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Preface

Usually the models of real world problems in almost all disciplines like engi-
neering, medical sciences, mathematics, physics, computer science, manage-
ment sciences, operations research and arti�cial intelligence are mostly full
of complexities and consist of several types of uncertainties while dealing
them in several occasion. To overcome these di¢culties of uncertainties,
many theories have been developed such as rough sets theory, probabil-
ity theory, fuzzy sets theory, theory of vague sets, theory of soft ideals
and the theory of intuitionistic fuzzy sets, theory of neutrosophic sets,
Dezert-Smarandache Theory (DSmT), etc. Zadeh introduced the degree
of membership/truth (t) in 1965 and de�ned the fuzzy set. Atanassov in-
troduced the degree of nonmembership/falsehood (f) in 1986 and de�ned
the intuitionistic fuzzy set. Smarandache introduced the degree of inde-
terminacy/neutrality (i) as independent component in 1995 (published in
1998) and de�ned the neutrosophic set. He has coined the words �neutros-
ophy� and �neutrosophic�. In 2013 he re�ned the neutrosophic set to n
components: t1; t2; : : : ; i1; i2; : : : ; f1; f2; . . . .
Zadeh discovered the relationships of probability and fuzzy set theory

which has appropriate approach to deal with uncertainties. Many authors
have applied the fuzzy set theory to generalize the basic theories of Al-
gebra. Mordeson et al. [27] has discovered the grand exploration of fuzzy
semigroups, where theory of fuzzy semigroups is explored along with the ap-
plications of fuzzy semigroups in fuzzy coding, fuzzy �nite state mechanics
and fuzzy languages and the use of fuzzi�cation in automata and formal lan-
guage has widely been explored. Moreover the complete l-semigroups have
wide range of applications in the theories of automata, formal languages
and programming. It is worth mentioning that some recent investigations
of l-semigroups are closely connected with algebraic logic and non-classical
logics.
An AG-groupoid is a mid structure between a groupoid and a commuta-

tive semigroup. Mostly it works like a commutative semigroup. For instance
a2b2 = b2a2, for all a; b holds in a commutative semigroup, while this equa-
tion also holds for an AG-groupoid with left identity e. Moreover ab = (ba)e
for all elements a and b of the AG-groupoid. Now our aim is to discover
some logical investigations for regular and intra-regular AG-groupoids us-
ing the new generalized concept of fuzzy sets. It is therefore concluded
that this research work will give a new direction for applications of fuzzy
set theory particularly in algebraic logic, non-classical logics, fuzzy coding,
fuzzy �nite state mechanics and fuzzy languages.
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To overcome these di¤culties of uncertainties, many theories have been
developed such as rough sets theory, probability theory, fuzzy sets theory,
theory of vague sets, theory of soft ideals and the theory of intuitionistic
fuzzy sets,
In [29], Murali de�ned the concept of belongingness of a fuzzy point to

a fuzzy subset under a natural equivalence on a fuzzy subset. The idea of
quasi-coincidence of a fuzzy point with a fuzzy set is de�ned in [33]. Bhakat
and Das [1, 2] gave the concept of (�; �)-fuzzy subgroups by using the �be-
longs to� relation 2 and �quasi-coincident with� relation q between a fuzzy
point and a fuzzy subgroup, and introduced the concept of an (2;2 _q)-
fuzzy subgroups, where �; � 2 f2; q;2 _q;2 ^qg and � 6=2 ^q. Davvaz
de�ned (2;2 _q)-fuzzy subnearrings and ideals of a near ring in [4]. Jun
and Song initiated the study of (�; �)-fuzzy interior ideals of a semigroup
in [14]. In [37] regular semigroups are characterized by the properties of
their (2;2 _q)-fuzzy ideals. In [36] semigroups are characterized by the
properties of their (2;2 _qk)-fuzzy ideals.
In chapter one we have introduced the concept of (2;2 _qk)-fuzzy ideals

in an AG-groupoid. We have discussed several important features of a right
regular AG-groupoid.
In chapter two, we investigate some characterizations of regular and

intra-regular Abel-Grassmann�s groupoids in terms of (2;2 _qk)-fuzzy
ideals and (2;2 _qk)-fuzzy quasi-ideals.
In chapter three we introduce (2 ;2 _q�)-fuzzy left ideals in an AG-

groupoid. We characterize intra-regular AG-groupoids using the properties
of (2 ;2 _q�)-fuzzy subsets and (2 ;2 _q�)-fuzzy left ideals.
In chapter four we introduce (2 ;2 _q�)-fuzzy prime (semiprime) ideals

in AG-groupoids. We characterize intra regular AG-groupoids using the
properties of (2 ;2 _q�)-fuzzy semiprime ideals.
In chapter �ve we introduce generalized fuzzy soft ideals in a non-associative

algebraic structure namely Abel Grassmann groupoid. We discuss some
basic properties concerning these new types of generalized fuzzy ideals
in Abel-Grassmann groupoids. Moreover we characterize a regular Abel
Grassmann groupoid in terms of its classical and (2 ;2 _q�)-fuzzy soft
ideals.
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Generalized Fuzzy Ideals of
AG-groupoids

In this chapter, we have introduced the concept of (2;2 _q)-fuzzy and
(2;2 _qk)-fuzzy ideals in an AG-groupoid. We have discussed several im-
portant features of right regular AG-groupoid by using the (2;2 _qk)-
fuzzy ideals. We proved that the (2;2 _qk)-fuzzy left (right, two-sided),
(2;2 _qk)-fuzzy (generalized) bi-ideals, and (2;2 _qk)-fuzzy interior ideals
coincide in a right regular AG-groupoid.

1.1 Introduction

Fuzzy set theory and its applications in several branches of Science are
growing day by day. Since paci�c models of real world problems in var-
ious �elds such as computer science, arti�cial intelligence, operation re-
search, management science, control engineering, robotics, expert systems
and many others, may not be constructed because we are mostly and un-
fortunately uncertain in many occasions. For handling such di¢culties we
need some natural tools such as probability theory and theory of fuzzy
sets [42] which have already been developed. Associative Algebraic struc-
tures are mostly used for applications of fuzzy sets. Mordeson, Malik and
Kuroki [27] have discovered the vast �eld of fuzzy semigroups, where the-
oretical exploration of fuzzy semigroups and their applications are used in
fuzzy coding, fuzzy �nite-state machines and fuzzy languages. The use of
fuzzi�cation in automata and formal language has widely been explored.
Moreover the complete l-semigroups have wide range of applications in the
theories of automata, formal languages and programming.
The fundamental concept of fuzzy sets was �rst introduced by Zadeh [42]

in 1965. Given a set X, a fuzzy subset of X is, by de�nition an arbitrary
mapping f : X ! [0; 1] where [0; 1] is the unit interval. Rosenfeld intro-
duced the de�nition of a fuzzy subgroup of a group [34]. Kuroki initiated
the theory of fuzzy bi ideals in semigroups [18]. The thought of belonging-
ness of a fuzzy point to a fuzzy subset under a natural equivalence on a
fuzzy subset was de�ned by Murali [29]. The concept of quasi-coincidence of
a fuzzy point to a fuzzy set was introduce in [33]. Jun and Song introduced
(�; �)-fuzzy interior ideals in semigroups [14].
In [29], Murali de�ned the concept of belongingness of a fuzzy point to

a fuzzy subset under a natural equivalence on a fuzzy subset. The idea of
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quasi-coincidence of a fuzzy point with a fuzzy set is de�ned in [33]. Bhakat
and Das [1, 2] gave the concept of (�; �)-fuzzy subgroups by using the �be-
longs to� relation 2 and �quasi-coincident with� relation q between a fuzzy
point and a fuzzy subgroup, and introduced the concept of an (2;2 _q)-
fuzzy subgroups, where �; � 2 f2; q;2 _q;2 ^qg and � 6=2 ^q. Davvaz
de�ned (2;2 _q)-fuzzy subnearrings and ideals of a near ring in [4]. Jun
and Song initiated the study of (�; �)-fuzzy interior ideals of a semigroup
in [14]. In [37] regular semigroups are characterized by the properties of
their (2;2 _q)-fuzzy ideals. In [36] semigroups are characterized by the
properties of their (2;2 _qk)-fuzzy ideals.
In this paper, we have introduced the concept of (2;2 _qk)-fuzzy ideals

in a new non-associative algebraic structure, that is, in an AG-groupoid and
developed some new results. We have de�ned regular and intra-regular AG-
groupoids and characterized them by (2;2 _qk)-fuzzy ideals and (2;2 _qk)-
fuzzy quasi-ideals.
An AG-groupoid is a mid structure between a groupoid and a commuta-

tive semigroup. Mostly it works like a commutative semigroup. For instance
a2b2 = b2a2, for all a; b holds in a commutative semigroup, while this equa-
tion also holds for an AG-groupoid with left identity e. Moreover ab = (ba)e
for all elements a and b of the AG-groupoid. Now our aim is to discover
some logical investigations for regular and intra-regular AG-groupoids us-
ing the new generalized concept of fuzzy sets. It is therefore concluded
that this research work will give a new direction for applications of fuzzy
set theory particularly in algebraic logic, non-classical logics, fuzzy coding,
fuzzy �nite state mechanics and fuzzy languages.

1.2 Abel Grassmann Groupoids

The concept of a left almost semigroup (LA-semigroup) [16] or an AG-
groupoid was �rst given by M. A. Kazim and M. Naseeruddin in 1972. an
AG-groupoid M is a groupoid having the left invertive law,

(ab)c = (cb)a, for all a, b, c 2M . (1)

In an AG-groupoid M , the following medial law [16] holds,

(ab)(cd) = (ac)(bd), for all a, b, c, d 2M . (2)

The left identity in an AG-groupoid if exists is unique [28]. In an AG-
groupoid M with left identity the following paramedial law holds [32],

(ab)(cd) = (dc)(ba); for all a; b; c; d 2M: (3)

If an AG-groupoid M contains a left identity, then,
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a(bc) = b(ac), for all a, b, c 2M . (4)

1.3 Preliminaries

Let S be an AG-groupoid. By an AG-subgroupoid of S; we means a non-
empty subset A of S such that A2 � A. A non-empty subset A of an AG-
groupoid S is called a left (right) ideal of S if SA � A (AS � A) and it is
called a two-sided ideal if it is both left and a right ideal of S. A non-empty
subset A of an AG-groupoid S is called quasi-ideal of S if SA \ AS � A.
A non-empty subset A of an AG-groupoid S is called a generalized bi-ideal
of S if (AS)A � A and an AG-subgroupoid A of S is called a bi-ideal of
S if (AS)A � A. A non-empty subset A of an AG-groupoid S is called an
interior ideal of S if (SA)S � A.
If S is an AG-groupoid with left identity e then S = S2. It is easy to see

that every one sided ideal of S is quasi-ideal of S. In [31] it is given that
L[a] = a [ Sa, I[a] = a [ Sa [ aS and Q[a] = a [ (aS \ Sa) are principal
left ideal, principal two-sided ideal and principal quasi-ideal of S generated
by a. Moreover using (1), left invertive law, paramedial law and medial law
we get the following equations

a (Sa) = S(aa) = Sa2, (Sa)a = (aa)S = a2S and (Sa) (Sa) = (SS) (aa) = Sa2.

To obtain some more useful equations we use medial, paramedial laws
and (1), we get

(Sa)2 = (Sa)(Sa) = (SS)a2 = (aa)(SS) = S((aa)S)

= (SS)((aa)S) = (Sa2)SS = (Sa2)S.

Therefore
Sa2 = a2S = (Sa2)S: (2)

The following de�nitions are available in [27].
A fuzzy subset f of an AG-groupoid S is called a fuzzy AG-subgroupoid

of S if f(xy) � f(x) ^ f(y) for all x, y 2 S: A fuzzy subset f of an
AG-groupoid S is called a fuzzy left (right) ideal of S if f(xy) � f(y)
(f(xy) � f(x)) for all x, y 2 S. A fuzzy subset f of an AG-groupoid S
is called a fuzzy two-sided ideal of S if it is both a fuzzy left and a fuzzy
right ideal of S. A fuzzy subset f of an AG-groupoid S is called a fuzzy
quasi-ideal of S if f �CS \CS �f � f . A fuzzy subset f of an AG-groupoid
S is called a fuzzy generalized bi-ideal of S if f((xa)y) � f(x)^f(y), for all
x, a and y 2 S. A fuzzy AG-subgroupoid f of an AG-groupoid S is called a
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fuzzy bi-ideal of S if f((xa)y) � f(x)^f(y), for all x, a and y 2 S. A fuzzy
AG-subgroupoid f of an AG-groupoid S is called a fuzzy interior ideal of
S if f((xa)y) � f(a), for all x, a and y 2 S. Let f be a fuzzy subset of an
AG-groupoid S, then f is called a fuzzy prime if maxff(a); f(b)g � f(ab);
for all a; b 2 S: f is called a fuzzy semiprime if f(a) � f(a2); for all a 2 S:
Let f and g be any two fuzzy subsets of an AG-groupoid S, then the

product f � g is de�ned by,

(f � g) (a) =

8
<

:

_

a=bc

ff(b) ^ g(c)g , if there exist b; c 2 S, such that a = bc:

0; otherwise.

The symbols f \ g and f [ g will means the following fuzzy subsets of S

(f \ g)(x) = minff(x); g(x)g = f(x) ^ g(x); for all x in S

and

(f [ g)(x) = maxff(x); g(x)g = f(x) _ g(x); for all x in S:

Let f be a fuzzy subset of an AG-groupoid S and t 2 (0; 1]. Then xt 2 f
means f(x) � t, xtqf means f(x) + t > 1, xt� _ �f means xt�f or xt�f ,
where �; � denotes any one of 2; q; 2 _q; 2 ^q. xt� ^ �f means xt�f and
xt�f , xt�f means xt�f does not holds. Generalizing the concept of xtqf ,
Jun [13, 14] de�ned xtqkf , where k 2 [0; 1), as f (x)+ t+ k > 1. xt 2 _qkf
if xt 2 f or xtqkf .
Let f and g be any two fuzzy subsets of an AG-groupoid S, then for

k 2 [0; 1); the product f �k g is de�ned by,

(f �k g) (a) =

8
<

:

_

a=bc

�
f(b) ^ g(c) ^ 1�k

2

	
, if there exist b; c 2 S, such that a = bc:

0; otherwise.

The symbols f ^ g and f _ g will means the following fuzzy subsets of an
AG-groupoid S.
(f ^ g)(x) = minff(x); g(x)g for all x in S.
(f _ g)(x) = maxff(x); g(x)g for all x in S.

De�nition 1 A fuzzy subset f of an AG-groupoid S is called fuzzy AG-
subgroupoid of S if for all x; y 2 S and k 2 [0; 1) such that f(xy) �
minff(x); f(y); 1�k2 g:

De�nition 2 A fuzzy subset f of an AG-groupoid S is called fuzzy left
(right) ideal of S if for all x; y 2 S and k 2 [0; 1) such that f(xy) �
minff(y); 1�k2 g (f(xy) � minff(x);

1�k
2 g):

A fuzzy subset f of an AG-groupoid S is called fuzzy ideal if it is fuzzy
left as well as fuzzy right ideal of S:
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De�nition 3 A fuzzy subset f of an AG-groupoid S is called fuzzy quasi
ideal of S; if
f(a) � minf(f � &)(a); (& � f)(a); 1�k2 g: where & is the fuzzy subset of S

mapping every element of S on 1.

De�nition 4 A fuzzy subset f is called a fuzzy generalized bi-ideal of S
if f((xa)y) � minff(x); f(y); 1�k2 g, for all x, a and y 2 S. A fuzzy AG-

subgroupoid f of S is called a fuzzy bi-ideal of S if f((xa)y) � minff(x); f(y); 1�k2 g;
for all x; a,y 2 S and k 2 [0; 1).

De�nition 5 An (2;2 _qk)-fuzzy subset f of an AG-groupoid S is called
prime if for all a; b 2 S and t 2 (0; 1]; it satis�es,
(ab)t 2 f implies that at 2 _qkf or bt 2 _qkf:

Theorem 6 An (2;2 _qk)-fuzzy ideal f of an AG-groupoid S is prime if
for all a; b 2 S, it satis�es,
max ff (a) ; f (b)g � minff (ab) ; 1�k2 g:

Proof. It is straightforward.

De�nition 7 A fuzzy subset f of an AG-groupoid S is called (2;2 _qk)-
fuzzy semiprime if it satis�es,
a2t 2 f this implies that at 2 _qkf for all a 2 S and t 2 (0; 1]:

Theorem 8 An (2;2 _qk)-fuzzy ideal f of an AG-groupoid S is called
semiprime if for any a 2 S and k 2 [0; 1), if it satis�es,
f (a) � minff

�
a2
�
; 1�k2 g:

Proof. It is easy.

De�nition 9 For a fuzzy subset F of an AG-groupoid M and t 2 (0; 1],
the crisp set U(F ; t) = fx 2M such that F (x) � tg is called a level subset
of F .

De�nition 10 A fuzzy subset F of an AG-groupoid M of the form

F (y) =

�
t 2 (0; 1] if y = x
0 if y 6= x

is said to be a fuzzy point with support x and value t and is denoted by xt.

Lemma 11 A fuzzy subset F of an AG-groupoid M is a fuzzy interior
ideal of M if and only if U(F ; t) ( 6= ;) is an interior ideal of M .

De�nition 12 A fuzzy subset F of an AG-groupoid M is called an (2;2
_q)-fuzzy interior ideal of M if for all t; r 2 (0; 1] and x; a; y 2M .
(A1) xt 2 F and yr 2 F implies that (xy)minft;rg 2 _qF:
(A2) at 2 F implies ((xa)y)t 2 _qF:
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De�nition 13 A fuzzy subset F of an AG-groupoid M is called an (2;2
_q)-fuzzy bi-ideal of M if for all t; r 2 (0; 1] and x; y; z 2M .
(B1) xt 2 F and yr 2 F implies that (xy)minft;rg 2 _qF:
(B2) xt 2 F and zr 2 F implies ((xy)z)minft;rg 2 _qF .

Theorem 14 For a fuzzy subset F of an AG-groupoid M . The conditions
(B1) and (B2) of De�nition 5, are equivalent to the following,
(B3) (8x; y 2M)F (xy) � minfF (x); F (y); 0:5g
(B4) (8x; y; z 2M)F ((xy)z) � minfF (x); F (y); 0:5g.

Proof. It is similar to proof of theorem ??.

De�nition 15 A fuzzy subset F of an AG-groupoidM is called an (2;2 _q)-
fuzzy (1; 2) ideal of M if
(i) F (xy) � minfF (x); F (y); 0:5g; for all x; y 2M:
(ii) F ((xa)(yz)) � minfF (x); F (y); F (z); 0:5g; for all x; a; y; z 2M:

Example 16 Let M = f1; 2; 3g be a right regular modular groupoid and
" � " be any binary operation de�ned as follows:

� 1 2 3

1 2 2 2
2 2 2 2
3 1 2 2

Let F be a fuzzy subset of M such that

F (1) = 0:6; F (2) = 0:3; F (3) = 0:2:

Then we can see easily F (1 � 3) � F (3) ^ 0:5 that is F is an (2;2 _q)-
fuzzy left ideal but F is not an (2;2 _q)-fuzzy right ideal.

De�nition 17 A fuzzy subset f is called (2;2 _qk)-fuzzy quasi-ideal of
AG-groupoid S, if

f(x) �

�
(f � S)(x) ^ (S � f)(x) ^

1� k

2

�
for all x 2 S:

Now we are going to develop (2;2 _qk)-fuzzy (1; 2) ideals in AG-groupoids.

De�nition 18 Let S be an AG-groupoid, and f be an (2;2 _qk)-fuzzy
AG-subgroupoid of S. Then f is an (2;2 _qk)-fuzzy (1; 2) ideal of S, if
for all x, a, y, z 2 S and t, r, s 2 (0; 1], we have xt 2 f , yr 2 f and
zs 2 f =) ((xa)(yz))(t^r)^s 2 _qkf:

Theorem 19 Let f be a non-zero (�; �)- fuzzy (1; 2) ideal of S. Then the
set f0 = fx 2 S j f(x) > 0g is (1; 2) ideal of S.
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Proof. Let x, y 2 f0 � S; then f(x) > 0 and f(y) > 0. Assume that
f(xy) = 0. If � 2 f2;2 _qg then xf(x)�f and yf(y)�f but f(xy) = 0 <

f(x) ^ f(y) and f(xy) + minff(x); f(y)g � 0 + 1 = 1. So (xy)f(x)^f(y)�f
for every � 2 f2; q;2 _q;2 ^qg, a contradiction. Note that x1qf and y1qf
but (xy)1^1 = (xy)1�f for every � 2 f2; q;2 _q;2 ^qg, a contradiction.
Hence f(xy) > 0; that is xy 2 f0. Thus f0 is an AG-subgroupoid of S.
Let x, y, z 2 f0 and a 2 S; then f(x) > 0; f(y) > 0 and f(z) > 0.

Assume that f((xa)(yz)) = 0. If � 2 f2;2 _qg then xf(x)�f , yf(y)�f and
zf(z)�f but f((xa)(yz)) = 0 < minff(x); f(y); f(z)g and f((xa)(yz)) +

minff(x); f(y); f(z)g � 0 + 1 = 1. So ((xa)(yz))f(x)^f(y)^f(z)�f for every
� 2 f2; q;2 _q;2 ^qg, a contradiction. Note that x1qf; y1qf and z1qf
but ((xa)(yz))1^1^1 = ((xa)(yz))1�f for every� 2 f2; q;2 _q;2 ^qg, a
contradiction. Hence f((xa)(yz)) > 0, that is, (xa)(yz) 2 f0. Consequently,
f0 is an (1; 2) ideal of S.

Theorem 20 For a fuzzy subset f of an AG-groupoid S, the following are
equivalent,
(i) f is a fuzzy (1; 2) ideal of S
(ii) f is an (2;2)-fuzzy (1; 2) ideal.

