬁ, where A; is
the sum of the weights of edges linking the end nodes of ¢ with those neighbours
of the end nodes of ¢ that belong to the same cluster k as the end nodes of i,
and B; is the total sum of the weights of the edges adjacent to the edge i.

Furthermore, we introduce the measure of membership of any item (node)
j in any cluster k, which is presented by the membership function v;j, where
0 <k <1,and ), vjx = 1 for any j. Notice that these weights are assigned to
nodes, rather than to the edges: this specific feature being absent in all previous
algorithms of MajorClust type. The value of the membership function «;; reflects
the semantic correspondence of node j to cluster k, and is defined according to
the “fitness” of node j to cluster k as defined in [I3]. The idea behind this concept
is to increase the role of the nodes having a larger fitness to their clusters. In the
formula (@) and the text below, ;5 is a function of a cluster Cj containing the
node j: vji = ;% (Ck) which may dynamically change in the algorithm suggested
below as soon as Cj changes. The objective function in the clustering problem
becomes more general than that in [B] so that the weights of nodes are being
taken into account, as follows:

K [ICkl
Maximize A(C)=> | mig)rde + ny]k Ck) |, (6)
k=1 \j=1
where C' denotes the decomposition of the given graph G into clusters, C,...,Ck

are not-necessarily disjoint clusters in the decomposition C, A(C) denotes the
total weighted connectivity of G(C'), A\ designates, as in MajorClust, the edge
connectivity of cluster G(Cy), the weight f1;(;) ;. is the membership degree of arc
i(j) containing node j in cluster k, and finally, v;x(C}) is the fitness of node j to
cluster k. Ay is calculated according to [5], meaning the cardinality of the set of
edges of minimum total weight >, u; that must be removed in order to make
the graph G(C}) disconnected.

4.2 Limitations of MajorClust and if~then rules

The fuzzy weights of edges and nodes (that is, in informal terms, the fuzzy
semantic correlations between the documents and the fuzzy fitness of documents
to categories) can be presented not only in the form of fuzzy numbers defined
between 0 and 1 reflecting a flexible (fuzzy) measure of fitness (which sometimes
is called “responsibility”). Moreover they even may be linguistic variables (e.g.
small, medium, large, etc). In the latter case, they are assigned the so-called
“grades” introduced in [I4T3]. The presence of fuzzy weights on edges and nodes
permit us to avoid several limitations of the standard MajorClust. The most
important among them are the following ones:



1. When MajorClust runs, it may include nodes with weak links, i.e., with a
small number of neighbours which inevitably leads to the decrease of the
objective function already achieved (see [B]).

2. MajorClust assigns each node to that cluster the majority of its neighbours
belong to, and when doing this, the algorithm does not specify the case
when there are several “equivalent” clusters equally matching the node. The
recommendation in [B] to make this assignment in an arbitrary manner, may
lead to the loss of a neighbouring good solution.

3. MajorClust scans nodes of the original graph in an arbitrary order, which
may lead to the loss of good neighbouring solutions.

4. MajorClust takes into account only one local minimum among many others
(which may lead to the loss of much better solutions than the one selected).
These limitations will be avoided in the fuzzy algorithm suggested, by the
price of greater computational efforts (the running time) and a larger re-
quired memory.

In the following, we list a set of if-then rules which may be added to the
proposed fuzzy version of the MajorClust. The order of node scan is defined by
the following decision rules R1-R3.

Rule R1: Ifthere are several nodes having majority in certain clusters (or the
maximum value of the corresponding objective function), then choose first
the node having the maximal number of neighbours.

Rule R2: If there are several nodes having both the majority and the max-
imum number of neighbours in certain clusters, then choose first the node
whose inclusion leads to the maximum increase of the objective function.

Rule R2: If there are several nodes having both the majority and the max-
imum number of neighbours in certain clusters, then assign the nodes to
clusters using the facility layout model taking into account the semantic
fitness of nodes to clusters and providing the maximum increase of the ob-
jective function (the mathematical model formulation and computational
approaches can be found in [TH[TH]).