Proof. (i) =) (ii)
Let x; y 2 S and t; r 2 (0; 1] be such that xt, yr 2 f: Then f(x) � t;

and f(y) � r: Now by de�nition f(xy) � f(x) ^ f(y) � t ^ r, implies
that (xy)t^r 2 f . Now let x, a, y, z 2 S and t; r; s 2 (0; 1] be such that
xt, yr, zs 2 f . Then:f(x) � t f(y) � r and f(z) � s: Now by de�n-
ition f((xa)(yz)) � f(x) ^ f(y) ^ f(z) � t ^ r ^ s, which implies that
((xa)(yz))minft;r;sg 2 f . Therefore f is an (2;2)-fuzzy (1; 2) ideal of S.
(ii) =) (i)
Let x; y 2 S: Since xf(x) 2 f and yf(y) 2 f; since f is an (2;2)-fuzzy

(1; 2) ideal, so (xy)f(x)^f(y) 2 f , it follows that f(xy) � f(x) ^ f(y), and
let x, a, y, z 2 S. Since xf(x) 2 f , yf(y) 2 fand zf(z) 2 f and f is
an (2;2)-fuzzy (1; 2) ideal so ((xa)(yz))f(x)^f(y)^f(z) 2 f , it follows that
f((xa)(yz)) � f(x) ^ f(y) ^ f(z), so f is a fuzzy (1; 2) ideal of S.

1.4 (2;2 _qk)-fuzzy Ideals in AG-groupoids

Theorem 21 Let A be a (1; 2) ideal of S and let f be a fuzzy subset of S
such that,

f(x) =

�
� 1�k

2 if x 2 A
0 otherwise:

Then
(1) f is a (q;2 _qk)-fuzzy subsemigroup of S.
(2) f is an (2;2 _qk)-fuzzy subsemigroup of S.
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Proof. (1) Let x, a, y, z 2 S and t, r, s 2 (0; 1], be such that xtqf , yrqf
and zsqf . Then x; y; z 2 A, f(x) + t > 1 f(y) + r > 1 and f(z) + s > 1.
Since A is an (1; 2) ideal of S, we have (xa)(yz) 2 A for a 2 S. Thus
f((xa)(yz)) � 1�k

2 . If minft; r; sg �
1�k
2 , then f((xa)(yz)) � minft; r; sg

and so ((xa)(yz))minft;r;sg 2 f . If minft; r; sg >
1�k
2 , then f((xa)(yz)) +

minft; r; sg + k > 1�k
2 + 1�k

2 + k = 1 and so ((xa)(yz))minft;r;sg 2 _qkf .
Hence f is a (q;2 _q)-fuzzy (1; 2) ideal of S.
(2) Let x; a; y; z 2 S and t, r, s 2 (0; 1] be such that xt 2 f , yr 2

f , and zs 2 f . Then f(x) � t > 0 f(y) � r > 0 and f(z) � s >
0. Thus f(x) � 1�k

2 f(y) � 1�k
2 and f(z) � 1�k

2 , this implies that
x; y; z 2 A. Since A is an (1; 2) ideal of S, we have (xa)(yz) 2 A. Thus
f((xa)(yz)) � 1�k

2 . If minft; r; sg �
1�k
2 , then f((xa)(yz)) � minft; r; sg

and so ((xa)(yz))minft;r;sg 2 f . Ifminft; r; sg >
1�k
2 , then f(xy)+minft; r; sg+

k > 1�k
2 + 1�k

2 + k = 1 and so ((xa)(yz))minft;r;sg 2 _qkf . Hence f is a
(2;2 _q)-fuzzy (1; 2) ideal of S.

Lemma 22 Let f be a fuzzy subset of AG-groupoid S, then f is an (2;2
_qk)-fuzzy (1; 2) ideal of S if and only if
(i) f(xy) � minff(x); f(y); 1�k2 g; for all x; y 2 S;

(ii) f((xa)(yz)) � minff(x); f(y); f(z); 1�k2 g; for all x; a; y; z 2 S:

Proof. Let f be (2;2 _qk)-fuzzy (1; 2) ideal of S, then f(xy) � minff(x); f(y);
1�k
2 g;

for all x; y 2 S is automatically satis�ed: On contrary suppose that there
exists x; a; y; z 2 S such that f((xa)(yz)) < minff(x); f(y); f(z); 1�k2 g.

Choose t 2 (0; 1] such that f((xa)(yz)) < t � minff(x); f(y); f(z); 1�k2 g

then f((xa)(yz))+t+k < 1�k
2 + 1�k

2 +k = 1, so ((xa)(yz))minft;t;tg2 _qkf ,

which is contradiction. Hence f((xa)(yz)) � minff(x); f(y); f(z); 1�k2 g; for
all x; a; y; z 2 S:
Conversely suppose that (i) and (ii) holds. From (i) and it is clear that f

is (2;2 _qk)-fuzzy AG-subgroupoid of S: Now let xt 2 f , yr 2 f and zs 2 f
for t; r; s 2 (0:1], then f(x) � t, f(y) � r and f(z) � s: Now f((xa)(yz)) �
minff(x); f(y); f(z); 1�k2 g � minft; r; s; 1�k2 g. If minft; r; sg >

1�k
2 , then

f((xa)(yz)) � 1�k
2 . So f((xa)(yz)) + minft; r; sg + k >

1�k
2 + 1�k

2 + k =

1; which implies that ((xa)(yz))minft;r;sgqkf . If minft; r; sg �
1�k
2 , then

f((xa)(yz)) � minft; r; sg. So ((xa)(yz))minft;r;sg 2 f . Thus ((xa)(yz))minft;r;sg 2
_qkf . Therefore f is an (2;2 _qk)-fuzzy (1; 2)-ideal of S.

Proposition 23 Let f be an (2;2 _qk)-fuzzy (1; 2) ideal of S, then fk is
fuzzy (1; 2) ideal of S.

Proof. Let f be an (2;2 _qk)-fuzzy (1; 2) ideal of S; then for all x; a; y; z 2
S, we have f((xa)(yz)) � f(x) ^ f(y) ^ f(z) ^ 1�k

2 . This implies that

f((xa)(yz)) ^ 1�k
2 � f(x) ^ f(y) ^ f(z) ^ 1�k

2 . So fk((xa)(yz)) � fk(x) ^
fk(y) ^ fk(z). Thus fk is fuzzy (1; 2) ideal of S.
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Lemma 24 For a fuzzy subset f of an AG-groupoid S; the following con-
ditions are true.

(i) fk is a fuzzy left (right) ideal of S if and only if S �k f � fk (f �k S �
fk):
(ii) fk is a fuzzy AG-subgroupoid of S if and only if f �k f � fk:

Lemma 25 Let A be a non-empty subset of an AG-groupoid S. Then the
following properties holds.

(i) A is an AG-subgroupoid of S if and only if (CA)k is an (2;2 _qk)-
fuzzy AG-subgroupoid of S.
(ii) A is a left (right, two-sided) ideal of S if and only if CA is an (2;2

_qk)-fuzzy left (right, two-sided) ideal of S.

Lemma 26 For any non-empty subsets A and B of an AG-groupoid S,
the following conditions are true.

(i) CA �k CB = (CAB)k
(ii) CA ^k CB = (CA\B)k

Lemma 27 Let f and g be fuzzy subset of AG-groupoid S. Then the fol-
lowing holds,
(i) (f ^k g) = (fk ^ gk)
(ii) (f _k g) = (fk _ gk)
(iii) (f �k g) = (fk � gk)
(iv) fk(x) = f(x) ^

1�k
2 .

Proof. It is easy.

Lemma 28 Let A and B be non-empty subsets of a AG-groupoid S, then
the following holds.
(i) (CA ^k CB) = (CA\B)k
(ii) (CA _k CB) = (CA[B)k
(i) (CA �k CB) = (CAB)k.

De�nition 29 Let f and g be any two fuzzy subsets of an AG-groupoid S,
then the product f �k g is de�ned by,

(f �k g) (a) =

8
<

:

_

a=bc

�
f(b) ^ g(c) ^ 1�k

2

	
, if there exists b; c 2 S, such that a = bc:

0; otherwise.

Example 30 Let S = fa; b; c; d; eg be an AG-groupoid with left identity d
with the following multiplication table.
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� a b c d e
a a a a a a
b a b b b b
c a b d e c
d a b c d e
e a b e c d

Note that S is non-commutative as ed 6= de and also S is non-associative
because (cc)d 6= c(cd):
Clearly S is right regular because, a = a2d; b = b2c; c = c2c; d = d2d;

e = e2e:
De�ne a fuzzy subset f of S as follows: f(a) = 1 and f(b) = f(c) =

f(d) = f(e) = 0; then clearly f is a (2;2 _qk)-fuzzy two-sided ideal of S.
It is easy to observe that every (2;2 _qk)-fuzzy two sided ideal of an

AG-groupoid S is a (2;2 _qk)-fuzzy AG-subgroupoid of S but the converse
is not true in general which is discussed in the following.
Let us de�ne a fuzzy subset f of S as follows: f(a) = 1, f(b) = 0 and

f(c) = f(d) = f(e) = 0:5; then f is a (2;2 _qk)-fuzzy AG-subgroupoid
of S but it is not a (2;2 _qk)-fuzzy two sided ideal of S because f(db) �
f(d) ^ 1�k

2 or f(bd) � f(d) ^ 1�k
2 :

De�nition 31 An element a of an AG-groupoid S is called a right regular
if there exists x 2 S such that a = a2x and S is called right regular if every
element of S is right regular.

An AG-groupoid S considered in Example 30 is right regular because,
a = a2d; b = b2c; c = c2c; d = d2d; e = e2e:

Example 32 Let S = fa; b; c; d; eg be a right regular AG-groupoid with left
identity c in the following multiplication table.

� a b c d e
a b a a a a
b a b b b b
c a b c d e
d a b e c d
e a b d e c

Theorem 33 Let S be an AG-groupoid with left identify and let f be any
fuzzy subset of S, then S is right regular if fk(x) = fk(x

2) holds for all x
in S.

Proof. Assume that S is an AG-groupoid with left identify. Clearly x2S is a
subset of S and therefore its characteristic function Cx2S is a fuzzy subset of
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S let x 2 S: Now by given assumption (Cx2S)k(x
2) = (Cx2S)k(x) holds for

all x 2 S: As x2 2 x2S therefore (Cx2S)k(x
2) = 1�k

2 =) (Cx2S)k(x) =
1�k
2

which implies that x 2 x2S: Thus S is right regular.
The converse is not true in general. For this, let us consider a right

regular AG-groupoid S in Example 32. De�ne a fuzzy subset f of S as
follows: f(a) = 0:6; f(b) = 0 and f(c) = f(d) = f(e) = 0:9; then it is easy
to see that fk(a) 6= fk(a

2) for a 2 S:

Lemma 34 A fuzzy subset f of a right regular AG-groupoid S is an (2;2
_qk)-fuzzy left ideal of S if and only if it is an (2;2 _qk)-fuzzy right ideal
of S:

Proof. Let S be a right regular AG-groupoid and let a 2 S; then there
exists x 2 S such that a = a2x: Let f be a (2;2 _qk)-fuzzy left ideal of S;
then by using (1); we have

f(ab) = f(((aa)x)b) = f(((xa)a)b)

= f((ba)(xa)) �

�
f(xa) ^

1� k

2

�

�

�
f(a) ^

1� k

2
^
1� k

2

�
= f(a) ^

1� k

2
:

Similarly we can show that every (2;2 _qk)-fuzzy right ideal of S is an
(2;2 _qk)-fuzzy left ideal of S:

Example 35 Let us consider an AG-groupoid S = fa; b; c; d; eg with left
identity d in the following Cayley�s table.

� a b c d e

a a a a a a
b a e e c e
c a e e b e
d a b c d e
e a e e e e

Note that S is not right regular because for c 2 S there does not exists
x 2 S such that c = c2x:

De�nition 36 The symbols f ^k g and f _k g will means the following
fuzzy subsets of S

(f ^k g)(x) = min

�
f(x); g(x);

1� k

2

�
; for all x in S:

(f _k g)(x) = max

�
f(x); g(x);

1� k

2

�
; for all x in S:
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Lemma 37 If f is a (2;2 _qk)-fuzzy interior ideal of a right regular AG-
groupoid S with left identity, then fk(ab) = fk(ba) holds for all a; b in S.

Proof. Let f be a (2;2 _qk)-fuzzy interior ideal of a right regular AG-
groupoid S with left identity and let a 2 S, then a = a2x for some x in S:
Then we have

fk(a) = f(a) ^
1� k

2
= f((aa)x) ^

1� k

2

= f((xa)a) ^
1� k

2
= f((xa)((aa)x)) ^

1� k

2

= f((aa)((xa)x)) ^
1� k

2
= f((ea2)((xa)x)) ^

1� k

2

� f(a2) ^
1� k

2
^
1� k

2
= fk(a

2) = f(aa) ^
1� k

2

= f(a((aa)x)) ^
1� k

2
= f((aa)(ax)) ^

1� k

2

= f((xa)(aa)) ^
1� k

2
= f((xa)a2) ^

1� k

2

� f(a) ^
1� k

2
^
1� k

2
= fk(a).

Which implies that fk(a) = fk(a
2) for all a in S:

Now we have

fk(ab) = f(ab) ^
1� k

2
= f((ab)2) ^

1� k

2

= f((ab)(ab)) ^
1� k

2
= f((ba)(ba)) ^

1� k

2

= f((e(ba))(ba)) ^
1� k

2
� f(ba) ^

1� k

2
^
1� k

2

= f(ba) ^
1� k

2
= f(b((aa)x)) ^

1� k

2

= f((aa)(bx)) ^
1� k

2
= f((ab)(ax)) ^

1� k

2

= f((e(ab))(ax)) ^
1� k

2
� f(ab) ^

1� k

2
= fk(ab):

Therefore fk(ab) = fk(ba) holds for all a; b in S.
The converse is not true in general. for this, let us de�ne a fuzzy subset

f of a right regular AG-groupoid S in Example 30 as follows: f(a) = 0;
f(b) = 0:2; f(c) = 0:6; f(d) = 0:4 and f(e) = 0:6; then it is easy to see that
f(ab) = f(ba) holds for all a and b in S but f is not a fuzzy interior ideal
of S because f((ab)c) � f(b) ^ 1�k

2 :

Theorem 38 Let S be an AG-groupoid with left identity and. Let f be any
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(2;2 _qk)-fuzzy interior ideal of S; then fk(ab) = fk(ba) holds for all a; b
in S if S right regular.

Proof. Assume that S is a right regular AG-groupoid with left identity and
let f be a fuzzy interior ideal of S, then by using Lemma 37, fk(ab) = fk(ba)
holds for all a; b in S:
The converse is not true in general. For this, let us consider an AG-

groupoid S in Example 35 with left identity d: Let us de�ne a fuzzy subset
f of S as follows: f(a) = f(b) = f(c) = 0:4, f(d) = 0:2 and f(e) = 0:5,
then it is easy to see that f is an (2;2 _qk)-fuzzy interior ideal of S such
that fk(ab) = fk(ba) holds for all a and b in S but S is not right regular.
Note that S itself is a fuzzy subset such that S(x) = 1 for all x 2 S:

Lemma 39 For any fuzzy subset f of a right regular AG-groupoid S; S �k
f = fk:

Proof. It is simple.
Note that for any two fuzzy subsets f and g of S, f � g means that

f(x) � g(x) for all x in S.

Lemma 40 In a right regular AG-groupoid S; f �k S = fk and S �k f = fk
holds for every (2;2 _qk)-fuzzy two-sided ideal f of S:

Proof. Let S be a right regular AG-groupoid. Now for every a 2 S there
exists x 2 S such that a = a2x: Then by using (1); we have a = (aa)x =
(xa)a; therefore

(f �k 1)(a) = (f � 1)(a) ^
1� k

2
=

_

a=(xa)a

ff(xa) ^ S(a)g ^
1� k

2

� f(xa) ^ 1(a) ^
1� k

2
^
1� k

2
� f(a) ^ 1 ^

1� k

2

� f(a) ^
1� k

2
= fk(a):

It is easy to observe from Lemma 39 that S �k f = fk holds for every
fuzzy two-sided ideal f of S:

Lemma 41 In a right regular AG-groupoid S; S � S = S:

Proof. It is simple.

Theorem 42 In a right regular AG-groupoid S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy two-sided ideal of S:
(ii) f is an (2;2 _qk)-fuzzy bi-ideal of S:

Proof. (i) =) (ii) is simple:
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(ii) =) (i) : Let S be a right regular AG-groupoid with left identity, then
for b 2 S there exists y 2 S such that b = b2y and let f be a (2;2 _qk)-
fuzzy bi-ideal of S; then we have

f(ab) = f(a((bb)y)) = f((bb)(ay)) = f(((ay)b)b) = f(((ay)((bb)y))b)

= f(((ay)((yb)b))b) = f(((a(yb))(yb))b) = f(((by)((yb)a))b)

= f(((yb)((by)a))b) = f(((a(by))(by))b) = f((b((a(by))y))b)

� f(b) ^ f(b) ^
1� k

2
= f(b) ^

1� k

2
:

Which shows that f is a (2;2 _qk)-fuzzy left ideal of S: Now we have

f(ab) = f(((aa)x)b) = f(((xa)a)b) = f((ba)(xa)) = f((ax)(ab))

= f(((ab)x)a) = f(((((aa)x)b)x)a) = f(((xb)((aa)x))a)

= f(((aa)((xb)x))a) = f(((a(xb))(ax))a)

= f((a((a(xb))x))a) � f(a) ^ f(a) ^
1� k

2

= f(a) ^
1� k

2
:

Which shows that f is a (2;2 _qk)-fuzzy right ideal of S and therefore
f is a (2;2 _qk)-fuzzy two-sided ideal of S:

Theorem 43 In a right regular LA-semigroup S with left identity, the
following statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy (1; 2)-ideal of S:
(ii) f is an (2;2 _qk)-fuzzy two-sided ideal of S:

Proof. (i) =) (ii) : Assume that f is an (2;2 _qk)-fuzzy (1; 2)-ideal of a
right regular LA-semigroup S with left identity and let a 2 S; then there
exists y 2 S such that a = a2y: Now we have

f(xa) = f(x((aa)y)) = f((aa)(xy)) = f((((aa)y)a)(xy))

= f(((ay)(aa))(xy)) = f(((aa)(ya))(xy))

= f(((xy)(ya))(aa)) = f(((ay)(yx))a2)

= f(((((aa)y)y)(yx))a2) = f((((yy)(aa))(yx))a2)

= f((((aa)y2)(yx))a2) = f((((yx)y2)(aa))a2)

= f((a(((yx)y2)a))(aa)) � f(a) ^ f(a) ^ f(a) ^
1� k

2

= f(a) ^
1� k

2
:

This shows that f is an (2;2 _qk)-fuzzy left ideal of S and f is an
(2;2 _qk)-fuzzy two-sided ideal of S:
(ii) =) (i) is obvious.
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Lemma 44 In a right regular AG-groupoid S with left identity, the follow-
ing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy bi-ideal of S:
(ii) f is an (2;2 _qk)-fuzzy generalized bi-ideal of S:

Proof. (i) =) (ii) is obvious.
(ii) =) (i) : Let S be a right regular AG-groupoid with left identity

and let a 2 S; then there exists x 2 S such that a = a2x. Let f be a
(2;2 _qk)-fuzzy generalized bi-ideal of S; then

f(ab) = f(((aa)x)b) = f(((aa)(ex))b) = f(((xe)(aa))b)

= f((a((xe)a))b) � f(a) ^ f(b) ^
1� k

2
:

Which shows that f is an (2;2 _qk)-fuzzy bi-ideal of S.

Lemma 45 Every (2;2 _qk)-fuzzy right ideal of an AG-groupoid S with
left identity becomes an (2;2 _qk)-fuzzy left ideal of S.

Proof. Let S be an AG-groupoid with left identity and let f be an (2;2
_qk)-fuzzy right ideal. Now

f(ab) = f((ea)b) = f((ba)e) � f(b) ^
1� k

2
:

Therefore f is an (2;2 _qk)-fuzzy left ideal of S.
The converse is not true in general. For this, let us de�ne a fuzzy subset

f of an AG-groupoid S in Example 35 as follows: f(a) = 0:8; f(b) = 0:5;
f(c) = 0; f(d) = 0:3 and f(e) = 0:6; then it is easy to observe that f is an
(2;2 _qk)-fuzzy left ideal of S but it is not an (2;2 _qk)-fuzzy right ideal
of S; because f(bd) � f(b) ^ 1�k

2 :

Theorem 46 In a right regular AG-groupoid S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy interior ideal of S:
(ii) f is an (2;2 _qk)-fuzzy bi-ideal of S:

Proof. Let S be a right regular AG-groupoid with left identity then for
any a; b; x and y 2 S there exists a

0

; b
0

; x
0

and y
0

2 S such that a = a2a
0

;
b = b2b

0

; x = x2x
0

and y = y2y
0

.
(i) =) (ii) : Let f be a (2;2 _qk)-fuzzy interior ideal of S; then

f((xa)y) = f((((xx)x
0

)a)y) = f((((x
0

x)x)a)y) = f(((ax)(x
0

x))y)

= f(((xx
0

)(xa))y) = f((((xa)x
0

)x)y) � f(x) ^
1� k

2
:

Again we have

f((xa)y) = f((xa)((yy)y
0

)) = f((yy)((xa)y
0

))

= f((((xa)y
0

)y)y) � f(y) ^
1� k

2
:
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Which implies that f((xa)y) � f(x) ^ f(y) ^ 1�k
2 : Now

f(ab) = f(((aa)a
0

)b) = f(((a
0

a)a)b) = f((ba)(a
0

a)) � f(a) ^
1� k

2

and

f(ab) = f(a((bb)b
0

)) = f((bb)(ab
0

)) � f(b) ^
1� k

2
:

Thus f is an (2;2 _qk)-fuzzy bi-ideal of S:
(ii) =) (i) : Let f be an (2;2 _qk)-fuzzy bi-ideal of S; then

f((xa)y) = f((x((aa)a
0

))y) = f(((aa)(xa
0

))y) = f(((ax)(aa
0

))y)

= f((y(aa
0

))(ax)) = f((a(ya
0

))(ax)) = f(((ax)(ya
0

))a)

= f(((a
0

y)(xa))a) = f(((a
0

y)(x((aa)a
0

)))a)

= f(((a
0

y)((aa)(xa
0

)))a) = f(((a
0

y)((a
0

x)(aa)))a)

= f(((a
0

y)(a((a
0

x)a)))a) = f((a((a
0

y)((a
0

x)a)))a)

� f(a) ^ f(a) ^
1� k

2
= f(a) ^

1� k

2
:

Which shows that f is an (2;2 _qk)-fuzzy interior ideal of S:

Theorem 47 In a right regular AG-groupoid S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy bi-ideal of S:
(ii) f is an (2;2 _qk)-fuzzy (1; 2) ideal of S:

Proof. (i) =) (ii) : Let S be a right regular AG-groupoid with left identity
and let x; a; y; z 2 S; then there exists x

0

2 S such that x = x2x
0

. Let f be
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an (2;2 _qk)-fuzzy bi-ideal of S; then

f((xa)(yz)) = f((zy)(ax)) = f(((ax)y)z) � f((ax)y) ^ f(z) ^
1� k

2

� f(ax) ^ f(y) ^ f(z) ^
1� k

2
^
1� k

2

= f(ax) ^ f(y) ^ f(z) ^
1� k

2

= f(a((xx)x
0

)) ^ f(y) ^ f(z) ^
1� k

2

= f((xx)(ax
0

)) ^ f(y) ^ f(z) ^
1� k

2

= f(((ax
0

)x)x) ^ f(y) ^ f(z) ^
1� k

2

= f(((ax
0

)((xx)x
0

))x) ^ f(y) ^ f(z) ^
1� k

2

= f(((ax
0

)((xx)(ex
0

)))x) ^ f(y) ^ f(z) ^
1� k

2

= f(((ax
0

)((x
0

e)(xx)))x) ^ f(y) ^ f(z) ^
1� k

2

= f(((ax
0

)(x((x
0

e)x)))x) ^ f(y) ^ f(z) ^
1� k

2

= f(x((ax
0

)((x
0

e)x))x) ^ f(y) ^ f(z) ^
1� k

2

� f(x) ^ f(x) ^
1� k

2
^ f(y) ^ f(z) ^

1� k

2

= f(x) ^ f(y) ^ f(z) ^
1� k

2
:

Which shows that f is an (2;2 _qk)-fuzzy (1; 2) ideal of S:
(ii) =) (i) : Again let S be a right regular AG-groupoid with left iden-

tity, then for any a; b; x and y 2 S there exists a
0

; b
0

; x
0

and y
0

2 S such
that a = a2a

0

; b = b2b
0

; x = x2x
0

and y = y2y
0

. Let f be a (2;2 _qk)-fuzzy
(1; 2) ideal of S; then

f((xa)y) = f((xa)((yy)y
0

)) = f((yy)((xa)y
0

)) = f((y
0

(xa))(yy)) = f((x(y
0

a))(yy))

� f(x) ^ f(y) ^ f(y) ^
1� k

2
� f(x) ^ f(y) ^

1� k

2
:

Now

f(ab) = f(a((bb)b
0

)) = f((bb)(ab
0

)) = f((b
0

a)(bb)) = f(b
0

((aa)a
0

))(bb)

= f((aa)(b
0

a
0

))(bb) = f((a
0

b
0

)(aa))(bb) � f(a((a
0

b
0

)a))(bb) ^
1� k

2

= f(a) ^ f(b) ^ f(b) ^
1� k

2
= f(a) ^ f(b) ^

1� k

2
:
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Which shows that f is an (2;2 _qk)-fuzzy bi-ideal of S:

Theorem 48 In a right regular AG-groupoid S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy (1; 2) ideal of S:
(ii) f is an (2;2 _qk)-fuzzy interior ideal of S:

Proof. (i) =) (ii) : Let S be a right regular AG-groupoid with left identity
and let x; a; y; z 2 S; then there exists a

0

2 S such that a = a2a
0

. Let f be
a (2;2 _qk)-fuzzy (1; 2) ideal of S; then

f((xa)(yz)) = f((x((aa)a
0

))(yz)) = f(((aa)(xa
0

))(yz)) = f((((xa
0

)a)a)(yz))

= f((((xa
0

)((aa)a
0

))a)(yz)) = f((((aa)((xa
0

)a
0

))a)(yz))

= f(((yz)a)((aa)((xa
0

)a
0

))) = f((aa)(((yz)a)((xa
0

)a
0

)))

= f(((aa)(a
0

(xa
0

)))(a(yz))) = f(((a(yz))(a
0

(xa
0

)))(aa))

= f(((((aa)a
0

)(yz))(a
0

(xa
0

)))(aa)) = f(((((a
0

a)a)(yz))(a
0

(xa
0

)))(aa))

= f((((xa
0

)a
0

)((yz)((a
0

a)a)))(aa)) = f((((xa
0

)a
0

)((yz)((ae)(aa
0

))))(aa))

= f((((xa
0

)a
0

)((yz)(a((ae)a
0

))))(aa))

= f((((xa
0

)a
0

)(a((yz)((ae)a
0

))))(aa))

= f((a(((xa
0

)a
0

)((yz)((ae)a
0

))))(aa))

� f(a) ^ f(a) ^ f(a) = f(a) ^
1� k

2
:

Which shows that f is an (2;2 _qk)-fuzzy interior ideal of S:
(ii) =) (i) : Again let S be a right regular AG-groupoid with left identity

and let x; a; y; z 2 S; then there exists x
0

and z
0

2 S such that x = x2x
0

and z = z2z: Now

f((xa)(yz)) = f((zy)(ax)) � f(y) ^
1� k

2
:

Now

f((xa)(yz)) = f((((xx)x
0

)a)(yz)) = f(((ax
0

)(xx))(yz))

= f(((xx)(x
0

a))(yz)) = f((((x
0

a)x)x)(yz))

� f(x) ^
1� k

2
:

Now by using (4); we have

f((xa)(yz)) = f((xa)(y(((zz)z
0

)))) = f((xa)((zz)(yz
0

)))

= f((zz)((xa)(yz
0

))) � f(z) ^
1� k

2
:

Thus we get f((xa)(yz)) � f(x) ^ f(y) ^ f(z) ^ 1�k
2 :
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Let a and b 2 S then there exists a
0

and b
0

2 S such that a = a2a
0

and
b = b2b

0

: Now

f(ab) = f(((aa)a
0

)b) = f((ba
0

)(aa)) = f((aa)(a
0

b)) � f(a) ^
1� k

2

and

f(ab) = f(a((bb)b
0

)) = f((bb)(ab
0

)) � f(b) ^
1� k

2
:

Thus f is an (2;2 _qk)-fuzzy (1; 2) ideal of S:
Note that (2;2 _qk)-fuzzy two-sided ideals, (2;2 _qk)-fuzzy bi-ideals,

(2;2 _qk)-fuzzy generalized bi-ideals, (2;2 _qk)-fuzzy (1; 2) ideals, (2;2
_qk)-fuzzy interior ideals and (2;2 _qk)-fuzzy quasi-ideals coincide in a
right regular AG-groupoid with left identity.

Lemma 49 Let S be an AG-groupoid with left identity, then the following
conditions are equivalent.

(i) S is right regular.
(ii) f �k f = fk for every (2;2 _qk)-fuzzy left (right, two-sided) ideal of

S.
Proof. (i) =) (ii) : Let S be an AG-groupoid with left identity and
let (i) holds. Let a 2 S; then since S is right regular so by using (1);
a = (aa)x = (xa)a: Let f be an (2;2 _qk)-fuzzy left ideal of S; then
clearly f �k f � fk and also we have

(f �k f)(a) =
_

a=(xa)a

ff(xa) ^ f(a) ^
1� k

2
g

� f(a) ^ f(a) ^
1� k

2
^
1� k

2
= f(a) ^

1� k

2
= fk(a):

Thus f �k f = fk.
(ii) =) (i) : Assume that f �k f = fk for (2;2 _qk)-fuzzy left ideal of

S.. Since Sa is a left ideal of S, therefore, (CSa)k is an (2;2 _qk)-fuzzy
left ideal of S: Since a 2 Sa therefore (CSa)k(a) =

1�k
2 : Now by using the

given assumption and we get

(CSa)k �k (CSa)k = (CSa)k and (CSa)k �k (CSa)k =
�
C(Sa)2

�
k

Thus we have
�
C(Sa)2

�
k
(a) = (CSa)k(a) =

1�k
2 ; which implies that

a 2 (Sa)2: Now

a 2 (Sa)2 = (Sa)(Sa) = (aS)(aS) = a2S:

This shows that S is right regular.
Note that if an AG-groupoid has a left identity then S � S = S:



26 1. Generalized Fuzzy Ideals of AG-groupoids

Theorem 50 For an AG-groupoid S with left identity; then the following
conditions are equivalent.

(i) S is right regular.
(ii) fk = (S � f) �k (S � f); where f is any (2;2 _qk)-fuzzy left (right,

two-sided) ideal of S.
Proof. (i) =) (ii) : Let S be a right regular AG-groupoid and let f be any
(2;2 _qk)-fuzzy left ideal of S; then clearly S �f is also an (2;2 _qk)-fuzzy
left ideal of S: Now

((S � f) �k (S � f)) (a) = (S �f)(a)^
1� k

2
^
1� k

2
� f(a)^

1� k

2
= fk(a):

Now let a 2 S; since S is right regular therefore there exists x 2 S such
that a = a2x and we have

a = (aa)x = (xa)a = (xa)((aa)x) = (xa)((xa)a)

Therefore

((S � f) �k (S � f)) (a) =
_

a=(xa)((xa)a)

f(S � f)(xa) ^ (S � f)((xa)a) ^
1� k

2
g

� (S � f)(xa) ^ (S � f)((xa)a) ^
1� k

2

=
_

xa=xa

fS(x) ^ f(a)g ^
_

(xa)a=(xa)a

fS(xa) ^ f(a)g ^
1� k

2

� S(x) ^ f(a) ^ S(xa) ^ f(a) ^
1� k

2
= f(a) ^

1� k

2
= fk(a):

Thus we get the required fk = (S � f) �k (S � f).
(ii) =) (i) : Let fk = (S � f) �k (S � f) holds for any (2;2 _qk)-fuzzy

left ideal f of S; then by given assumption, we have

fk(a) = ((S � f) ^k (S � f))(a) � (f �k f)(a)

� (S �k f)(a) � fk(a):

Thus S is right regular.

Lemma 51 In a right regular LA-semigroup S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy quasi ideal of S:
(ii) (f � S) ^k (S � f) = fk:

Proof. (i) =) (ii) is easy.
(ii) =) (i) is obvious.
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Theorem 52 Let S be a right regular AG-groupoid with left identity, then
the following statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy left ideal of S.
(ii) f is an (2;2 _qk)-fuzzy right ideal of S.
(iii) f is an (2;2 _qk)-fuzzy two-sided ideal of S.
(iv) f is an (2;2 _qk)-fuzzy bi-ideal of S.
(v) f is an (2;2 _qk)-fuzzy generalized bi-ideal of S.
(vi) f is an (2;2 _qk)-fuzzy (1; 2) ideal of S.
(vii) f is an (2;2 _qk)-fuzzy interior ideal of S.
(viii) f is an (2;2 _qk)-fuzzy quasi ideal of S:
(ix) f �k S = fk and S �k f = fk:

Proof. (i) =) (ix) : Let f be an (2;2 _qk)-fuzzy left ideal of a right
regular AG-groupoid S. Let a 2 S then there exists a

0

2 S such that
a = a2a

0

: Now

a = (aa)a
0

= (a
0

a)a and a = (aa)a
0

= (aa)(ea
0

) = (a
0

e)(aa).

Therefore

(f �k S)(a) =
_

a=(a0a)a

�
f(a

0

a) ^ S(a) ^
1� k

2

�
�

�
f(a

0

a) ^ 1 ^
1� k

2

�

� f(a) ^
1� k

2
= fk(a)

and

(S �k f)(a) =
_

a=(a0e)(aa)

�
S(a

0

e) ^ f(aa) ^
1� k

2

�
�

�
1 ^ f(aa) ^

1� k

2

�

� f(a) ^
1� k

2
= fk(a):

Now we get the required f �k S = fk and S �k f = fk:
(ix) =) (viii) is obvious.
(viii) =) (vii) : Let f be an (2;2 _qk)-fuzzy quasi ideal of a right

regular AG-groupoid S. Now for a 2 S there exists a
0

2 S such that
a = a2a

0

and therefore by using (3) and (4); we have

(xa)y = (xa)(ey) = (ye)(ax) = a((ye)x)

and

(xa)y = (x((aa)a
0

))y = ((aa)(xa
0

))y = ((a
0

x)(aa))y = (a((a
0

x)a))y = (y((a
0

x)a))a:

Since f is a fuzzy quasi ideal of S, therefore we have

fk((xa)y) = ((f � S)^k(S � f))((xa)y) = (f � S) ((xa)y)^(S � f) ((xa)y)^
1� k

2
:
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Now

(f � S) ((xa)y) =
_

(xa)y=a((ye)x)

ff(a) ^ S((ye)x)g � f(a)

and

(S � f) ((xa)y) =
_

(xa)y=(y((a0x)a))a

n
S(y((a

0

x)a)) ^ f(a)
o
� f(a):

Which implies that fk((xa)y) � f(a) ^
1�k
2 =) f((xa)y) � f(a) ^ 1�k

2 :
Thus f is an (2;2 _qk)-fuzzy interior ideal of S:
(vii) =) (vi) is followed by Theorem 48.
(vi) =) (v) is followed by Theorem 47.
(v) =) (iv) is followed by Lemma 44.
(iv) =) (iii) is followed by Lemma 42.
(iii) =) (ii) and (ii) =) (i) are an easy consequences of Lemma 34.

Theorem 53 In a right regular AG-groupoid S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy bi-(generalized bi-) ideal of S:
(ii) (f �k S) �k f = fk and f �k f = fk:

Proof. (i) =) (ii) : Let f be an (2;2 _qk)-fuzzy bi-ideal of a right regular
AG-groupoid S with left identity and let a 2 S then there exists x 2 S
such that a = a2x: Now by using (1); (4) and (3); we have

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a = ((xx)(aa))a = (((aa)x)x)a

= (((xa)a)x)a = (((x((aa)x))a)x)a = ((((aa)(xx))a)x)a = ((((xx)(aa))a)x)a

= (((a(x2a))a)x)a

Therefore

((f �k S) �k f)(a) =
_

a=(((a(x2a))a)x)a

�
(f �k S)(((a(x

2a))a)x) ^ f(a) ^
1� k

2

�

� (f �k S)(((a(x
2a))a)x) ^ f(a) ^

1� k

2

=
_

((a(x2a))a)x=((a(x2a))a)x

��
f((a(x2a))a) ^ S(x) ^

1� k

2

�
^ f(a) ^

1� k

2

�

� f((a(x2a))a) ^ 1 ^ f(a) ^
1� k

2
�

�
f(a) ^ f(a) ^

1� k

2

�
^ f(a) ^

1� k

2

= f(a) ^
1� k

2
= fk(a):

Now

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a = ((xx)(aa))a = (a(x2a))a:
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Therefore

((f �k S) �k f)(a) =
_

a=(a(x2a))a

�
(f �k S)((a(x

2a))) ^ f(a) ^
1� k

2

�

=
_

a=(a(x2a))a

0

@
_

a(x2a)=a(x2a)

�
f(a) ^ S(x2a) ^

1� k

2

�
^ f(a) ^

1� k

2

1

A

=
_

a=(a(x2a))a

0

@
_

a(x2a)=a(x2a)

ff(a) ^ 1g

1

A ^ f(a) ^
1� k

2

=
_

a=(a(x2a))a

0

@
_

a(x2a)=a(x2a)

f(a)

1

A ^ f(a) ^
1� k

2

=
_

a=(a(x2a))a

�
f(a) ^ f(a) ^

1� k

2

�
^
1� k

2

�
_

a=(a(x2a))a

�
f((a(x2a))a)

	
^
1� k

2

= f(a) ^
1� k

2
= fk(a):

Thus (f �k S) �k f = fk:
Now

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a = (((xx)a)a)a

= (((xx)((aa)x))a)a = (((xx)((xa)a))a)a = (((xx)((ae)(ax)))a)a

= (((xx)(a((ae)x)))a)a = ((a((xx)((ae)x)))a)a

Therefore

(f �k f)(a) =
_

a=((a((xx)((ae)x)))a)a

�
f((a((xx)((ae)x)))a) ^ f(a) ^

1� k

2

�

�

�
f((a((xx)((ae)x)))a) ^ f(a) ^

1� k

2

�

� f(a) ^ f(a) ^ f(a) ^
1� k

2
= f(a) ^

1� k

2
= fk(a):

Now by using Lemma 24, f �k f = fk:
(ii) =) (i) : Let f be a fuzzy subset of a right regular AG-groupoid S,
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then

f((xy)z) = ((f �k S) �k f)((xy)z) =
_

(xy)z=(xy)z

�
(f �k S)(xy) ^ f(z) ^

1� k

2

�

�
_

xy=xy

�
f(x) ^ S(y) ^

1� k

2

�
^ f(z) ^

1� k

2

� f(x) ^ 1 ^ f(z) ^
1� k

2
= f(x) ^ f(z) ^

1� k

2
:

Since f �k f = fk therefore by Lemma 24, f is a (2;2 _qk)-fuzzy AG-
subgroupoid of S: This shows that f is an (2;2 _qk)-fuzzy bi ideal of S:

Theorem 54 In a right regular AG-groupoid S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy interior ideal of S:
(ii) (S �k f) �k S = fk:

Proof. It is simple.

Theorem 55 In a right regular AG-groupoid S with left identity, the fol-
lowing statements are equivalent.

(i) f is an (2;2 _qk)-fuzzy (1; 2) ideal of S:
(ii) (f �k S) �k (f �k f) = fk and f �k f = fk:

Proof. (i) =) (ii) : Let f be an (2;2 _qk)-fuzzy (1; 2) ideal of a right
regular AG-groupoid S with left identity and let a 2 S then there exists
x 2 S such that a = a2x: Now

a = (aa)x = (xa)a = (xa)((aa)x) = (aa)((xa)x) = (a((aa)x))((xa)x)

= ((aa)(ax))((xa)x) = (((xa)x)(ax))(aa) = (a(((xa)x)x))(aa):

Therefore

((f �k S) �k (f �k f))(a) =
_

a=(a(((xa)x)x))(aa)

�
(f �k S)(a(((xa)x)x)) ^ (f �k f)(aa)

^ 1�k2

�

�

�
(f �k S)(a(((xa)x)x)) ^ (f �k f)(aa) ^

1� k

2

�
:

Now

(f �k S)(a(((xa)x)x)) =

�
(f � S)(a(((xa)x)x)) ^

1� k

2

�

=
_

a(((xa)x)x)=a(((xa)x)x)

�
ff(a) ^ S(((xa)x)x)g ^

1� k

2

�

� f(a) ^ S(((xa)x)x) ^
1� k

2
= f(a) ^

1� k

2
= fk(a)
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and

(f �k f)(aa) =

�
(f � f)(aa) ^

1� k

2

�
=

(
_

aa=aa

ff(a) ^ f(a)g ^
1� k

2

)

� f(a) ^
1� k

2
= fk(a):

Thus we get

((f �k S) �k (f �k f))(a) � fk(a).

Now

a = (aa)x = (((aa)x)((aa)x))x = ((aa)(((aa)x)x))x = ((aa)((xx)(aa)))x

= ((aa)(x2(aa)))x = (x(x2(aa)))(aa) = (x(a(x2a)))(aa)

= (a(x(x2a)))(aa) = (a(x(x2((aa)x))))(aa) = (a(x((aa)x3)))(aa):

Therefore

((f �k S)�k (f �k f))(a) =
_

a=(a(x((aa)x3)))(aa)

�
(f �k S)(a(x((aa)x

3)))^
(f �k f)(aa) ^

1�k
2

�
:

Now

(f �k S)(a(x((aa)x
3))) =

_

a(x((aa)x3))=a(x((aa)x3))

�
f(a) ^ S(x((aa)x3)) ^

1� k

2

�

=
_

a(x((aa)x3))=a(x((aa)x3))

�
f(a) ^

1� k

2

�

and

(f �k f)(aa) =
_

aa=aa

�
f(a) ^ f(a) ^

1� k

2

�
=

_

aa=aa

�
f(a) ^

1� k

2

�
:

Therefore

(f �k S)(a(x((aa)x
3))) ^ (f �k f)(aa) =

8
>><

>>:

_

a(x((aa)x3))=a(x((aa)x3))

�
f(a) ^ 1�k

2

	
^

_

aa=aa

�
f(a) ^ 1�k

2

	

9
>>=

>>;

=
_

a(x((aa)x3))=a(x((aa)x3))

�
f(a) ^ f(a) ^

1� k

2

�
:
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Thus from above, we get

((f �k S) �k (f �k f))(a) =
_

a=(a(x((aa)x3)))(aa)

0

B
@

_

a(x((aa)x3))=a(x((aa)x3))

�
f(a) ^ f(a)
^ 1�k2

�

^ 1�k2

1

C
A

=
_

a=(a(x((aa)x3)))(aa)

�
f(a) ^ f(a) ^

1� k

2

�

�
_

a=(a(x((aa)x3)))(aa)

�
f((a(x((aa)x3)))(aa)) ^

1� k

2

�

= f(a) ^
1� k

2
= fk(a):

Thus (f �k S) �k (f �k f) = fk:
Now by using (1) and (4); we have

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a = ((a((aa)x))x2)a

= (((aa)(ax))x2)a = ((x2(ax))(aa))a = ((ax3)(aa))a:

Therefore

(f �k f)(a) = (f � f)(a) ^
1� k

2

=
_

a=((ax3)(aa))a

�
f(((ax3)(aa))) ^ f(a)

	
^
1� k

2

�
�
f(((ax3)(aa))) ^ f(a)

	
^
1� k

2

�

�
f(a) ^

1� k

2

�
^ f(a) ^

1� k

2

= f(a) ^
1� k

2
= fk(a):

Now by using Lemma 24, f �k f = fk:
(ii) =) (i) : Let f be a fuzzy subset of a right regular AG-groupoid

S. Now since f �k f = fk therefore by Lemma 24, f is a (2;2 _qk)-fuzzy
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AG-subgroupoid of S

f((xa)(yz)) = ((f �k S) �k (f �k f))((xa)(yz))

= ((f � S) � (f � f))((xa)(yz)) ^
1� k

2

= ((f � S) � f)((xa)(yz)) ^
1� k

2

=
_

(xa)(yz)=(xa)(yz)

f(f � S)(xa) ^ f(yz)g ^
1� k

2

� (f � S)(xa) ^ f(yz) ^
1� k

2

=
_

(xa)=(xa)

ff(x) ^ S(a)g ^ f(yz) ^
1� k

2

� f(x) ^ 1 ^ f(y) ^ f(z) ^
1� k

2

= f(x) ^ f(y) ^ f(z) ^
1� k

2
:

Thus we get f((xa)(yz)) � f(x) ^ f(y) ^ f(z) ^ 1�k
2 and thus f is an

(2;2 _qk)-fuzzy (1; 2) ideal of S:
A subset A of an AG-groupoid S is called semiprime if a2 2 A implies

a 2 A:
The subset fa; bg of an AG-groupoid S in Example 30 is semiprime.
A fuzzy subset f of an AG-groupoid S is called a fuzzy semiprime if

f(a) � f(a2) for all a in S:

De�nition 56 A fuzzy subset f is called an (2;2 _qk)-fuzzy semiprime if
for all x 2 S; t 2 (0; 1] we have the following condition

x2t 2 f =) xt 2 _qkf:

Lemma 57 Let f be a fuzzy subset of AG-groupoid S, then f is an (2;2
_qk)-fuzzy semiprime if and only if f(x) � minff(x

2); 1�k2 g; for all x 2 S:

Proof. It is similar to the proof of Lemma 22.
Let us de�ne a fuzzy subset f of an AG-groupoid S in Example 35 as

follows: f(a) = 0:2; f(b) = 0:5; f(c) = 0:6; f(d) = 0:1 and f(e) = 0:4; then
f is an (2;2 _qk)-fuzzy semiprime.