Rule R3: If, at some iterative step, the inclusion of some node would lead to
the decrease of the objective function, then this node should be skipped (that
is, it will not be allocated into any new cluster at that step).

The algorithm stops when the next iterative step does not change the clus-
tering (this is Rule 4) or any further node move leads to deteriorating of the
achieved quality (defined by the formula (@) (this is Rule 5) or according to
other stopping rules R6-R7 (see below).

Rule R6: If the number of steps exceeds the given threshold, then stop.

Rule R7: If the increase in the objective function at H current steps is less
than e (H and € are given by the experts and decision makers in advance),
then stop.

The F-MajorClust algorithm starts by assigning each point in the initial set
its own cluster. Within the following re-labelling steps, a point adopts the same
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cluster label as the “ weighted majority of its neighbours”, that is, the node
set providing the maximum value to the generalized objective function [I3]. If
several such clusters exist, say z clusters, then a point adopts all of them and
attains the membership function wj; = 1/z for all clusters. At each step, if point
Jj belongs to y clusters, then wj, = 1/y. The algorithm terminates if no point
changes its cluster membership.

4.3 The butterfly effect

In Fig. M we can observe the so-called “butterfly effect”, which appears when
some documents (nodes) of the dataset (graph) may belong to more than one
cluster, in this case the fuzzy algorithm works better than the crisp one. Fig.[[l(a)
and [[(b) depict an example when the classical MajorClust algorithm has found
two clusters and, then, according to formula () this clustering of eight nodes
obtains a score of 21 (C=7x3 + 1x0 = 21). Figure[l{b) shows the case when the
classical MajorClust algorithm has detected three clusters for the same input
data providing a total score of 18 (C=4x3 + 3x2 + 1x0 = 18). On the other
hand, Fig.[(c) and [{d) demonstrate how the fuzzy algorithm works when some
nodes can belong simultaneously to several different clusters. We assume that the
algorithm uses formula () where, for the simplicity, we take ;5 (Cj) = 0; even
in this simplified case the fuzzy algorithm wins. Two variants are presented: in
Figure[ll(c) we consider the case when the membership values are shared equally
between two cluster with the memebership value 0.5; then the obtained score is
21 (C=2x((3+0.5)x3) + 1x0 = 21). Note that the value of the objective func-
tion is here the same as in the case [[(a). However, if the documents (nodes)
are highly relevant to the both databases with the membership function val-
ues 1 then the fuzzy algorithm yields a better score which is presented in Fig.
M(d): C=2x((3+1)x3) + 1x0=24. It worth noticing that this effect becomes even
stronger if ;5 (C) > 0 in (@).

5 Conclusions and further work

Our efforts were devoted to employ fuzzy clustering on text corpora since we
have observed a good performance of the MajorClust in this context. We have
proposed a fuzzy version of the classical MajorClust clustering algorithm in order
to permit overlapping between the obtained clusters. This approach will provide
a more flexible use of the mentioned clustering algorithm. We consider that
there exist different areas of application for this new clustering algorithm which
include not only data analysis but also pattern recognition, spatial databases,
production management, etc. in cases when any object can be assigned to more
than a unique category.

Special attention in the definition and operation of the so called fuzzifier
will be needed, since it controls the amount of overlapping among the obtained
clusters and, it is well known that for those corpora with varying data density,
noisy data and big number of target clusters, some negative effects may appear



Fig. 1. Butterfly effect in fuzzy clustering. (a) and (b) use classical MajorClust,
whereas (c) and (d) use the F-MajorClust approach (with different node mem-
bership functions).

[I7]. These effects can be mitigated by proper calibration of the membership
functions in [I3] with the help of fuzzy if-then rules and the standard Mamdani-
type inference scheme (see [I8[T9]).

As future work, we plan to compare F-MajorClust with C-Means perfor-
mance by using the Reuters collection. Moreover, as a basic analysis, it will be
also interesting to execute the classical MajorClust over the same dataset.
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