Lemma 58 For a right regular AG-groupoid S, the following holds.

(i) Every (2;2 _qk)-fuzzy right ideal of S is an (2;2 _qk)-fuzzy semi-
prime.
(ii) Every (2;2 _qk)-fuzzy left ideal of S is an (2;2 _qk)-fuzzy semi-

prime if S has a left identity.
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Proof. (i) : It is simple.
(ii) : Let f be a (2;2 _qk)-fuzzy left ideal of a right regular AG-groupoid

S and let a 2 S then there exists x 2 S such that a = a2x: Now by using
(3); we have

f(a) = f((aa)(ex)) = f((xe)a2) � f(a2) ^
1� k

2
:

Which shows that f is an (2;2 _qk)-fuzzy semiprime.

Lemma 59 A right( resp: left and two-sided) ideal R of an AG-groupoid
S is semiprime if and only if (CR)k are (2;2 _qk)-fuzzy semiprime.

Proof. Let R be any right ideal of an AG-groupoid S; then by Lemma 25,
(CR)k is a (2;2 _qk)-fuzzy right ideal of S: Now let a 2 S then by given
assumption (CR)k(a) � (CR)k(a

2): Let a2 2 R; then (CR)k(a
2) = 1�k

2 =)

(CR)k(a) =
1�k
2 which implies that a 2 R: Thus every right ideal of S is

semiprime. The converse is simple.
Similarly every left and two-sided ideal of an AG-groupoid S is semiprime

if and only if their characteristic functions are (2;2 _qk)-fuzzy semiprime.

Lemma 60 Let S be an AG-groupoid, then every right (left, two-sided)
ideal of S is semiprime if every fuzzy right (left, two-sided) ideal of S is an
(2;2 _qk)-fuzzy semiprime.

Proof. The direct part can be easily followed by Lemma 59.
The converse is not true in general. For this, let us consider an AG-

groupoid S in Example 35. It is easy to observe that the only left ideals of
S are fa; b; eg; fa; c; eg; fa; b; c; eg and fa; eg which are semiprime. Clearly
the right and two sided ideals of S are fa; b; c; eg and fa; eg which are also
semiprime. Now on the other hand, if we de�ne a fuzzy subset f of S as
follows: f(a) = f(b) = f(c) = 0:2; f(d) = 0:1 and f(e) = 0:3; then f is
a fuzzy right (left, two-sided) ideal of S but f is not an (2;2 _qk)-fuzzy
semiprime because f(c) � f(c2) ^ 1�k

2 :

Lemma 61 Let S be an AG-groupoid with left identity, then the following
statements are equivalent.

(i) S is right regular.
(ii) Every (2;2 _qk)-fuzzy right (left, two-sided) ideal of S is (2;2 _qk)-

fuzzy semiprime.
Proof. (i) =) (ii) is followed by Lemma 58.
(ii) =) (i) : Let S be an AG-groupoid with left identity and let every

fuzzy right (left, two-sided) ideal of S is (2;2 _qk)-fuzzy semiprime. Since
a2S is a right and also a left ideal of S, therefore by using Lemma 60,
(Ca2S )k is (2;2 _qk)-semiprime. Now clearly a

2 2 a2S; therefore a 2 a2S;
which shows that S is right regular.
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Theorem 62 For an AG-groupoid S with left identity, the following con-
ditions are equivalent.

(i) S is right regular.
(ii) Every (2;2 _qk)-fuzzy right ideal of S is (2;2 _qk)-fuzzy semiprime.
(iii) Every (2;2 _qk)-fuzzy left ideal of S is (2;2 _qk)-fuzzy semiprime.

Proof. (i) =) (iii) and (ii) =) (i) are followed by Lemma 61.
(iii) =) (ii) : Let S be an AG-groupoid and let f be a (2;2 _qk)-fuzzy

right ideal of S; then by using Lemma 45, f is a (2;2 _qk)-fuzzy left ideal
of S and therefore by given assumption f is a (2;2 _qk)-fuzzy semiprime.

Theorem 63 For an AG-groupoid S with left identity, the following con-
ditions are equivalent.

(i) S is right regular.
(ii) R \ L = RL; R is any right ideal and L is any left ideal of S where

R is semiprime.
(iii) f ^k g = f �k g; where f is any (2;2 _qk)-fuzzy right ideal and g is

any (2;2 _qk)-fuzzy left ideal of S where f is a (2;2 _qk)-fuzzy semiprime.
Proof. (i) =) (iii) : Let S be a right regular AG-groupoid and let f is
any (2;2 _qk)-fuzzy right ideal and g is any (2;2 _qk)-fuzzy left ideal of
S: Now for a 2 S there exists x 2 S such that a = a2x: Now by using (1);
we have

a = (aa)x = (xa)a = ((ex)a)a = ((ax)e)a:

Therefore

(f �k g)(a) =
_

a=((ax)e)a

�
f((ax)e) ^ g(a) ^

1� k

2

�
� f(a) ^ g(a) ^

1� k

2

= (f ^k g) (a).

Which implies that f �k g � f ^k g and obviously f �k g � f ^k g: Thus
f �k g = f ^k g and by Lemma 58, f is a (2;2 _qk)-fuzzy semiprime .
(iii) =) (ii) : Let R be any right ideal and L be any left ideal of an

AG-groupoid S; then by Lemma 25, (CR)k and (CL)k are (2;2 _qk)-fuzzy
right and (2;2 _qk)-fuzzy left ideals of S respectively. As RL � R \ L
is obvious therefore let a 2 R \ L; then a 2 R and a 2 L: Now by using
Lemma 26 and given assumption, we have

(CRL)k (a) = (CR �k CL)(a) = (CR ^k CL)(a)

= CR(a) ^ CL(a) ^
1� k

2
=
1� k

2
:

Which implies that a 2 RL and therefore R \ L = RL: Now by using
Lemma 59, R is semiprime.
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(ii) =) (i) : Let S be an AG-groupoid, then clearly Sa is a left ideal of
S such that a 2 Sa and a2S is a right ideal of S such that a2 2 a2S: Since
by assumption, a2S is semiprime therefore a 2 a2S: Now by using (3); (1)
and (4), we have

a 2 a2S \ Sa = (a2S)(Sa) = (aS)(Sa2) = ((Sa2)S)a = ((Sa2)(SS))a

= ((SS)(a2S))a = (a2((SS)S))a � (a2S)S = (SS)(aa) = a2S:

Which shows that S is right regular.



2

Generalized Fuzzy Ideals of
Abel Grassmann Groupoids

In this chapter, we investigate some characterizations of regular and intra-
regular Abel-Grassmann�s groupoids in terms of (2;2 _qk)-fuzzy ideals
and (2;2 _qk)-fuzzy quasi-ideals.
An element a of an AG-groupoid S is called regular if there exist x 2 S

such that a = (ax)a and S is called regular, if every element of S is regular.
An element a of an AG-groupoid S is called intra-regular if there exist
x; y 2 S such that a = (xa2)y and S is called intra-regular, if every
element of S is intra-regular.
The following de�nitions for AG-groupoids are same as for semigroups

in [36].

De�nition 64 (1) A fuzzy subset � of an AG-groupoid S is called an (2
;2 _qk)-fuzzy AG-subgroupoid of S if for all x; y 2 S and t; r 2 (0; 1], it
satis�es,
xt 2 �, yr 2 � implies that (xy)minft;rg 2 _qk�.

(2) A fuzzy subset � of S is called an (2;2 _qk)-fuzzy left (right) ideal
of S if for all x; y 2 S and t; r 2 (0; 1], it satis�es,
xt 2 � implies (yx)t 2 _qk� (xt 2 � implies (xy)t 2 _qk�).
(3) A fuzzy AG-subgroupoid f of an AG-groupoid S is called an (2;2

_qk)-fuzzy interior ideal of S if for all x; y; z 2 S and t; r 2 (0; 1] the
following condition holds.
yt 2 f implies ((xy)z)t 2 _qkf .
(4) A fuzzy subset f of an AG-groupoid S is called an (2;2 _qk)-fuzzy

quasi-ideal of S if for all x 2 S it satis�es, f(x) � min(f � CS(x); CS �
f(x); 1�k2 ), where CS is the fuzzy subset of S mapping every element of S
on 1.
(5) A fuzzy subset f of an AG-groupoid S is called an (2;2 _qk)-fuzzy

generalized bi-ideal of S if xt 2 f and zr 2 S implies ((xy) z)minft;rg 2

_qkf , for all x; y; z 2 S and t; r 2 (0; 1].
(6) A fuzzy subset f of an AG-groupoid S is called an (2;2 _qk)-fuzzy

bi-ideal of S if for all x; y; z 2 S and t; r 2 (0; 1] the following conditions
hold
(i) If xt 2 f and yr 2 S implies (xy)minft;rg 2 _qkf ,

(ii) If xt 2 f and zr 2 f implies ((xy) z)minft;rg 2 _qkf .

Theorem 65 [36] (1) Let � be a fuzzy subset of S. Then � is an (2;2 _qk)-
fuzzy AG-subgroupoid of S if �(xy) � minf� (x) ; �(y); 1�k2 g.
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(2) A fuzzy subset � of an AG-groupoid S is called an (2;2 _qk)-fuzzy
left (right) ideal of S if
�(xy) � minf�(y); 1�k2 g

�
�(xy) � minf�(x); 1�k2 g

�
.

(3) A fuzzy subset f of an AG-groupoid S is an (2;2 _qk)-fuzzy interior
ideal of S if and only if it satis�es the following conditions.
(i) f (xy) � min

�
f (x) ; f (y) ; 1�k2

	
for all x; y 2 S and k 2 [0; 1).

(ii) f ((xy)z) � min
�
f (y) ; 1�k2

	
for all x; y; z 2 S and k 2 [0; 1).

(4) Let f be a fuzzy subset of S. Then f is an (2;2 _qk)-fuzzy bi-ideal
of S if and only if
(i) f(xy) � minff (x) ; f(y); 1�k2 g for all x; y 2 S and k 2 [0; 1),

(ii) f((xy)z) � minff(x); f (z) ; 1�k2 g for all x; y; z 2 S and k 2 [0; 1).

Here we begin with examples of an AG-groupoid.

Example 66 Let us consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3

1 2 2 2
2 3 3 3
3 3 3 3

Note that S has no left identity. De�ne a fuzzy subset F : S �! [0; 1] as
follows:

F (x) =

8
<

:

0:9 for x = 1
0:5 for x = 2
0:6 for x = 3

Then clearly F is an (2;2 _qk)-fuzzy ideal of S.

Example 67 Let us consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3
1 3 1 2
2 2 3 1
3 1 2 3

Obviously 3 is the left identity in S. De�ne a fuzzy subset G : S �! [0; 1]
as follows:

G(x) =

8
<

:

0:8 for x = 1
0:6 for x = 2
0:5 for x = 3

Then clearly G is an (2;2 _qk)-fuzzy bi-ideal of S.

Lemma 68 Intersection of two ideals of an AG-groupoid is an ideal.

Proof. It is easy.
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Lemma 69 Let S be an AG-groupoid. If a = a(ax), for some x in S. Then
a = a2y, for some y in S.

Proof. Using medial law, we get a = a(ax) = [a(ax)](ax) = (aa)((ax)x) =
a2y, where y = (ax)x.

Lemma 70 Let S be an AG-groupoid with left identity. If a = a2x, for
some x in S. Then a = (ay)a, for some y in S.

Proof. Using medial law, left invertive law, (1), paramedial law and medial
law, we get

a = a2x = (aa)x = ((a2x)(a2x))x = ((a2a2)(xx))x = (xx2)(a2a2)

= a2((xx2)a2)) = ((xx2)a2)a)a = ((aa2)(xx2))a = ((x2x)(a2a))a

= [a2f(x2x)ag]a = [fa(x2x)g(aa)]a = [a(fa(x2x)ga)]a

= (ay)a, where y = fa(x2x)ga.

Lemma 71 Let S be an AG-groupoid with left identity. Then the following
holds.

(i) (aS)a2 = (aS)a, (aS)((aS)a) = (aS)a, S((aS)a) = (aS)a.

(ii) (Sa)(aS) = a(aS), (aS)(Sa) = (aS)a:, [a(aS)]S = (aS)a:

(iii) [(Sa)S](Sa) = (aS)(Sa); (Sa)S = (aS), S(Sa) = Sa, Sa2 =
a2S:

Proof. Straightforward.

Lemma 72 Any (2;2 _qk)-fuzzy left ideal of an intra regular AG-groupoid
is an (2;2 _qk)-fuzzy quasi-ideal.

Proof. We get

S �k f(a) =
_

a=pq

�
S (p) ^ f (q) ^

1� k

2

�

�

�
S ((y � xa)) ^ f (a) ^

1� k

2

�

=

�
1 ^ f (a) ^

1� k

2

�

= f (a) ^
1� k

2
� fk (a) .
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Also

S �k f(a) =
_

a=pq

S(p) ^ f (q) ^
1� k

2

=
_

a=pq

1 ^ f (q) ^
1� k

2

=
_

a=pq

f (q) ^
1� k

2
^
1� k

2

� f (pq) ^
1� k

2
= fk(a):

Thus S �k f(a) = fk(a) � f(a):

f (a) � S �k f(a) ^ f �k S(a)

= S � f(a) ^
1� k

2
^ f � S(a) ^

1� k

2

= minfS � f(a); f � S(a);
1� k

2
g

Lemma 73 Any (2;2 _qk)-fuzzy right ideal of an intra regular AG-groupoid
is an (2;2 _qk)-fuzzy quasi-ideal.

Proof. We see that

f �k S(a) =
_

a=pq

�
f (p) ^ S (q) ^

1� k

2

�

�

�
f (a) ^ S ([(x � y2y1)a]) ^

1� k

2

�

=

�
f (a) ^ 1 ^

1� k

2

�

= fk (a) :
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Also

f �k S(a) =
_

a=pq

f(p) ^ S (q) ^
1� k

2

=
_

a=pq

f (p) ^ 1 ^
1� k

2

=
_

a=pq

f (p) ^
1� k

2
^
1� k

2

�
_

a=pq

f (pq) ^
1� k

2

= fk(a):

Thus f �k S(a) = fk(a) � f (a).

f (a) � S �k f(a) ^ f �k S(a)

= S � f(a) ^
1� k

2
^ f � S(a) ^

1� k

2

= minfS � f(a); f � S(a);
1� k

2
g.

2.1 Some Characterizations of AG-groupoids by
(2;2 _qk)-fuzzy Ideals

Theorem 74 For an AG-groupoid with left identity, the following are equiv-
alent.
(i) S is intra-regular
(ii) I[a] \ J [a] � I[a]J [a], for all a in S.
(iii) I \ J � IJ , for any left ideal I and quasi-ideal J of S.
(iv) f ^k g � f �k g, for any (2;2 _qk)-fuzzy left ideal f and (2;2 _qk)-

fuzzy quasi-ideal g of S.

Proof. (i) =) (iv)
Let f and g be (2;2 _q)-fuzzy left and quasi-ideals of an intra-regular

AG-groupoid S with left identity. For each a in S there exists x; y in S such
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that a = (xa2)y. Then we get

(f �k g) (a) =
_

a=pq

�
f (p) ^ g (q) ^

1� k

2

�

� f (sa) ^ g (a) ^
1� k

2

=

�
f (sa) ^

1� k

2
^ g (a)

�

= fk (sa) ^ g (a)

= S �k f(sa) ^ g (a)

=
_

sa

S(s) ^ f (a) ^ g (a) ^
1� k

2

= f ^k g(a).

Therefore f �k g � f ^k g.
(iv) =) (iii)
Let I and J be left and quasi-ideals of an AG-groupoid S with left

identity and let a 2 I \ J . Then we get

(CIJ)k (a) = (CI �k CJ) (a) = (CI ^k CJ) (a)

= (CI\J)k (a) � ^
1� k

2
.

Thus I \ J � IJ .
(iii) =) (ii) It is obvious.
(ii) =) (i)
Since a [ Sa is a principal left and a [ Sa \ aS is a principal quasi-ideal

of an AG-groupoid S with left identity containing a. Using by (ii), medial
law, left invertive law and paramedial law, we get

(a [ Sa) \ [a [ (Sa \ aS)] � (a [ Sa)[a [ (Sa \ aS)]

� (a [ Sa) \ (a [ Sa)

= a2 [ a(Sa) [ (Sa)a [ (Sa)(Sa)

= a2 [ Sa2 [ a2S [ Sa2

= a2 [ Sa2

= Sa2 = Sa2 � S

Hence S is intra-regular.
Similarly we can prove the following theorem.

Theorem 75 For an AG-groupoid with left identity, the following are equiv-
alent.
(i) S is intra-regular
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(ii) I[a] \ J [a] � I[a]J [a], for all a in S.
(iii) I \ J � IJ , for any quasi-ideal I and left-ideal J of S.
(iv) f^kg � f �kg, for any (2;2 _qk)-fuzzy quasi-ideal f and (2;2 _qk)-

fuzzy left ideal g of S.

Theorem 76 For an AG-groupoid with left identity e, the following are
equivalent.
(i) S is intra-regular,
(ii) Q[a] \ L[a] � Q[a]L[a], for all a in S.
(iii) A \B � BA, for any quasi-ideal A and left ideal B of S.
(iv) f ^k g � g �k f , where f is any (2;2 _qk)-fuzzy-quasi-ideal and g is

an (2;2 _qk)-fuzzy left ideal.

Proof. (i) =) (iv)
Let f and g be (2;2 _qk)-fuzzy quasi and left ideals of an intra-regular

AG-groupoid S with left identity. Since S is intra-regular so for each a in
S there exists x; y in S such that a = xa2 � y. The we get

(g �k f) (a) =
_

a=pq

�
g (p) ^ f (q) ^

1� k

2

�

� g (sa) ^ f (a) ^
1� k

2
= (S �k g (sa)) ^ f (a)

=
_

sa=cd

S(c) ^ g (d) ^ f (a) ^
1� k

2

� S(s) ^ g (a) ^ f (a) ^
1� k

2
)

= g (a) ^ f (a) ^
1� k

2

= f (a) ^ g (a) ^
1� k

2
= f ^k g(a):

Thus g �k f � f ^k g.
(iv) =) (iii) Let A and B be quasi and left ideals of S and a 2 A \ B,

then we get

(CAB)k (a) = (CA �k CB) (a) � (CB ^k CA) (a)

= (CB\A)k (a) �
1� k

2
.

Therefore A \B � BA.
(iii) =) (ii) is obvious
(ii) =) (i)
Since a [ Sa is a principal left and a [ Sa \ aS is a principal quasi-ideal
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of an AG-groupoid S with left identity containing a. Using by (ii), we get

(a [ Sa) \ [a [ (Sa \ aS)] � [a [ (Sa \ aS)](a [ Sa)

� (a [ Sa) \ (a [ Sa)

= a2 [ a(Sa) [ (Sa)a [ (Sa)(Sa)

= a2 [ Sa2 [ a2S [ Sa2

= a2 [ Sa2

= Sa2 = Sa2 � S

Hence S is intra regular.
Similarly we can prove the following theorem.

Theorem 77 For an AG-groupoid with left identity e, the following are
equivalent.
(i) S is intra-regular,
(ii) Q[a] \ L[a] � Q[a]L[a], for all a in S.
(iii) A \B � BA, for any left ideal A and quasi-ideal B of S.
(iv) f ^k g � g �k f , where f is any (2;2 _qk)-fuzzy left ideal and g is

an (2;2 _qk)-fuzzy quasi-ideal.

Lemma 78 If I is an ideal of an intra-regular AG-groupoid S with left
identity, then I = I2.

Proof. It is easy.

Theorem 79 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent
(i) S is intra-regular.
(ii) L[a]\B \Q[a] � L[a]B �Q[a], for all a in S and B is any subset of

S.
(iii) A \ B \ C � AB � C, for any left ideal A, subset B and every

quasi-ideal C of S.
(iv) f ^k g ^k h � (f �k g) �k h, for any (2;2 _qk)-fuzzy left ideal f ,

(2;2 _qk)-fuzzy subset g and (2;2 _qk)-fuzzy quasi-ideal h of S.

Proof. (i) =) (iv)
Let f , g and h be (2;2 _qk)-fuzzy left ideal, fuzzy subset and (2;2 _qk)-

fuzzy quasi-ideal of an intra-regular AG-groupoid S with left identity. Then
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we get

((f �k g) �k h) (a) =
_

a=pq

�
f �k g (p) ^ h (a) ^

1� k

2

�

�

�
f �k g(ua

2 � a) ^ h (a) ^
1� k

2

�

=
_

ua2�a=cd

f(c) ^ g(d) ^ h (a) ^
1� k

2

� f(ua2) ^
1� k

2
^ g(a) ^ h (a) ^

1� k

2

= fk(ua
2) ^ g(a) ^ h (a) ^

1� k

2

= S �k f(ua
2) ^ g(a) ^ h (a) ^

1� k

2

=
_

ua2=rs

S(r) ^ f(r) ^ g(a) ^ h (a) ^
1� k

2
]

� 1 ^ f(a2) ^ g(a) ^ h (a) ^
1� k

2

= f(a) ^ g(a) ^ h (a) ^
1� k

2
= f(a) ^k g(a) ^k h (a) .

Thus f ^k g ^k h � (f �k g) �k h.
(iv) =) (iii) We get

(CAB�C)k (a) = (CA �k CB) �k CC (a) = (CA ^k CB ^k CC) (a)

= (CA\B\C)k (a) �
1� k

2
.

Therefore A \B \ C � AB � C.
(iii) =) (ii) is obvious.
(ii) =) (i)

(a [ Sa) \ Sa \ [a [ (Sa \ aS)] � [f(a [ Sa)gSa][a [ (Sa \ aS)]

� [f(a [ Sa)gSa][a [ Sa]

= [Sa � Sa] � Sa

� Sa2 � S.

Hence S is intra-regular.
Similarly we can prove the following theorems.

Theorem 80 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent
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(i) S is intra-regular.
(ii) L[a]\Q[a]\B � L[a]Q[a] �B, for all a in S and B is any subset of

S.
(iii) A \ B \ C � AB � C, for any left ideal A, subset C and every

quasi-ideal B of S.
(iv) f ^k g ^k h � (f �k g) �k h, for any (2;2 _qk)-fuzzy left ideal f ,

(2;2 _qk)-fuzzy subset f and (2;2 _qk)-fuzzy quasi-ideal g of S.

Theorem 81 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent
(i) S is intra-regular.
(ii) Q[a] \ L[a] \ A � Q[a]L[a] � A, for all a in S and for any subset A

of S.
(iii) Q \ L \A � QL �A, for any quasi-ideal Q, subset A and every left

ideal L of S.
(iv) f ^k g ^k h � (f �k g) �k h, for any (2;2 _qk)-fuzzy left ideal g,

(2;2 _qk)-fuzzy subset h and (2;2 _qk)-fuzzy quasi-ideal f of S.

Theorem 82 For an AG-groupoid S with left identity, the following con-
ditions are equivalent.
(i) S is intra-regular.
(ii) (f ^k g) ^k h � (f �k g) �k h, for any (2;2 _qk)-fuzzy quasi-ideal f

and for any (2;2 _qk)-fuzzy left ideal g and (2;2 _qk)-fuzzy subset h of S.

Proof. (i) =) (ii) It is same as (i) =) (iii) of theorem 82.
(ii) =) (i)
Let f and g be an (2;2 _qk)-fuzzy quasi, left ideals and (2;2 _qk)-fuzzy

subset of an AG-groupoid S with left identity. Then

((f ^k g) ^k S)(a) = (f ^k g)(a) ^ S(a) ^
1� k

2

= f(a) ^ g(a) ^
1� k

2
^
1� k

2

= f(a) ^ g(a) ^
1� k

2
= f ^k g(a).

Therefore ((f ^k g) ^k S) = f ^k g. Also
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(f �k g) �k S = (S �k g) �k f . Now

S �k g(a) =
_

a=pq

S(p) ^ g(q) ^
1� k

2

=
_

a=pq

g(q) ^
1� k

2

� f(pq) ^
1� k

2

= f(a) ^
1� k

2
� f(a).

Thus S �k g � g. Now using (ii), we get

(f ^k g)(a) = ((f ^k g) ^k S)(a) � ((f �k g) �k S)(a)

= ((S �k g) �k f)(a) � g �k f(a).

Therefore by theorem 76, S is intra-regular.
Similarly we can prove the following theorems.

Theorem 83 For an AG-groupoid S with left identity, the following con-
ditions are equivalent.
(i) S is intra-regular.
(ii) (f ^k g)^k h � (f �k g)�k h, for any (2;2 _qk)-fuzzy left ideal f and

for any (2;2 _qk)-fuzzy quasi-ideal g and (2;2 _qk)-fuzzy subset h of S.

Theorem 84 For an AG-groupoid S with left identity, the following con-
ditions are equivalent.
(i) S is intra-regular.
(ii) (f ^k g) ^k h � (f �k g) �k h, for any (2;2 _qk)-fuzzy subset f and

for any (2;2 _qk)-fuzzy left ideal g and (2;2 _qk)-fuzzy quasi-ideal h of
S.

Theorem 85 For an AG-groupoid S with left identity, the following con-
ditions are equivalent.
(i) S is intra-regular.
(ii) (f ^k g)^k h � (f �k g)�k h, for any (2;2 _qk)-fuzzy left ideal f and

for any (2;2 _qk)-fuzzy subset ideal g and (2;2 _qk)-fuzzy quasi-ideal h
of S.

2.2 Medial and Para-medial Laws in Fuzzy
AG-groupoids

Lemma 86 Let S be an AG-groupoid with left identity. Then the following
holds.



48 2. Generalized Fuzzy Ideals of Abel Grassmann Groupoids

(i) (f �k g) �k (h �k ) = (f �k h) �k (g �k ) :

(ii) (f �k g) �k (h �k ) = ( �k g) �k (h �k f) :

(iii) f �k (g �k h) = g �k (f �k h) :

Proof. (i) Using medial law we have,

(f �k g) �k (h �k ) (a) =
_

a=mn

(f �k g) (m) ^ (h �k ) (n) ^
1� k

2

=
_

a=mn

8
>>>><

>>>>:

 
_

m=op

f (o) ^ g (p) ^ 1�k
2

!

^

 
_

n=qr

h (q) ^  (r) ^ 1�k
2

!

9
>>>>=

>>>>;

^
1� k

2

=
_

a=mn=(op)(qr)

�
f (o) ^ g (p) ^ h (q) ^  (r) ^

1� k

2

�

=
_

a=mn=(oq)(pr)

�
f (o) ^ h (q) ^ g (p) ^  (r) ^

1� k

2

�

=
_

a=m0
n
0

8
>>>>>><

>>>>>>:

0

@
_

m
0=oq

f (o) ^ h (q) ^ 1�k
2

1

A

^

0

@
_

n
0=pr

g (p) ^  (r) ^ 1�k
2

1

A

9
>>>>>>=

>>>>>>;

^
1� k

2

=
_

a=m0
n
0

�
(f �k g)

�
m

0

�
^ (h �k )

�
n
0

�
^
1� k

2

�

= (f �k g) �k (h �k ) (a) :
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(ii) Using paramedial law we get,

(f �k g) �k (h �k ) (a) =
_

a=mn

(f �k g) (m) ^ (h �k ) (n) ^
1� k

2

=
_

a=mn

8
>>>><

>>>>:

 
_

m=op

f (o) ^ g (p) ^ 1�k
2

!

^

 
_

n=qr

h (q) ^  (r) ^ 1�k
2

!

9
>>>>=

>>>>;

^
1� k

2

=
_

a=mn=(op)(qr)

�
f (o) ^ g (p) ^ h (q) ^  (r) ^

1� k

2

�

=
_

a=mn=(rp)(qo)

�
 (r) ^ g (p) ^ h (q) ^ f (o) ^

1� k

2

�

=
_

a=m0
n
0

8
>>>>>><

>>>>>>:

0

@
_

m
0=rp

 (r) ^ g (p) ^ 1�k
2

1

A

^

0

@
_

n
0=qo

h (q) ^ f (o) ^ 1�k
2

1

A

9
>>>>>>=

>>>>>>;

^
1� k

2

=
_

a=m0
n
0

n
( �k g)

�
m

0

�
^ (h �k f)

�
n
0

�o
^
1� k

2

= ( �k g) �k (h �k f) (a) :
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(iii) Using (1) we get,

((f �k (g �k h)) (a) =
_

a=mn

f (m) ^ (g �k h) (n) ^
1� k

2

=
_

a=mn

 

f (m) ^

 
_

n=op

g (o) ^ h (p) ^
1� k

2

!!

^
1� k

2

=
_

a=mn=m(op)

(f (m) ^ fg (o) ^ h (p)g) ^
1� k

2

=
_

a=mn=o(mp)

�
g (o) ^ (f (m) ^ h (p)) ^

1� k

2

�

=
_

a=m0
n
0

8
<

:
g
�
m

0

�
�k

0

@
_

n
0=mp

f (m) ^ h (p) ^
1� k

2

1

A

9
=

;
^
1� k

2

=
_

a=m0
n
0

�
g
�
m

0

�
�k (f �k h)

�
n
0

��
= g �k (f �k h) :

2.3 Certain Characterizations of Regular
AG-groupoids

Theorem 87 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For left ideals L1; L2 and ideal I of S, L1 \ I \ L2 � (L1I)L2.

(iii) L [a] \ I [a] \ L [a] � (L [a] I [a])L [a] ;

for some a 2 S.
Proof. (i)) (ii)
Assume that L1, L2 are left ideal and I is an ideal of a regular AG-

groupoid S. Let a 2 L1 \ I \ L2: This implies that a 2 L1; a 2 I and
a 2 L2: Now since S is regular so for a 2 S; there exist x 2 S; such that
a = (ax) a: Therefore using left invertive law we get

a = [f(ax) agx]a = [(xa)(ax)]a 2 [(SL1) (IS)]L2 � (L1I)L2:

Hence L1 \ I \ L2 � (L1I)L2:
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(ii)) (iii) is obvious.
(iii)) (i)
Since a [ Sa [ aS and a [ Sa are principle ideal and left ideal of S

generated by a respectively. Thus by (iii) and paramedial law, we have

(a [ Sa) \ (a [ Sa [ aS) \ (a [ Sa) � ((a [ Sa) (a [ Sa [ aS)) (a [ Sa)

� ((a [ Sa)S) (a [ Sa)

= faS [ (Sa)Sg (a [ Sa) = (aS) (a [ Sa)

= (aS) a [ (Sa) (Sa) = (aS) a:

Hence S is regular.

Theorem 88 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular

(ii) For (2;2 _qk)-fuzzy left ideals f , h and (2;2 _qk)-fuzzy ideal g of
S, (f ^k g) ^k h � (f �k g) �k h.

(iiii) For (2;2 _qk)-fuzzy quasi-ideals f , h and (2;2 _qk)-fuzzy ideal g of
S, (f ^k g) ^k h � (f �k g) �k h.

Proof. (i)) (iii) Assume that f , g are (2;2 _qk)-fuzzy quasi-ideals and g
is an (2;2 _qk)-fuzzy ideal of a regular AG-groupoid S, respectively. Now
since S is regular so for a 2 S; there exist x 2 S; such that a = (ax) a:
Therefore using left invertive law and (1), we get

a = [f(ax) agx]a = [(xa)(ax)]a = [af(xa)(x)g]a.
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Thus

((f �k g) �k h)(a) =
_

a=pq

(f �k g)(p) ^ h(q) ^
1� k

2

=
_

a=pq

 (
_

p=uv

f(u) ^ g(v) ^
1� k

2

)

^ h(q) ^
1� k

2

!

=
_

a=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

=
_

a=(a((xa)x))a=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

� ff(a) ^ g ((xa)x)g ^ h(a) ^
1� k

2

�

�
f(a) ^

�
g(a) ^

1� k

2

��
^ h(a) ^

1� k

2

= ff (a) ^ g (a) ^
1� k

2
g ^ h (a) ^

1� k

2
= ((f ^k g) ^k h) (a) :

Thus (f ^k g) ^k h � (f �k g) �k h:
(iii)) (ii) is obvious.
(ii) =) (i) Assume that L1, L2 left ideals and I is an ideal of S. Then

(CL1)k, (CI)k and (CL2)k are (2;2 _qk)-fuzzy left ideal, (2;2 _qk)-fuzzy
ideal and (2;2 _qk)-fuzzy left ideal of S respectively. Therefore we have,

(CL1\I\L2)k = (CL1 ^k CI) ^k CL2 � (CL1 �k CI) �k CL2 = (C(L1I)L2)k:

Thus L1 \ I \ L2 � (L1I)L2: Hence S is regular.

Theorem 89 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For ideal I and quasi-ideal Q of S, I \Q � IQ.

(iii) I [a] \Q [a] � I [a]Q [a] ;

for some a 2 S.
Proof. (i) ) (ii) Assume that I and Q are ideal and quasi-ideal of a
regular AG-groupoid S respectively. Let a 2 I \Q: This implies that a 2 I
and a 2 Q: Since S is regular so for a 2 S there exist x 2 S such that
a = (ax) a 2 (IS)Q � IQ: Thus I \Q � IQ:
(ii)) (iii) is obvious.
(iii)) (i)
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Since I [a] = a [ Sa [ aS and Q [a] = a [ (Sa \ aS) are principle ideal
and principle quasi-ideal of S generated by a respectively. Thus by (ii) ; (1),
Left invertive law, paramedial law we have,

(a [ Sa [ aS) \ (a [ (Sa \ aS)) � (a [ Sa [ aS) (a [ (Sa \ aS))

� (a [ Sa [ aS) (a [ Sa)

= aa [ a (Sa) [ (Sa) a [ (Sa) (Sa)

[ (aS) a [ (aS) (Sa)

= a2 [ a2S [ a2S [ a2S [ (aS) a [ (aS) a

= a2 [ (aS) a [ a2S.

If a = a2, then a = a2a. If a = a2x, for some x in S, then S is regular.

Theorem 90 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For (2;2 _qk)-fuzzy ideal f; and (2;2 _qk)-fuzzy quasi-ideal g of S,
f ^k g � f �k g.

Proof. (i) ) (ii) Assume that f and g are (2;2 _qk)-fuzzy ideal and
(2;2 _qk)-fuzzy quasi-ideal of a regular AG-groupoid S respectively. Now
since S is regular so for a 2 S there exist x 2 S such that a = (ax) a. Thus,

(f �k g) (a) =
_

a=pq

f (p) ^ g (q) ^
1� k

2
=

_

a=pq=(ax)a

f (p) ^ g (q) ^
1� k

2

� f (ax) ^ g (a) ^
1� k

2
�

�
f (a) ^

1� k

2

�
^ g (a) ^

1� k

2

= (f ^k g) (a) :

Hence (f ^k g) � (f �k g).
(ii) =) (i)
Assume that I and Q are ideal and quasi-ideal of S respectively. Then

(CI)k, and (CQ)k are (2;2 _qk)-fuzzy ideal and (2;2 _qk)-fuzzy quasi-
ideal of S. Therefore we have, (CI\Q)k = (CI ^k CQ) � (CI �k CQ) =
(CIQ)k: Therefore I \Q � IQ: Hence S is regular.

Theorem 91 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For bi-ideals B1; B2 and ideal I of S, B1 \ I \B2 � (B1I)B2.

(iii) B [a] \ I [a] \B [a] � (B [a] I [a])B [a] ;
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for some a 2 S.
Proof. (i)) (ii)
Assume that B1, B2 are bi-ideal and I is an ideal of regular AG-groupoid

S. Let a 2 B1\I\B2: This implies that a 2 B1; a 2 I and a 2 B2:Now since
S is regular so for a 2 S, there exist x 2 S, such that a = (ax) a. Therefore
a = (a ((xa)x)) a 2 (B1 ((SI)S))B2 � (B1I)B2: Thus B1 \ I \ B2 �
(B1I)B2:
(ii)) (iii) is obvious.
(iii)) (i)
Since B [a] = a[a2[ (aS) a and I [a] = a[Sa[aS are principle bi-ideal

and principle ideal of S generated by a respectively. Thus by (iii), (1), and
left invertive law, medial law and paramedial law, we have

�
a [ a2 [ (aS) a

�
\ (a [ Sa [ aS) \

�
a [ a2 [ (aS) a

�

� f[
�
a [ a2 [ (aS) a

�
][(a [ Sa [ aS)]g

�
a [ a2 [ (aS) a

�

� f[
�
a [ a2 [ (aS) a

�
][(a [ Sa [ aS)]gS

= [a2 [ a (Sa) [ a (aS) [ a2a [ a2 (Sa) [ a2 (aS) [

((aS) a) a [ ((aS) a) (Sa) [ ((aS) a) (aS)]S

� [a2 [ a2S [ a (aS) [ (Sa)(aS)]S � [a2 [ a2S [ a (aS)]S

= a2S [
�
a2S

�
S [ (a (aS))S = a2S [ a2S [ (aS) a

= a2S [ (aS) a:

Therefore a = a2u or a = (ax)a, for some u and x in S. Hence S is regular.

Theorem 92 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For (2;2 _qk)-fuzzy bi-ideals f , h and (2;2 _qk)-fuzzy ideal g of S,
(f ^k g) ^k h � (f �k g) �k h.

(iii) For (2;2 _qk)-fuzzy generalized bi-ideals f , h and (2;2 _qk)-fuzzy
ideal g of S, (f ^k g) ^k h � (f �k g) �k h.

Proof. (i)) (iii)
Assume that f , g and h are (2;2 _qk)-fuzzy generalized bi-ideal, (2;2

_qk)-fuzzy ideal and (2;2 _qk)-fuzzy generalized bi-ideal of a regular AG-
groupoid S respectively. Now since S is regular so for a 2 S; there exist
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x 2 S; such that a = (ax) a: Therefore a = (a ((xa)x)) a 2 Thus,

((f �k g) �k h)(a) =
_

a=pq

(f �k g)(p) ^ h(q) ^
1� k

2

=
_

a=pq

 (
_

p=uv

f(u) ^ g(v) ^
1� k

2

)

^ h(q) ^
1� k

2

!

=
_

a=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

=
_

a=(a((xa)x))a=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

� ff(a) ^ g ((xa)x)g ^ h(a) ^
1� k

2

�

�
f(a) ^

�
g(a) ^

1� k

2

��
^ h(a) ^

1� k

2

= ff (a) ^ g (a) ^
1� k

2
g ^ h (a) ^

1� k

2
= ((f ^k g) ^k h) (a) :

Therefore (f ^k g) ^k h � (f �k g) �k h:
(iii)) (ii) is obvious.
(ii) =) (i)
Assume that B1, B2 are bi-ideals and I is an ideal of S respectively.

Then (CB1
)k, (CI)k and (CB2

)k are (2;2 _qk)-fuzzy bi-ideal, (2;2 _qk)-
fuzzy ideal and (2;2 _qk)-fuzzy bi-ideal of S respectively. Therefore we
have, (CB1\I\B2)k = (CB1^kCI)^kCB2 � (CB1�kCI)�kCB2 = (C(B1I)B2

)k:
Therefore B1 \ I \B2 � (B1I)B2: Hence S is regular.

Theorem 93 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For ideals I1; I2 and quasi-ideal Q of S, I1 \ I2 \Q � (I1I2)Q.

(iii) I [a] \ I [a] \Q [a] � (I [a] I [a])Q [a] ;

for some a 2 S:
Proof. (i)) (ii)
Assume that I1, I2 are ideals and Q is quasi-ideal of a regular AG-

groupoid S; respectively. Let a 2 I1\I2\Q: This implies that a 2 I1; a 2 I1
and a 2 Q: Now since S is regular so for a 2 S, there exist x 2 S, such
that a = (ax) a. Therefore a = (a ((xa)x)) a 2 (I1 ((SI2)S))Q � (I1I2)Q:
Thus I1 \ I2 \Q � (I1I2)Q:
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(ii)) (iii) is obvious.
(iii)) (i)
Since I [a] = a[Sa[aS and Q [a] = a[(Sa \ aS) are principle ideal and

principle quasi-ideal of S generated by a respectively. Thus by left invertive
law and medial law we have,

(a [ Sa [ aS) \ (a [ Sa [ aS) \ (a [ (Sa \ aS)) � (a [ Sa [ aS) (a [ Sa [ aS)

(a [ (Sa \ aS))

� ((a [ Sa [ aS)S) (a [ aS)

= faS [ (Sa)S [ (aS)Sg (a [ aS)

= faS [ aS [ Sag (a [ aS)

= (aS [ Sa) ((a [ aS))

= (aS) a [ (aS) (aS) [ (Sa) a [ (Sa) (aS)

= (aS) a [ a2S [ a (aS) :

Hence S is regular.

Theorem 94 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For (2;2 _qk)-fuzzy ideals f , g and (2;2 _qk)-fuzzy quasi-ideal h of
S, (f ^k g) ^k h � (f �k g) �k h.

Proof. (i)) (ii)
Assume that f , g are (2;2 _qk)-fuzzy ideals and h is an (2;2 _qk)-

fuzzy quasi-ideal of a regular AG-groupoid S, respectively. Now since S is
regular so for a 2 S; there exist x 2 S; such that a = (ax) a: Therefore
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a = (a ((xa)x)) a. Thus,

((f �k g) �k h)(a) =
_

a=pq

(f �k g)(p) ^ h(q) ^
1� k

2

=
_

a=pq

 (
_

p=uv

f(u) ^ g(v) ^
1� k

2

)

^ h(q) ^
1� k

2

!

=
_

a=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

=
_

a=(a((xa)x))a=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

� ff(a) ^ g ((xa)x)g ^ h(a) ^
1� k

2

�

�
f(a) ^

�
g(a) ^

1� k

2

��
^ h(a) ^

1� k

2

= ff (a) ^ g (a) ^
1� k

2
g ^ h (a) ^

1� k

2
= ((f ^k g) ^k h) (a) :

Therefore (f ^k g) ^k h � (f �k g) �k h:
(ii) =) (i)
Assume that I1, I2 are ideals and Q is a quasi-ideal of S respectively.

Then (CI1)k, (CI2)k and (CQ)k are (2;2 _qk)-fuzzy ideal, (2;2 _qk)-fuzzy
ideal and (2;2 _qk)-fuzzy quasi-ideal of S respectively. Therefore we have,

(CI1\I2\Q)k = (CI1 ^k CI2) ^k CQ � (CI1 �k CI2) �k CQ = (C(I1I2)Q)k:

Thus I1 \ I2 \Q � (I1I2)Q: Hence S is regular.

Theorem 95 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) I [a] \ J [a] = I [a]J [a] for some a in S.

(iii) For ideals I; J of S; I \ J = IJ (I \ J = JI).

(iv) For bi-ideal B of S, B = (BS)B:

Proof. (i)) (iv)
Assume thatB is a bi-ideal of a regular AG-groupoid S: Clearly (BS)B �

B: Let b 2 B: Since S is regular so for b 2 S there exist x 2 S such that
b = (bx) b 2 (BS)B: Thus B = (BS)B:
(iv)) (iii)
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Assume that I and J are ideals of regular AG-groupoid S. Now,

((I \ J)S) (I \ J) � (SS) (I \ J) = S (I \ J) = SI \ SJ � I \ J

and
I \ J = ((I \ J)S) (I \ J) � (IS) J � IJ .

Moreover IJ � SJ � J; also IJ � IS � I: Therefore IJ � I \ J: Thus
I \ J = IJ:
(iii)) (ii) is obvious.
(ii)) (i)
Since I [a] = a [ Sa [ aS is a principle ideal of S generated by a. Thus

by (ii), (1), left invertive law and paramedial law, we have,

(a [ Sa [ aS) \ (a [ Sa [ aS) = (a [ Sa [ aS) (a [ Sa [ aS)

= a2 [ a (Sa) [ a (aS) [ (Sa) a

[ (Sa) (Sa) [ (Sa) (aS) [ (aS) a

[ (aS) (Sa) [ (aS) (aS)

= a2 [ a (aS) [ (aS) a [ a2S:

Hence S is regular.

Theorem 96 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For (2;2 _qk)-fuzzy ideals f; g of S, (f ^k g) � (f �k g).

(iii) For (2;2 _qk)-fuzzy right ideals f; g of S, (f ^k g) � (f �k g).

Proof. (i)) (iii)
Assume that f and g are (2;2 _qk)-fuzzy right ideals of a regular AG-

groupoid S. Now since S is regular so for a 2 S there exist x 2 S such that
a = (ax) a. Thus,

(f �k g) (a) =
_

a=pq

f (p) ^ g (q) ^
1� k

2
=

_

a=pq=(ax)a

f (p) ^ g (q) ^
1� k

2

� f (ax) ^ g (a) ^
1� k

2
�

�
f (a) ^

1� k

2

�
^ g (a) ^

1� k

2

= f (a) ^ g (a) ^
1� k

2
= (f ^k g) (a) :

Hence (f ^k g) � (f �k g).
(iii)) (ii) is obvious.
(ii) =) (i)
Assume that I and J are ideals S. Then (CI)k, and (CJ)k are (2;2 _qk)-

fuzzy ideals of S. Therefore we have, (CI\J)k = (CI ^kCJ) � (CI �kCJ) =
(CIJ)k: Thus I \ J � IJ: Hence S is regular.



2. Generalized Fuzzy Ideals of Abel Grassmann Groupoids 59

Theorem 97 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For (2;2 _qk)-fuzzy ideals f; g of S, (f ^k g) � (g �k f).

(iii) For (2;2 _qk)-fuzzy right ideals f; g of S, (f ^k g) � (g �k f).

Proof. It is easy.

Theorem 98 Let S be an AG-groupoid with left identity. Then the follow-
ing are equivalent.

(i) S is regular.

(ii) For (2;2 _qk)-fuzzy ideals f; g and h of S, f ^k g^k h � (f �k g)�k h.

(iii) For (2;2 _qk)-fuzzy right ideals f; g and h of S, f ^k g ^k h �
(f �k g) �k h.

Proof. (i)) (iii)
Assume that f , g and h are (2;2 _qk)-fuzzy right ideals of a regular AG-

groupoid S. Now since S is regular so for a 2 S there exist x 2 S such that
using paramedial law and medial law we have, a = (ax) a = (ax) ((ax) a) =
(a (ax)) (xa). Thus,

((f �k g) �k h)(a) =
_

a=pq

(f �k g)(p) ^ h(q) ^
1� k

2

=
_

a=pq

 (
_

p=uv

f(u) ^ g(v) ^
1� k

2

)

^ h(q) ^
1� k

2

!

=
_

a=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

=
_

a=(a(ax))(xa)=(uv)q

�
ff(u) ^ g(v)g ^ h(q) ^

1� k

2

�

� ff(a) ^ g (ax)g ^ h(xa) ^
1� k

2

�

�
f(a) ^

�
g(a) ^

1� k

2

��
^ h(a) ^

1� k

2

= ff (a) ^ g (a) ^
1� k

2
g ^ h (a) ^

1� k

2
= ((f ^k g) ^k h) (a) :

Therefore (f ^k g) ^k h � (f �k g) �k h:
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(iii)) (ii) is obvious.
(ii)) (i)
Assume that f , g and h are (2;2 _qk)-fuzzy ideals of S. Now by using

left invertive law, we have, (f ^k g) � (f ^k g) ^k S � (f �k g) �k S =
(S �k g) �k f � g �k f: Thus (f ^k g) � g �k f: Hence S is regular.



3

Generalized Fuzzy Left Ideals
in AG-groupoids

In this chapter, we introduce (2 ;2 _q�)-fuzzy right ideals in an AG-
groupoid. We characterize intra-regular AG-groupoids using the properties
of (2 ;2 _q�)-fuzzy subsets and (2 ;2 _q�)-fuzzy left ideals.

3.1 (2;2 _q�)-fuzzy Ideals of AG-groupoids

Let ; � 2 [0; 1] be such that  < �. For any B � A; let X�
B be a fuzzy

subset of X such that X�
B(x) � � for all x 2 B and X

�
B(x) �  otherwise.

Clearly, X�
B is the characteristic function of B if  = 0 and � = 1:

For a fuzzy point xr and a fuzzy subset f of X, we say that
(1) xr 2 f if f(x) � r > :
(2) xrq�f if f(x) + r > 2�:
(3) xr 2 _q�f if xr 2 f or xrq�f:
Now we introduce a new relation on F(X), denoted by �� _q(;�)�, as

follows:
For any f; g 2 F(X); by f � _q(;�)g we mean that xr 2 f implies

xr 2 _q�g for all x 2 X and r 2 (; 1]: Moreover f and g are said to be
(; �)-equal, denoted by f =(;�) g; if f � _q(;�)g and g � _q(;�)f .
The above de�nitions can be found in [41].

Lemma 99 [41] Let f and g be fuzzy subsets of F(X). Then f � _q(;�)g
if and only if maxfg(x); g � minff(x); �g for all x 2 X:

Lemma 100 [41] Let f , g and h 2 F(X): If f � _q(;�)g and g � _q(;�)h;
then f � _q(;�)h:

The relation �=(;�)� is equivalence relation on F(X), see [41]. Moreover,
f =(;�) g if and only if maxfminff(x); �g; g = maxfminfg(x); �g; g for
all x 2 X.

Lemma 101 Let A, B be any non-empty subsets of an AG -groupoid S
with a left identity. Then we have
(1) A � B if and only if X�

A � _q(;�)X
�
B ; where r 2 (; 1] and

; � 2 [0; 1]:
(2) X�

A \X
�
B =(;�) X

�
(A\B):

(3) X�
A �X

�
B =(;�) X

�
(AB):
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3.2 Some Basic Results

Lemma 102 If S is an AG-groupoid with a left identity then (ab)2 =
a2b2 = b2a2 for all a and b in S.

Proof. It follows by medial and paramedial laws.

De�nition 103 A fuzzy subset f of an AG-groupoid S is called an (2 ;2
_q�)-fuzzy AG-subgroupoid of S if for all x; y 2 S and t; s 2 (; 1], such
that xt 2 f; ys 2 f we have (xy)minft;sg 2 _q�f:

Theorem 104 Let f be a fuzzy subset of an AG groupoid S. Then f is
an (2 ;2 _q�)-fuzzy AG subgroupoid of S if and only if maxff(xy); g �
minff(x); f(y); �g; where ; � 2 [0; 1]:

Proof. Let f be a fuzzy subset of an AG-groupoid S which is (2 ;2 _q�)-
fuzzy subgroupoid of S. Assume that there exists x; y 2 S and t 2 (; 1],
such that

maxff(xy); g < t � minff(x); f(y); �g:

Then maxff(xy); g < t, this implies that f(xy) < t � , which fur-
ther implies that (xy)minft;sg2 _q�f and minff(x); f(y); �g � t, therefore
minff(x); f(y)g � t this implies that f(x) � t > , f(y) � t > ; im-
plies that xt 2 f , ys 2 f but (xy)minft;sg2 _q�f a contradiction to the
de�nition. Hence

maxff(xy); g � minff(x); f(y); �g for all x; y 2 S:

Conversely, assume that there exist x; y 2 S and t; s 2 (; 1] such that
xt 2 f , ys 2 f by de�nition we write f(x) � t > ; f(y) � s > ; then
maxff(xy); �g � minff(x); f(y); �g this implies that f(xy) � minft; s; �g:
Here arises two cases,
Case(a): If ft; sg � � then f(xy) � minft; sg >  this implies that

(xy)minft;sg 2 f:
Case(b): If ft; sg > � then f(xy) + minft; sg > 2� this implies that

(xy)minft;sgq�f:
From both cases we write (xy)minft;sg 2 _q�f for all x; y in S:

De�nition 105 A fuzzy subset f of an AG-groupoid S with a left identity
is called an (2 ;2 _q�)-fuzzy left (respt-right) ideal of S if for all x; y 2 S
and t; s 2 (; 1] such that yt 2 f we have (xy)t 2 _q�f (resp xt 2 f
implies that (xy)t 2 _q�f):

Theorem 106 A fuzzy subset f of an AG-groupoid S with left identity is
called (2 ;2 _q�)-fuzzy left (respt right) ideal of S. if and only if

maxff(xy); g � minff(y); �g (respt maxff(xy); g � minff(x); �g).
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Proof. Let f be an (2 ;2 _q�)-fuzzy left ideal of S. Let there exists
x; y 2 S and t 2 (; 1] such that

maxff(xy); g < t � minff(y); �g:

Then maxff(xy); g < t �  this implies that (xy)t�2f which further
implies that (xy)t2 _q�f . As minff(y); �g � t >  which implies that
f(y) � t > , this implies that yt 2 f . But (xy)t2 _q�f a contradiction
to the de�nition. Thus

maxff(xy); g � minff(y); �g.

Conversely, assume that there exist x; y 2 S and t; s 2 (; 1] such that
ys 2 f but (xy)t2 _q�f; then f(y) � t > ; f(xy) < minff(y); �g
and f(xy) + t � 2�. It follows that f(xy) < � and so maxff(xy); g <
minff(y); �g which is a contradiction. Hence yt 2 f this implies that
(xy)minft;sg 2 _q�f (respt xt 2 f implies (xy)minft;sg 2 _q�f) for all
x; y in S:

De�nition 107 A fuzzy subset f of an AG-groupoid S is called (2 ;2
_q�)-fuzzy bi-ideal of S if for all x; y and z 2 S and t; s 2 (; 1], the
following conditions hold.
(1) if xt 2 f and ys 2 f implies that (xy)minft;sg 2 _q�f:
(2) if xt 2 f and zs 2 f implies that ((xy)z)minft;sg 2 _q�f:

Theorem 108 A fuzzy subset f of an AG-groupoid S with left identity is
called (2 ;2 _q�)-fuzzy bi-ideal of S if and only if
(I)maxff(xy); g � minff(x); f(y); �g:
(II)maxff((xy)z); g � minff(x); f(z); �g:

Proof. (1), (I) is the same as theorem 104.
(2)) (II) Assume that x; y 2 S and t; s 2 (; 1] such that

maxff((xy)z); g < t � minff(x); f(z); �g:

Then maxff((xy)z); g < t which implies that f((xy)z) < t this im-
plies that ((xy)z)t�2f which further implies that ((xy)z)t2 _q�f . Also
minff(x); f(z); �g � t > ; this implies that f(x) � t > , f(z) � t > 
implies that xt 2 f , zt 2 f . But ((xy)z)t2 _q�f; a contradiction. Hence

maxff((xy)z); g � minff(x); f(z); �g:

(II) ) (2) Assume that x; y in S and t; s 2 (; 1]; such that xt 2
f; zs 2 f but ((xy)z)minft;sg2 _q�f , then f(x) � t > ; f(z) � s > ;
f((xy)z) < minff(x); f(y); �g and f((xy)z) + minft; sg � 2�. It follows
that f((xy)z) < � and so maxff((xy)z); g < minff(x); f(y); �g a contra-
diction. Hence xt 2 f , zs 2 f implies that ((xy)z)minft;sg 2 _q�f for all
x; y in S:
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Example 109 Consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3
1 1 1 1
2 1 1 3
3 1 2 1

De�ne a fuzzy subset f on S as follows:

f(x) =

8
<

:

0:41 if x = 1;
0:44 if x = 2;
0:42 if x = 3:

Then, we have

� f is an (20:1;20:1 _q0:11)-fuzzy left ideal,

� f is not an (2;2 _q0:11)-fuzzy left ideal,

� f is not a fuzzy left ideal.

Example 110 Let S = f1; 2; 3g and the binary operation � be de�ned on
S as follows:

� 1 2 3
1 2 2 2
2 2 2 2
3 1 2 2

Then clearly (S; �) is an AG-groupoid. De�ned a fuzzy subset f on S as
follows:

f(x) =

8
<

:

0:44 if x = 1;
0:6 if x = 2;
0:7 if x = 3:

Then, we have

� f is an (20:4;20:4 _q0:45)-fuzzy left ideal of S.

� f is not an (20:4;20:4 _q0:45)-fuzzy right ideal of S.

Example 111 Let S = f1; 2; 3g, then binary operation � de�ned on S as
follows:

� 1 2 3
1 1 1 1
2 3 3 3
3 1 1 1

Clearly (S; �) is an AG-groupoid. Let us de�ned a fuzzy subset f on S as
follows:

f(x) =

8
<

:

0:6 if x = 1
0:4 if x = 2
0:3 if x = 3

Clearly f is an (2 ;2 _q�)-fuzzy left ideal of S.
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Lemma 112 Let f be a fuzzy subset of an AG-groupoid S. Then f is an
(2 ;2 _q�)-fuzzy bi-ideal of S if and only if maxff(a); g � minf((f �
S) � f)(a); �g:

Proof. Assume that f is an (2 ;2 _q�)-fuzzy bi-ideal of an AG-groupoid
S. If a 2 S, then there exist c; d; p and q in S such that a = pq and p = cd.
Since f is an (2 ;2 _q�)-fuzzy bi-ideal of S, we have maxff((cd)q); g �
minff(c); f(q); �g: Therefore,

minf((f � S) � f)(a); �g = min

(
_

a=pq

f(f � S)(p) ^ f(q)g; �

)

= min

8
<

:

_

a=pq

f
_

p=cd

ff(c) ^ S(d)g ^ f(q)g; �

9
=

;

= min

8
<

:

_

a=(cd)q

fff(c) ^ 1 ^ f(q)g; �g

9
=

;

= min

8
<

:

_

a=(cd)q

ff(c) ^ f(q)g; �

9
=

;

=
_

a=(cd)q

fminff(p); f(q); �gg

�
_

a=(cd)q

fmaxff((cd)q); gg

= maxff(a); g:

Hence, maxff(a); g � minf((f � S) � f)(a); �g.
Conversely, assume that maxff(a); g � minf((f � S) � f)(a); �g: Let a

in S, there exist c; d and q in S such that a = (cd)q. Then we have

maxff((cd)q); g = maxff(a); g

� minf((f � S) � f)(a); �g

= min

(
_

a=bc

f(f � S)(b) ^ f(c); �g

)

� minff(f � S)(cd) ^ f(q)g; �g

= min

(
_

cd=st

ff(s) ^ S(t)g ^ f(q)g; �

)

� minfmin(f(c); f(q); �g

= minf(f(c); f(q); �g:

Hence maxff((cd)q); g � minff(c); f(q); �g:
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Lemma 113 Every (2 ;2 _q�)-fuzzy left ideal of an AG-groupoid S is
an (2 ;2 _q�)-fuzzy bi-ideal of S.

Proof. Let f be an (2 ;2 _q�)-fuzzy left ideal of an AG-groupoid S. For
any a in S, there exist p; q and for p there exists s, t in S; such that a = pq
and p = st. Then

minf((f � S) � f)(a); �g = minf
_

a=pq

f(f � S)(p) ^ f(q)g; �g

= minf
_

a=pq

f
_

p=st

ff(s) ^ S(t)g ^ f(q)g; �g

= minf
_

a=(st)q

ff(s) ^ f(q)g; �g

= minf
_

a=(st)q

[minff(s); f(q)g]; �g

=
_

a=(st)q

min[minff(s); �g;minff(q); �g]

�
_

a=(st)q=(qt)s

minfmaxff(qt)s; g;maxff(st)q; gg

= minfmaxff(a); g;maxff(a); gg

= maxff(a); g:

Hencemaxff(a); g � minf((f�S)�f)(a); �g. Hence f is an (2 ;2 _q�)-
fuzzy bi-ideal of S.

Lemma 114 Let f and g be (2 ;2 _q�)-fuzzy left ideals of an AG-
groupoid S with left identity. Then (f � g) is an (2 ;2 _q�)-fuzzy left
ideal of S.

Proof. Let f be any (2 ;2 _q�)-fuzzy AG-subgroupoid and g be an
(2 ;2 _q�)-fuzzy left ideal of an AG-groupoid S with left identity: So for
any y in S there exists a and b in S such that y = ab. Therefore

xy = x(ab) = a(xb):
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then

minff � g(y); �g = min

8
<

:

_

y=ab

ff(a) ^ g(b)g; �

9
=

;

=
_

y=ab

fminfminff(a); �g;minfg(b); �ggg

�
_

xy=a(xb)

fminfmaxff(a); g;maxfg(xb); ggg

=
_

xy=a(xb)

fmaxfminff(a); g(xb)g; gg

�
_

xy=ac

fmaxfminff(a); g(c)g; gg

= maxf(f � g)(xy); g:

Lemma 115 If L is a left ideal of an AG-groupoid S if and only if X�
L

is (2 ;2 _q�)-fuzzy left ideal of S:

Proof. (i) Let x; y 2 L which implies that xy 2 L. Then by de�nition we
get X�

L(xy) � �, X
�
L(x) � � and X

�
L(y) � � but � � . Thus

maxfX�
L(xy); g = X

�
L(xy) and minfX

�
L(y); �g = �.

Hence maxfX�
L(xy); g � minfX

�
L(y); �g:

(ii) Let x 2 L and y =2 L, which implies that xy =2 L. Then by de�nition
X�
L(x) � �; X

�
L(y) �  and X

�
L(xy) � . Therefore

maxfX�
L(xy); g =  and maxfX

�
L(y); �g = X

�
L(y).

Hence maxfX�
L(xy); g � minfX

�
L(y); �g:

(iii) Let x =2 L; y 2 L which implies that xy 2 L. Then by de�nition, we
get X�

L(xy) � �, X
�
L(y) � � and X

�
L(x) � . Thus

maxfX�
L(xy); g = X

�
L(xy) and minfX

�
L(y); �g = �.

Hence maxfX�
L(xy); g � minfX

�
L(y); �g:

(iv) Let x; y =2 L which implies that xy =2 L. Then by de�nition we get
such that X�

L(xy) < , X
�
L(y) <  and X

�
L(x) < . Thus

maxfX�
L(xy); g =  and minfX

�
L(y); �g = X

�
L(y).

Hence maxfX�
L(xy); g � minfX

�
L(y); �g:
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Converse, let sl 2 SL, where l 2 L and s 2 S. Now by hypothesis
maxfX�

L((sl); g � minfX�
L(l); �g. Since l 2 L, therefore X�

L(l) � �

which implies that minfX�
L(l); �g = �. Thus

maxfX�
L(sl); g � �.

This clearly implies that maxX�
L(sl) � �. Therefore sl 2 L. Hence L is a

left ideal of S.
Similarly we can prove the following lemma.

Lemma 116 If B is a bi-ideal of an AG-groupoid S if and only if X�
B is

(2 ;2 _q�)-fuzzy bi-ideal ideal of S:

3.3 (2;2 _q�)-fuzzy Ideals of Intra Regular
AG-groupoids

An element a of an AG-groupoid S is called intra-regular if there exist
x; y 2 S such that a = (xa2)y and S is called intra-regular, if every
element of S is intra-regular.

Theorem 117 Let S be an AG- groupoid with left identity then the fol-
lowing conditions are equivalent.
(i) S is intra regular.
(ii) L[a] \ L[a] � L[a]L[a], for all a in S.
(iii) L1 \ L2 � L1L2, for all left ideals L1; L2 of S.
(iv) f \ g � _q(;�)f � g, for all (2 ;2 _q�)-fuzzy left ideals f and g of

S.

Proof. (i) ) (iv) Since S is intra regular therefore for any a in S there
exist x; y in S such that a = (xa2)y: Then

a = (xa2)y = (xa2)(y1y2) = (y2y1)(a
2x) = a2[(y2y1)x]

= [a(y2y1)](ax) = (xa)[(y2y1)a].

Let for any a in S there exist p and q in S such that a = pq; then

maxf(f � g)(a); g = max

(
_

a=pq

fff(p) ^ g(q)g; g

)

� maxfminff(xa)); g((y2y1)a)g; g

= minfmaxff(a); g;maxfg(a); gg

� min fminff(a); �g;minfg(a); �gg

= minff(a); g(a); �g.

Thus f \ g � _q(;�)f � g:
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(iv)) (iii) If B is a bi- ideal of S. Then by (iii), we get

X�
L1\L2 =(;�) X

�
L1

\X�
L2

� _q(;�)X
�
L1

�X�
L2

=(;�) _q(;�)X
�
L1L2

.

Hence L1 \ L2 � L1L2:
(iii)) (ii) It is obvious.
(ii)) (i)

(a [ Sa) \ (a [ Sa) � (a [ Sa) (a [ Sa)

= a2 [ a(Sa) [ (Sa)a [ (Sa)(Sa)

= a2 [ S(aa) [ (aa)S [ (SS)(aa)

= a2 [ Sa2 [ a2S [ Sa2

= a2 [ Sa2

Thus a = a2 or a 2 Sa2. Hence S is intra regular.

Corollary 118 Let S be an AG- groupoid with left identity then the fol-
lowing conditions are equivalent.
(i) S is intra regular.
(ii) L[a] � L[a]L[a], for all a in S.
(iii) L � L2, for all left ideals L of S.
(iv) f � _q(;�)f � f , for all (2 ;2 _q�)-fuzzy left ideals f of S.

Theorem 119 Let S be an AG- groupoid with left identity then the fol-
lowing conditions are equivalent.
(i) S is intra regular.
(ii) L[a] \ L[a] \ L[a] � (L[a]L[a])L[a], for all a in S.
(ii) A \B \ C � (AB)C, for all left ideals A, B and C of S.
(iv) f \ g \ h � _q(;�)(f � g) � h, for all (2 ;2 _q�)-fuzzy left ideals f ,

g and h of S, .

Proof. (i)) (iv) For every a in S, we have a = (xa2)y, this by (1) and left
invertive law implies that a = (y(xa))a. Now using (1) ; medial, paramedial
laws, we get

y(xa) = y[xf(xa2)yg] = y[(xa2)(xy)] = (xa2)[y(xy)] = (xa2)(xy2)

= (xx)(a2y2) = a2(x2y2) = (ax2)(ay2) = (y2a)(x2a).
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Let for any a in S there exist p and q in S such that a = pq. Then

maxf(f � g) � h(a); g = max[
_

a=pq

ff(f � g)(p) ^ h(q)g; gg]

= max fminf(f � g)(y(xa)); h(a)g; gg

= max

8
<

:
min

_

y(xa)=rs

ff(r) ^ g(s); h(a)g; g

9
=

;

� min
�
maxfff(y2a); g(x2a)g; h(a)g; 

	

= minfmaxff(y2a); g;maxfg(x2a); g;maxfh(a); gg

� minfminff(a); �g;minfg(a); �g;minfh(a); �gg

= minf(f \ g \ h)(a); �g:

Thus f \ g \ h � _q(;�)(f � g) � h:
(iii)) (ii) If A, B and C are left ideals of S. Then by (iii), we get

X�
(A\B\C) = (;�)X

�
A\B \X

�
C � _q(;�)(X

�
A �X

�
B) �X

�
C

= (;�) _ q(;�)X
�
AB �X

�
C =(;�) _q(;�)X

�
(AB)C .

Hence we get A \B \ C � (AB)C:
(iii)) (ii) It is obvious.
(ii)) (i)

(a [ Sa) \ (a [ Sa) \ (a [ Sa)

� [(a [ Sa) (a [ Sa)] (a [ Sa)

= [a2 [ Sa2] (a [ Sa) � (Sa2)S.

Hence S is intra regular.

Theorem 120 Let S be an AG- groupoid with left identity then the fol-
lowing conditions are equivalent.
(i) S is intra regular.
(ii) L[a] \ L[a] � (L[a]L[a])L[a];for all a in S.
(iii) A \B � (AB)A; for all left ideals A and B of S.
(iv) f \ g � _q(;�)(f � g) � f , for all (2 ;2 _q�)-fuzzy left ideals f and

g of S.
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Proof. (i) ) (iv) Let for any a in S there exist p and q in S such that
a = pq. Then

maxf(f � g) � f(a); g = max[
_

a=pq

ff(f � g)(p) ^ f(q)g; gg]

� max[
�
f(f � g)((y2a)(x2a)) ^ f(a)g; g

	
]

= max

8
<

:
minf

_

(y2a)(x2a)=rs

f(r) ^ g(s); f(a)g; g

9
=

;

� max
�
minff(y2a); g(x2a); f(a)g; g

	

= minfmaxff(y2a); g;maxfg(x2a); g;maxff(a); gg

� minfminff(a); �g;minfg(a); �g;minff(a); �gg

= minf(f \ g \ f)(a); �g:

Thus f \ g � _q(;�)(f � g) � f:
(iv)) (iii) It is obvious.
(vi)) (ii) If A, B are any left ideals of S. Then by (iii), we get

X�
(A\B) = X�

(A\B\A) =(;�) X
�
A\B \X

�
A � _q(;�)(X

�
A �X

�
B) �X

�
A

= (;�) _ q(;�)X
�
AB �X

�
A =(;�) _q(;�)X

�
(AB)A.

Hencewe get A \B � (AB)A:
(iii)) (ii) It is obvious.
(ii)) (i) It is same as (ii)) (i) of theorem 119.

De�nition 121 A fuzzy subset f of an AG-groupoid S is called an (2
;2 _q�)-fuzzy semiprime ideal if x

2
t 2 f implies that xt 2 _q� for all

x 2 S and t 2 (; 1]:

Example 122 Consider an AG-groupoid S = f1; 2; 3; 4; 5g with the fol-
lowing multiplication table

: 1 2 3 4 5
1 4 5 1 2 3
2 3 4 5 1 2
3 2 3 4 5 1
4 1 2 3 4 5
5 5 1 2 3 4

Clearly (S, .) is intra-regular because 1 = (3:12):2; 2 = (1:22):5; 3 =
(5:32):2; 4 = (2:42):1; 5 = (3:52):1: De�ne a fuzzy subset f on S as given:

f(x) =

8
>>>><

>>>>:

0:7 if x = 1;
0:6 if x = 2;
0:68 if x = 3;
0:63 if x = 4;
0:52 if x = 5:
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Then it is easy to see that f is an (20:4;20:4 _q0:5)-fuzzy semiprime ideal
of S.

Theorem 123 A fuzzy subset f of an AG-groupoid S is an (2 ;2 _q�)-
fuzzy semiprime ideal if and only if maxff(x); g � minff(x2); �g:

Proof. Let f be an (2 ;2 _q�)-fuzzy semiprime ideal of S. Let there
exists x; y 2 S and t 2 (; 1] such that maxff(x); g < t � minff(x2); �g:
Then maxff(x); g < t implies that xt�2f implies that xt2 _q�f . As
minff(x2); �g � t >  this implies that f(x2) � t >  implies that x2t 2 f .
But xt2 _q�f; a contradiction to the de�nition of semiprime ideals. Thus
maxff(x); g � minff(x2); �g:
Conversely, assume that there exist x; y in S and t 2 (; 1] such that

x2t 2 f but xt2 _q�f , then f(x
2) � t > ; f(x) < minff(x2); �g and

f(x)+t � 2�: It follows that f(x) < � and somaxff(x); g < minff(x2); �g
which is a contradiction to the de�nition of semiprime ideals. Hence x2t 2 f
implies that (x2)t 2 _q�f for all x; y in S:

Theorem 124 For a non empty subset I of an AG-groupoid S with left
identity, the following conditions are equivalent.
(i) I is semiprime.
(ii) X�

I is an (2 ;2 _q�)-fuzzy semiprime.

Proof. (i) ) (ii) Let I be semiprime of an AG-groupoid S. Let a be
any element of S such that a 2 I; then I is an ideal so a2 2 I: Hence
X�
I(a); X

�
I(a

2) � � which implies thatmaxfX�
I(a); g � minfX

�
I(a

2); �g:

Now let a =2 I, since I is semiprime, thus a2 =2 I. This implies that
X�
I(a) �  andX

�
I(a

2) � . ThereforemaxfX�
I(a); g � minfX

�
I(a

2); �g:

Hence, we have maxfX�
I(a); g � minfX

�
I(a

2); �g for all a 2 S.

(ii)) (i) LetX�
I is fuzzy semiprime. Let a

2 2 I; for some a in S, this im-

plies that X�
I(a

2) � �. Now since X�
I is an (2 ;2 _q�)-fuzzy semiprime.

Thus maxfX�
I(a); g � minfX

�
I(a

2); �g. Therefore maxfX�
I(a); g � �.

But � > ; so X�
I(a) � �. Thus a 2 I: Hence I is semiprime.

Theorem 125 Let S be an AG-groupoid with left identity then the follow-
ing conditions are equivalent.
(i) S is intra-regular.
(ii) For every ideal of S is semiprime.
(iii) For every left ideal of S is semiprime.
(iv) For every (2 ;2 _q�)-fuzzy left ideal of S is fuzzy semiprime.

Proof. (i) ) (iv) Let f be an (2 ;2 _q�)-fuzzy left ideal of an intra
regular AG-groupoid S. Now since S is intra-regular so for each a 2 S there
exists x; y in S such that a = (xa2)y. Now using medial law, paramedial
law and left invertive law, we get

a = (xa2)y = [(ex)(aa)]y = [(aa)(xe)]y = [y(xe)]a2.
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Thus

maxff(a); g = maxff([y(xe)]a2); g

� minff(a2); �g.

(iv)) (iii) and (iii)) (ii) are obvious.
(ii)) (i) Assume that every ideal is semiprime and since Sa2 is an ideal

containing a2. Thus

a 2 Sa2 = (SS)a2 = (a2S)S = (Sa2)S:

Hence S is an intra-regular AG-groupoid.
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4

Generalized Fuzzy Prime and
Semiprime Ideals of Abel
Grassmann Groupoids

In this chapter we introduce (2 ;2 _q�)-fuzzy prime (semiprime) ideals
in AG-groupoids. We characterize intra regular AG-groupoids using the
properties of (2 ;2 _q�)-fuzzy semiprime ideals.

Lemma 126 If A is an ideal of an AG-groupoid S if and only if X�
A is

(2 ;2 _q�)-fuzzy ideal of S:

Proof. (i) Let x; y 2 A which implies that xy 2 A. Then by de�nition we
get X�

A(xy) � �, X
�
A(x) � � and X

�
A(y) � � but � > . Thus

maxfX�
A(xy); g = X�

A(xy) and

minfX�
A(x); X

�
A(y); �g = minfX�

A(x); X
�
A(y)g = �.

Hence maxfX�
A(xy); g � minfX

�
A(x); X

�
A(y); �g:

(ii) Let x =2 A and y 2 A, which implies that xy =2 A. Then by de�nition
X�
A(x) � ; X

�
R(y) � � and X

�
R(xy) � . Therefore

maxfX�
A(xy); g =  and

minfX�
A(x); X

�
A(y); �g = X�

A(x).

Hence maxfX�
A(xy); g � minfX

�
A(x); X

�
A(y); �g:

(iii) Let x 2 A; y =2 A which implies that xy =2 A. Then by de�nition, we
get X�

A(xy) � , X
�
A(y) �  and X

�
A(x) � �. Thus

maxfX�
A(xy); g =  and

minfX�
A(x); X

�
A(y); �g = X�

A(y).

Hence maxfX�
A(xy); g � minfX

�
A(x); X

�
A(y); �g:

(iv) Let x; y =2 A which implies that xy =2 A. Then by de�nition we get
such that X�

A(xy) � , X
�
A(y) �  and X

�
A(x) � . Thus

maxfX�
A(xy); g =  and

minfX�
A(x); X

�
A(y); �g = fX�

A(x); X
�
R(y)g = .
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Hence maxfX�
A(xy); g � minfX

�
A(x); X

�
A(y); �g:

Converse, let (xy) 2 AS where x 2 A and y 2 S, and (xy) 2 SA where
y 2 A and x 2 S. Now by hypothesismaxfX�

A(xy); g � minfX
�
B(x); X

�
B(y); �g.

Since x 2 A, therefore X�
A(x) � �; and y 2 A therefore X

�
A(y) � � which

implies that minfX�
A(x); X

�
A(y); �g = �. Thus

maxfX�
A(xy); g � �.

This clearly implies that X�
A(xy) � �. Therefore xy 2 A. Hence A is an

ideal of S.

Example 127 Let S = f1; 2; 3g, and the binary operation ��� be de�ned
on S as follows.

� 1 2 3
1 1 1 1
2 1 1 1
3 1 2 1

Then (S; �) is an AG-groupoid. De�ne a fuzzy subset f : S ! [0; 1] as
follows.

f(x) =

8
<

:

0:31 for x = 1
0:32 for x = 2
0:30 for x = 3

Then clearly

� f is an (20:2;20:2 _q0:3)-fuzzy ideal of S,

� f is not an (2;2 _q0:3)-fuzzy ideal of S, because f(1�2) < f(2)^
1�0:3
2 ,

� f is not a fuzzy ideal of S, because f(1 � 2) < f(2).

De�nition 128 A fuzzy subset f of an AG-groupoid S is called an (2
;2 _q�)-fuzzy bi-ideal of S if for all x; y and z 2 S and t; s 2 (; 1], the
following conditions holds.
(1) if xt 2 f and ys 2 f implies that (xy)minft;sg 2 _q�f:
(2) if xt 2 f and zs 2 f implies that ((xy)z)minft;sg 2 _q�f:

Theorem 129 A fuzzy subset f of an AG-groupoid S is (2 ;2 _q�)-fuzzy
bi-ideal of S if and only if
(I)maxff(xy); g � minff(x); f(y); �g:
(II)maxff((xy)z); g � minff(x); f(z); �g:

Proof. (1), (I) is the same as theorem 104.
(2)) (II): Assume that x; y 2 S and t; s 2 (; 1] such that

maxff((xy)z); g < t � minff(x); f(z); �g:

Then maxff((xy)z); g < t which implies that f((xy)z) < t �  this
implies that ((xy)z)t�2f which further implies that ((xy)z)t2 _q�f . Also
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minff(x); f(z); �g � t > ; this implies that f(x) � t > , f(z) � t > 
implies that xt 2 f , zt 2 f but ((xy)z)t2 _q�f; a contradiction. Hence

maxff((xy)z); g � minff(x); f(z); �g:

(II) ) (2) Assume that x; y; z in S and t; s 2 (; 1]; such that xt 2
f; zs 2 f by de�nition we can write f(x) � t > ; f(z) � s > ;
then maxff((xy)z); �g � minff(x); f(y); �g this implies that f((xy)z) �
minft; s; �g: We consider two cases here,
Case(i): If ft; sg � � then f((xy)z) � minft; sg >  this implies that

((xy)z)minft;sg 2 f:
Case(ii): If ft; sg > � then f((xy)z) + ft; sg > 2� this implies that

((xy)z)minft;sgq�f:
From both cases we write ((xy)z)minft;sg 2 _q�f for all x; y; z in S:

Lemma 130 A subset B of an AG-groupoid S is a bi-ideal if and only if
X�
B is an (2 ;2 _q�)-fuzzy bi-ideal of S:

Proof. (i) Let B be a bi-ideal and assume that x; y 2 B then for any a in S
we have (xa)y 2 B, thus X�

B((xa)y) � �. Now since x; y 2 B so X
�
B(x) �

�; X�
B(y) � � which clearly implies that min{X

�
B(x); X

�
B(y)g � �. Thus

maxfX�
B((xa)y); g = X

�
B((xa)y) and

minfX�
B(x); X

�
B(y); �g = �.

Hence maxfX�
B((xa)y); g � minfX

�
B(x); X

�
B(y); �g:

(ii) Let x 2 B; y =2 B, then (xa)y =2 B, for all a in S. This implies that
X�
B((xa)y) � , X

�
B(x) � � and X

�
B(y) < . Therefore

maxfX�
B((xa)y); g =  and

minfX�
B(x); X

�
B(y); �g = X�

B(y).

Hence maxfX�
B((xa)y); g � minfX

�
B(x); X

�
B(y); �g:

(iii) Let x =2 B; y 2 B implies that (xa)y =2 B, for all a in S. This implies
that X�

B((xa)y) � ; X
�
B(x) � ; X

�
B(y) � � then

maxfX�
B((xa)y); g = ; and

minfX�
B(x); X

�
B(y); �g = X�

B(x)

Therefore

maxfX�
B((xa)y); g � minfX

�
B(x); X

�
B(y); �g:

(iv) Let x; y =2 B which implies that (xa)y =2 B, for all a in S. This
implies that minfX�

B(x); X
�
B(y)g � , X

�
B((xa)y) � . Thus

maxfX�
B((xa)y); g =  and

minfX�
B(x); X

�
B(y); �g = minfX

�
B(x); X

�
B(y)g � .
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Hence maxfX�
B((xa)y); g � minfX

�
B(x); X

�
B(y); �g.

If (xa)y 2 B, then minfX�
B(x); X

�
B(y)g � �, X

�
B((xa)y) � �. Thus

maxfX�
B((xa)y); g = X

�
B((xa)y) and

minfX�
B(x); X

�
B(y); �g = �.

Hence maxfX�
B((xa)y); g � minfX

�
B(x); X

�
B(y); �g.

Converse, let (b1s)b2 2 (BS)B, where b1; b2 2 B and s 2 S. Now
by hypothesis maxfX�

B((b1s)b2); g � minfX�
B(b1); X

�
B(b2); �g. Since

b1; b2 2 B, therefore X
�
B(b1) � � and X�

B(b2) � � which implies that

minfX�
B(b1); X

�
B(b2); �g = �. Thus

maxfX�
B((b1s)b2); g � �.

This clearly implies that X�
B((b1s)b2) � �. Therefore (b1s)b2 2 B. Hence

B is a bi-ideal of S.

De�nition 131 A fuzzy AG-subgroupoid f of an AG-groupoid S is called
an (2 ;2 _q�)-fuzzy interior ideal of S if for all x; y; z 2 S and t; r 2 (; 1]
the following conditions holds.
(I) xt 2 f; ys 2 f implies that (xy)minft;sg 2 _q�f .

(II) yt 2 f implies ((xy)z)t 2 _q�f .

Lemma 132 A fuzzy subset f of S is an (2 ;2 _q�)-fuzzy interior ideal
of an AG-groupoid S if and only if it satis�es the following conditions.
(III) maxff (xy) ; g � min ff (x) ; f (y) ; �g for all x; y 2 S and ; � 2

[0; 1].
(IV ) maxff (xyz) ; g � min ff (y) ; �g for all x; y; z 2 S and ; � 2

[0; 1].

Proof. (I)) (III) Let f be an (2 ;2 _q�)-fuzzy interior ideal of S. Let
(I) holds. Let us consider on contrary. If there exists x; y 2 S and t 2 (; 1]
such that

maxff(xy); g < t � minff(x); f(y); �g:

Then maxff(xy); g < t �  this implies that (xy)t�2f again implies that
(xy)t2 _q�f . As minff(x); f(y); �g � t >  this implies that f(x) � t > 
and f(y) � t >  implies that xt 2 f and yt 2 f .
But (xy)t2 _q�f a contradiction .Thus

maxff(xy); g � minff(x); f(y); �g:

(III) ) (I) Assume that x; y; in S and t; s 2 (; 1] such that xt 2
f and ys 2 f . Then f(x) � t > ; f(y) � t > ; maxff(xy); g �
minff(x); f(y); �g � minft; s; �g: We consider two cases here,
Case(1): If ft; sg � � then maxff(xy); g � minft; sg >  this implies

that (xy)minft;sg 2 f:
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Case(2): If ft; sg > � then f(xy) + minft; sg > 2� this implies that
(xy)minft;sgq�f:
Hence xt 2 f , ys 2 f implies that (xy)minft;sg 2 _q�f:
(II)) (IV ) Let f be an (2 ;2 _q�)-fuzzy interior ideal of S. Let (II)

holds. Let us consider on contrary. If there exists x; y 2 S and t 2 (; 1]
such that

maxff((xy)z); g < t � minff(y); �g:

Then maxff((xy)z); g < t �  this implies that ((xy)z)t�2f further
implies that ((xy)z)t2 _q�f . As minff(y); �g � t >  this implies that
f(y) � t >  implies that yt 2 f . But (xyz)t2 _q�f a contradiction
according to de�nition. Thus (IV ) is valid

maxff((xy)z); g � minff(y); �g

(IV )) (II) Assume that x; y; z in S and t; s 2 (; 1] such that yt 2 f .
Then f(y) � t > ; by (IV ) we write maxff((xy)z); g � minff(y); �g �
minft; �g: We consider two cases here,
Case(i): If t � � then f((xy)z) � t >  this implies that ((xy)z)t 2 f:
Case(ii): If t > � then f((xy)z) + t > 2� this implies that ((xy)z)q�f:
From both cases ((xy)z)t 2 _q�f . Hence f be an (2 ;2 _q�)-fuzzy

interior ideal of S.

Lemma 133 If I is a interior ideal of an AG-groupoid S if and only if
X�
I be an (2 ;2 _q�) fuzzy interior ideal of S:

Proof. (i) Let x; a; y 2 I which implies that (xa)y 2 I. Then by de�nition
we get X�

I((xa)y) � � and X
�
I(a) � �; but � > . Thus

maxfX�
I((xa)y); g = X�

I((xa)y) and

minfX�
I(a); �g = �.

Hence maxf X�
I((xa)y); g � minfX

�
I(a); �g:

(ii) Let x =2 I, y =2 I and a 2 I, which implies that (xa)y 2 I. Then by
de�nition X�

I((xa)y) � � and X
�
I(a) � �. Therefore

maxfX�
I((xa)y); g = X�

I((xa)y); and

minfX�
I(a); �g = �.

Hence maxfX�
I((xa)y); g � minfX

�
I(a); �g:

(iii) Let x 2 I; y 2 I and a =2 I which implies that (xa)y =2 I. Then by
de�nition, we get X�

I((xa)y) � , X
�
I(a) � . Thus

maxfX�
I((xa)y); g =  and

minfX�
I(a); �g = X�

I(a).
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Hence maxfX�
I((xa)y); g � minfX

�
I(a); �g:

(iv) Let x; a, y =2 I which implies that (xa)y =2 I. Then by de�nition we
get such that X�

I((xa)y) � , X
�
I(a) � . Thus

maxfX�
I((xa)y); g =  and

minfX�
I(a); �g = X�

I(a).

Hence maxfX�
I((xa)y); g � minfX

�
I(a); �g:

Conversely, let (xa)y 2 (SI)S, where a 2 I and x; y 2 S. Now by
hypothesis maxfX�

I((xa)y); g � minfX�
I(a); �g. Since a 2 I, therefore

X�
I(a) � � which implies that minfX

�
I(a); �g = �. Thus

maxfX�
I((xa)y); g � �.

This clearly implies that X�
I((xa)y) � �. Therefore (xa)y 2 I. Hence I is

an interior ideal of S.

Example 134 Consider an AG-groupoid S = f1; 2; 3g in the following
multiplication table.

� 1 2 3
1 1 1 1
2 1 1 3
3 1 2 1

De�ne a fuzzy subset f on S as follows:

f(x) =

8
<

:

0:41 if x = 1;
0:44 if x = 2;
0:42 if x = 3:

Then, we have

� f is an (20:1;20:1 _q0:11)-fuzzy quasi-ideal,

� f is not an (2;2 _q0:11)-fuzzy quasi-ideal.

4.1 (2;2 _q�)-fuzzy Prime Ideals of
AG-groupoids

De�nition 135 An (2 ;2 _q�)-fuzzy subset f of an AG-groupoid S is
said to be prime if for all a; b in S and t 2 (; 1]: It satis�es,
(1)(ab)t 2 f implies that (a)t 2 _q�f or (b)t 2 _q�f:

Theorem 136 An (2 ;2 _q�)-fuzzy prime ideal f of an AG-groupoid S
if for all a; b in S; and t 2 (; 1]:It satis�es
(2) maxff(a); f(b); g � minff(ab); �g:
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Proof. Let f be an (2 ;2 _q�)-fuzzy prime ideal of an AG-groupoid
S. If there exists a; b in S and t 2 (; 1], such that maxff(a); f(b); g <
t � minff(ab); �g then minff(ab); �g � t implies that f(ab) � t >  and
minff(a); f(b); g < t this implies that f(a) < t �  or f(b) < t � 
again implies that (a)t�2f or (b)t�2f i.e. (ab)t 2 f but (a)t2 _q�f or
(b)t2 _q�f; which is a contradiction. Hence (2) is valid.
Conversely, assume that (2) is holds. Let (ab)t 2 f: Then f(ab) � t > 

and by (2) we have maxff(a); f(b); g � minff(ab); �g � minft; �g: We
consider two cases here,
Case(a): If t � �; then f(a) � t >  or f(b) � t >  this implies that

(a)t 2 f or (b)t 2 f:
Case(b): If t > �; then f(a) + t > 2� or f(b) + t > 2� this implies that

(a)tq�f or (b)tq�f: Hence f is prime.

Theorem 137 Let I be an non empty subset of an AG-groupoid S with
left identity. Then
(i) I is a prime ideal.
(ii) ��I is an (2 ;2 _q�)-fuzzy prime ideal of S.

Proof. (i)) (ii): Let I be a prime ideal of an AG-groupoid S: Let (ab) 2 I
then ��I(ab) � �; this implies that so ab 2 I and I is prime, so a 2 I or

b 2 I; by de�nition we can get ��I(a) � � or �
�
I(b) � �; therefore

minf��I(ab); �g = � and

maxf��I(a); �
�
I(b); g = maxf��I(a); �

�
I(b)g � �:

which implies that maxf��I(a); �
�
I(b); g � minf�

�
I(ab); �g. Hence �

�
I is

an (2 ;2 _q�)-fuzzy prime ideal of S.
(ii)) (i): Assume that ��I is a prime (2 ;2 _q�)-fuzzy ideal of S; then

I is prime. Let (ab) 2 I by de�nition we can write ��I(ab) � �; therefore,by

given condition we have maxf��I(a); �
�
I(b); g � minf��I(ab); �g = �:

this implies that ��I(a) � � or �
�
I(b) � � this implies that a 2 I or b 2 I:

Hence I is prime.

Example 138 Let S = f1; 2; 3g, and the binary operation ��� be de�ned
on S as follows.

� 1 2 3

1 1 2 3
2 3 1 2
3 2 3 1

Then (S; �) is an intra-regular AG-groupoid with left identity 1. De�ne a
fuzzy subset f : S ! [0; 1] as follows.

f(x) =

8
<

:

0:34 for x = 1
0:36 for x = 2
0:35 for x = 3
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Then clearly

� f is an (20:2;20:2 _q0:22)-fuzzy prime ideal,

� f is not an (2;2 _q0:22)-fuzzy prime ideal,

� f is not fuzzy prime ideal.

Theorem 139 An (2 ;2 _q�)-fuzzy subset f of an AG-groupoid S is
prime if and only if U(f; t) is prime in AG-groupoid S, for all 0 < t � �:

Proof. Let us consider an (2 ;2 _q�)-fuzzy subset f of an AG-groupoid S
is prime and 0 < t � �: Let (ab) 2 U(f; t) this implies that f(ab) � t > :
Then by theorem 136 maxff(a); f(b); g � minff(ab); �g � minft; �g = t;
so f(a) � t >  or f(b) � t > ; which implies that a 2 U(f; t) or
b 2 U(f; t): Therefore U(f; t) is prime in AG-groupoid S, for all 0 < t � �:
Conversely, assume that U(f; t) is prime in AG-groupoid S; for all 0 <

t � �: Let (ab)t 2 f implies that ab 2 U(f; t); and U(f; t) is prime, so
a 2 U(f; t) or b 2 U(f; t); that is at 2 f or bt 2 f: Thus at 2 _q�f
or bt 2 _q�f . Therefore f must be an (2 ;2 _q�)-fuzzy prime in AG-
groupoid S.

De�nition 140 A fuzzy subset f of an AG-groupoid S is said to be (2
;2 _q�)-fuzzy semiprime for all s; t 2 (; 1] and a 2 S: it satis�es

(1) a2t 2 f implies that at 2 _q�f:

Theorem 141 A fuzzy subset f of an AG-groupoid S is an (2 ;2 _q�)-
fuzzy semiprime if and only if it satis�es

(2) maxff(a); g � minff(a2); �g for all a 2 S:
Proof. (1) ) (2) Let f be a fuzzy subset of an AG-groupoid S which is
(2 ;2 _q�)-fuzzy semiprime of S. Assume that there exists a 2 S and t
2 (; 1], such that

maxff(a); g < t � minff(a2); �g:

Then maxff(a); g < t this implies that f(a) < t � , implies that ;
f(a) + t < 2t � 2� this implies that at2 _q�f and minff(a

2); �g � t this
implies that f(a2) � t > ; further implies that a2t 2 f but at2 _q�f a
contradiction to the de�nition. Hence (2) is valid,

maxff(a); g � minff(a2); �g; for all a 2 S:

(2)) (1). Assume that there exist a 2 S and t 2 (; 1] such that a2t 2 f ,
then f(a2) � t > ; thus by (2); we have maxff(a); g � minff(a2); �g �
minft; �g. We consider two cases here,
Case(i): if t � �; then f(a) � t > ; this implies that at 2 f:
Case(ii) : if t > �; then f(a) + t > 2�; that is atq�f: From (i) and (ii)

we write at 2 _q�f: Hence f is semiprime for all a 2 S:



4. Generalized Fuzzy Prime and Semiprime Ideals of Abel Grassmann Groupoids  83

Theorem 142 For a non empty subset I of an AG-groupoid S with left
identity the following conditions are equivalent.
(i) I is semiprime.
(ii) ��I is an (2 ;2 _q�)-fuzzy semiprime.

Proof. (i)) (ii) Let I is semiprime of an AG-groupoid S.
Case(a): Let a be any element of S such that a2 2 I: Then I is semiprime,

so a 2 I: Hence ��I(a
2) � � and ��I(a) � �. Therefore

maxf��I(a); g = ��I(a) and

minf��I(a
2); �g = �:

which implies that maxf��I(a); g � minf�
�
I(a

2); �g:

Case(b): Let a =2 I; since I is semiprime therefore a2 =2 I. This implies
that ��I(a) �  and �

�
I(a

2) � ; such that

maxf��I(a); g =  and

minf��I(a
2); �g = ��I(a

2):

Therefore maxf��I(a); g � minf�
�
I(a

2); �g: Hence in both cases

maxf��I(a); g � minf�
�
I(a

2); �gforallainS:

(ii) ) (i) Let ��I be an (2 ;2 _q�)-fuzzy semiprime. Let a
2 2 I for

some a in S. Then ��I(a
2) � �: Thereforemaxf��I(a); g � minf�

�
I(a

2); �g =

� this implies that ��I(a) � � again this implies that a 2 I: Hence I is
semiprime.

Example 143 Let S = f1; 2; 3g, and the binary operation ��� be de�ned
on S as follows.

� 1 2 3
1 3 2 3
2 3 3 3
3 3 3 3

Then (S; �) is an AG-groupoid. De�ne a fuzzy subset f : S ! [0; 1] as
follows.

f(x) =

8
<

:

0:41 for x = 1
0:39 for x = 2
0:42 for x = 3

Then clearly

� f is (20:1;20:1 _q0:2)-fuzzy semiprime,

� f is not (2;2 _q0:2)-fuzzy semiprime,

� f is not fuzzy semiprime.
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4.2 (2;2 _q�)-Fuzzy Semiprime Ideals of
Intra-regular AG-groupoids

Lemma 144 If f is a (2 ;2 _q�)-fuzzy ideal of an intra-regular AG-
groupoid S, then f is an (2 ;2 _q�)-fuzzy semiprime in S.

Proof. Let S be a intra regular AG-groupoid. Then for any a 2 S there
exists some x; y 2 S such that a = (xa2)y: Now

maxff(a); g = maxff(xa2)y; g � minff(a2); �g:

Hence f is a (2 ;2 _q�)-fuzzy semiprime in S.

Theorem 145 Let S be an AG- groupoid then the following conditions are
equivalent.
(i) S is intra regular.
(ii) For every ideal A of S, A � A2 and A is semiprime.
(iii) For every (2 ;2 _q�) fuzzy ideal f of S, f � _q(;�)f � f; and f

is fuzzy semiprime.

Proof. (i)) (iii): Let f be an (2 ;2 _q�)-fuzzy ideal of an intra regular
AG-groupoid S with left identity. Now since S is intra regular therefore for
any a in S there exist x; y in S such that a = (xa2)y: Now using paramedial
law, medial law and left invertive law, we get

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a:

Let for any a in S there exist p and q in S such that a = pq; then

maxf(f � f)(a); g = max

(
_

a=pq

fff(p) ^ f(q)g; g

)

� maxfminff(y(xa)); f(a)g; g

� maxfminff(y(xa)); f(a)g; g

= minfmaxff(y(xa)); g;maxff(a); gg

� min fminff(a); �g;minff(a); �gg

= minff(a); �g.

Thus f � _q(;�)f � f:
Now we show that f is a fuzzy semiprime ideal of intra-regular AG-

groupoid S; Since S is intra-regular therefore for any a in S there exist x; y
in S such that a = (xa2)y. Then

maxff(a); g = maxff((xa2)y); g

� minff(a2); �g:
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(iii)) (ii): Suppose A be any ideal of S. Then by (iii), we get

��A = �
�
A\A = �

�
A \ �

�
A � _q(;�)�

�
A � �

�
A =(;�) X

�
A2 .

Hence we get A � A2: Now we show that A is semiprime. Let A is an
ideal then (��A) be an (2 ;2 _q�)-fuzzy ideal of S: Let a

2 2 A; then

since ��A be any (2 ;2 _q�)-fuzzy ideal of an AG-groupoid S; hence by

(iii);maxf��A(a); g � minf�
�
A(a

2); �g = � this implies that ��A(a) � �:
Thus a 2 A: This implies that A is semiprime.
(ii) ) (i): Assume that every ideal is semiprime of S. Since Sa2 is a

ideal of an AG-groupoid S generated by a2. Therefore

a 2 (Sa2) � (SS)a2 � (a2S)S = ((aa)(SS))S = ((SS)(aa))S = (Sa2)S:

Hence S is intra regular.

Lemma 146 Every (2 ;2 _q�)-fuzzy ideal of an AG-groupoid S, is (2
;2 _q�)-fuzzy interior ideal of S.

Proof. Let S be an AG-groupoid then for any a; x; y 2 S and f is an
(2 ;2 _q�)-fuzzy ideal. Now

maxff((xa)y); g � maxff(xa); g

� minff(a); �g:

Hence f is a (2 ;2 _q�)-fuzzy interior ideal of S.

Theorem 147 For an AG-groupoid S with left identity the following are
equivalent.
(i) S is intra regular.
(ii) Every two sided ideal is semiprime.
(iii) Every (2 ;2 _q�)-fuzzy two sided ideal f of S is fuzzy semiprime.
(iv) Every (2 ;2 _q�)-fuzzy interior ideal f of S is fuzzy semiprime.
(v) Every (2 ;2 _q�)-fuzzy generalized interior ideal f of S is semi-

prime.

Proof. (i)) (v) Let S be an intra-regular and f be an (2 ;2 _q�)-fuzzy
generalized interior ideal of an AG-groupoid S. Then for all a 2 S there
exists x; y in S such that a = (xa2)y. We have

maxff(a); g = maxff((xa2)y); g

� minff(a2); �g:

(v)) (iv is obvious.
(iv)) (iii) it is obvious by lemma 146.
(iii)) (ii): Let A be a two sided ideal of an AG-groupoid S, then (��A)

is an (2 ;2 _q�)-fuzzy two sided ideal of S. Let a
2 2 A; then since ��A is
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an (2 ;2 _q�)-fuzzy two sided ideal therefore �
�
A(a

2) � �; thus by (iii)

maxf��A(a); g � minf�
�
A(a

2); �g = � this implies that ��A(a) � �: Thus
a 2 A: Hence A is semiprime.
(ii)) (i): Assume that every two sided ideal is semiprime and since Sa2

is a two sided ideal contain a2. Thus

a 2 (Sa2) � (SS)a2 � (a2S)S = ((aa)(SS))S = ((SS)(aa))S = (Sa2)S:

Hence S is an intra-regular.

Theorem 148 Let S be an AG-groupoid with left identity, then the fol-
lowing conditions equivalent
(i) S is intra-regular.
(ii) Every ideal of S is semiprime.
(iii) Every bi-ideal of S is semiprime.
(iv) Every (2 ;2 _q�)-fuzzy bi-ideal f of S is semiprime.
(v) Every (2 ;2 _q�)-fuzzy generalized bi-ideal f of S is semiprime.

Proof. (i) ) (v): Let S be an intra-regular and f be an (2 ;2 _q�)-
generalized bi-ideal of S. Then for all a 2 S there exists x; y in S such that
a = (xa2)y.

a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a

= fy(x((xa2)y)))ga = fx(y((xa2)y))ga = fx((xa2)y2))ga

= f(xa2)(xy2)ga = fx2(a2y2)ga = fa2(x2y2)ga = fa(x2y2)ga2

= f((xa2)y)(x2y2)ga2 = f(y2y)(x2(xa2))ga2 = f(y2x2)(y(xa2))ga2

= f(y2x2)((y1y2)(xa
2))ga2 = f(y2x2)((a2y2)(xy1))ga

2 = f(y2x2)((a2x)(y2y1))ga
2

= f(y2x2)(((y2y1)x)(aa))ga
2 = f(y2x2)(a2(x(y2y1)))ga

2 = f(aa)(x((x2y2))(y2y1))ga
2

= fa2f(x(x2y2)(y2y1))gga
2 = (a2t)a2;where t = (x(x2y2)(y2y1)):

we have
maxff(a); g = maxff(a2t)a2; g � maxfminff(a2); f(a2)g; �g = minff(a2); �g:
Therefore maxff(a); g � minff(a2); �g:
(v)) (iv) is obvious.
(iv) ) (iii): Let B is a bi-ideal of S, then ��B is an (2 ;2 _q�)-fuzzy

bi-ideal of an AG-groupoid S. let a2 2 B then since ��B is an (2 ;2
_q�)-fuzzy bi-ideal therefore �

�
B(a

2) � �; thus by (iv); maxf��B(a); g �

minf��B(a
2); �g = � this implies that ��B(a) � �: Thus a 2 B: Hence B

is semiprime.
(iii)) (ii) is obvious.
(ii)) (i) Assume that every ideal of S is semiprime and since Sa2 is an

ideal containing a: Thus

a 2 (Sa2) � (SS)a2 � (a2S)S = ((aa)(SS))S = ((SS)(aa))S = (Sa2)S:

Hence S is an intra-regular.
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Theorem 149 Let S be an AG-groupoid with left identity, then the fol-
lowing conditions equivalent
(i) S is intra-regular.
(ii) Every ideal of S is semiprime.
(iii) Every quasi-ideal of S is semiprime.
(iv) Every (2 ;2 _q�)-fuzzy quasi-ideal f of S is semiprime.

Proof. (i)) (iv): Let S be an intra-regular AG-groupoid with left identity
and f be an (2 ;2 _q�)-fuzzy quasi ideal of S. Then for all a 2 S there
exists x; y in S such that a = (xa2)y. Now using left invertive law and
medial law, then

a = (xa2)(y1y2) = (y2y1)(a
2x) = a2((y2y1)x) = a

2t, where t = (y2y1)x:

we have
maxff(a); g = maxff(a2t); g � minff(a2); �g:
Therefore maxff(a); g � minff(a2); �g:
(iv) ) (iii): let Q be an quasi ideal of S, then ��Q is an (2 ;2 _q�)-

fuzzy quasi ideal of an AG-groupoid S. let a2 2 Q then since ��Q is

an (2 ;2 _q�)-fuzzy quasi ideal as then �
�
Q(a

2) � � therefore by (iv);

maxf��Q(a); g � minf�
�
Q(a

2); �g = � this implies that ��Q(a) � �: Thus
a 2 Q: Hence Q is semiprime.
(iii)) (ii) is obvious.
(ii)) (i) Assume that every ideal of S is semiprime and since Sa2 is an

ideal containing a2: Thus

a 2 (Sa2) � (Sa)(Sa) = (SS)(aa) = (a2S)S = (Sa2)S:

Hence S is an intra-regular.
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5

Fuzzy Soft Abel Grassmann
Groupoids

In this chapter we introduce generalized fuzzy soft ideals in a non-associative
algebraic structure namely Abel Grassmann groupoid. We discuss some
basic properties concerning these new types of generalized fuzzy ideals
in Abel-Grassmann groupoids. Moreover we characterize a regular Abel
Grassmann groupoid in terms of its classical and (2 ;2 _q�)-fuzzy soft
ideals.

5.1 (2;2 _q�)-fuzzy Soft Ideals of AG-groupoids

Let U be an initial universe set and E the set of all possible parameters
under consideration with respect to U . Then
A pair hF;Ai is called a fuzzy soft set over U , where A � E and F is

a mapping given by F : A �! F(U), where F(U) is the set of all fuzzy
subsets of U . In general, for every " 2 A, F (") is a fuzzy set of U and it is
called fuzzy value set of parameter " [26].
The extended intersection of two fuzzy soft sets hF;Ai and hG;Bi over

U is a fuzzy soft set denoted by hH;Ci, where C = A [B and de�ned as

H(") =

8
<

:

F (") if " 2 A�B;
G(") if " 2 B �A;
F (") \G(") if " 2 A \B.

for all " 2 C. This is denoted by hH;Ci = hF;Ai ~\ hG;Bi.
A new relation is de�ned on F(S) denoted as " � _q(;�)";as follows.
For any f; g 2 F(S); by f � _q(;�)g, we mean that xr 2 f implies

xr 2 _q�g for all x 2 S and r 2 (; 1]:
The following de�nition is available in [35].
Let hF;Ai and hG;Bi be two fuzzy soft sets over U . We say that hF;Ai

is a fuzzy soft subset of hG;Bi and write hF;Ai � hG;Bi if
(i) A � B;
(ii) For any " 2 A, F (") � G(").
hF;Ai and hG;Bi are said to be fuzzy soft equal and write hF;Ai =

hG;Bi if hF;Ai � hG;Bi and hG;Bi � hF;Ai.
Let V � U . A fuzzy soft set hF;Ai over V is said to be a relative whole

(; �)-fuzzy soft set (with respect to universe set V and parameter set A),
denoted by �(V ;A), if F (") = X �

 for all " 2 A.
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The product of two fuzzy soft sets hF;Ai and hG;Bi over an AG-groupoid
S is a fuzzy soft set over S, denoted by hF �G;Ci, where C = A [B and

(F �G)(") =

8
<

:

F (") if " 2 A�B;
G(") if " 2 B �A;
F (") �G(") if " 2 A \B.

for all " 2 C. This is denoted by hF �G;Ci = hF;Ai � hG;Bi.
A fuzzy soft set hF;Ai over an AG-groupoid S is called

� Fuzzy soft left (right) ideal over S if � hS;Ai�hF;Ai � hF;Ai(hF;Ai
� � hS;Ei � hF;Ai).

� Fuzzy soft bi-ideal over S if hF;Ai � hF;Ai � hF;Ai and [hF;Ai �
� hS;Ai]� hF;Ai � hF;Ai.

� Fuzzy soft quasi-ideal over S if [hF;A��(S;A)]~\[�(S;A)�hF;Ai] �
hF;Ai.

hF;Ai is an (; �)-fuzzy soft subset of hG;Bi and write hF;Ai �(;�)
hG;Bi if (i) A � B, and (ii) For any " 2 A;F (") � _q

(;�)
G(").

A fuzzy soft set hF;Ai over an AG-groupoid S is called

� An (2 ;2 _q �)-fuzzy soft left ideal over S if �(S;A)�hF;Ai �(;�)
hF;Ai.

� An (2 ;2 _q �)-fuzzy soft bi-ideal over S if (i) hF;Ai�hF;Ai �(;�)
hF;Ai, and (ii) [hF;Ai � �(S;A)]� hF;Ai �(;�) hF;Ai.

� An (2 ;2 _q �)-fuzzy soft quasi-ideal over S if [hF;A��(S;A)]~\[�(S;A)�
hF;Ai] �(;�) hF;Ai.

Example 150 Let S = f1; 2; 3g and the binary operation " � " de�nes on
S as follows:

� 1 2 3
1 2 2 3
2 3 3 3
3 3 3 3

Then (S; �) is an AG-groupoid. Let A = f0:35; 0:4g and de�ne a fuzzy
soft set hF;Ai over S as follows:

F (�)(x) =

�
2� if x 2 f1; 2g,
2
5 otherwise.

Then hF;Ai is an (20:3;20:3 _q0:4)- fuzzy soft left ideal of S.
Again let E = f0:7; 0:8g and de�ne a fuzzy soft set hG;Ei over S as

follows:

G(�)(x) =

�
� if x 2 f1; 2g,
2
5 otherwise.

Then hF;Ei is an (20:2;20:2 _q0:4)- fuzzy soft bi-ideal of S.
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5.2 (2;2 _q�)-fuzzy Soft Ideals in Regular
AG-groupoids

Theorem 151 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For bi-ideal B, ideal I and left ideal L of S; B \ L � (BS)L:
(iii) hF;Bi~\hG;Li �(;�) (hF;Bi � �hS;Ei) � hG;Li; for any (2 ;2

_q�)-fuzzy soft bi-ideal hF;Ai and (2 ;2 _q�)-fuzzy soft left ideal hH;Bi
of S.
(iv) hF;Bi~\hG;Li �(;�) (hF;Bi�hS;Ei�hG;Li); for any (2 ;2 _q�)-

fuzzy generalized soft bi-ideal hF;Ai and (2 ;2 _q�)-fuzzy generalized soft
left ideal hH;Bi of S.

Proof. (i)) (iv)
Let hF;Bi and hG;Li be any (2 ;2 _q�)-fuzzy generalized soft bi-ideal

and (2 ;2 _q�)-fuzzy generalized soft left ideal over S; respectively. Let
a be any element of S, hF;Bi~\hG;Li = hK1; B [Li:For any " 2 B [L. We
consider the following cases,
Case 1: " 2 B � L: Then K1(") = F (") \G(") and K2(") = (F �G)(");

so we have K1(") � _q(;�)K2(")
Case 2: " 2 L�B: Then K1(") = H(") and K1(") = H(") = K2(")
Case 3: " 2 B \L: Then K1(") = F (") \G(") and K2(") = F (") �G("):

Now we show that F (") \ G(") � _q(;�)(F (") � G(")): Now since S is
regular AG-groupoid, so for a 2 S there exist x 2 S such that using left
invertive law and also using law a(bc) = b(ac); we have,

a = (ax) a = [f(ax) agx]a 2 (BS)L.

Thus we have,

max
�
((F (") � X �

S) �G("))(a); 
	

= max

(
_

a=pq

(F (") � X �
S)(p) ^G(")(q); 

)

� maxf(F (") � X �
S)[f(ax)ag(x)] ^G("))(a); g

= maxf
_

f(ax)ag(x)=uv

(F (")(u) ^ X �
S(v)) ^G(")(a)g; g

� max
�
F (")f(ax)ag ^ X �

S(x) ^G(")(a); 
	

= max fF (")f(ax)ag ^ 1 ^G(")(a); g

= min fmaxfF (")f(ax)ag; g ;maxfG(")(a); gg

� minfminf(F (")(a); �g;minfG(")(a); �gg

= min f(F (") ^G("))(a); �g

= min f(F (") \G("))(a); �g
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Thusmin f(F (") \G("))(a); �g � max
�
((F (") � X �

S) �G("))(a); 
	
: This

implies that F (") \G(") � _q(;�)(F (") � X
�
S) �G("):

Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF;Bi~\hG;Li �(;�) (hF;Bi � hS;Ei)� hG;Li:

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that B and L are bi-ideal and left ideal of S; respectively, then

�(B;E) and �(L;E) are (2 ;2 _q�)-fuzzy soft bi-ideal, (2 ;2 _q�)-
fuzzy soft ideal and (2 ;2 _q�)-fuzzy soft left ideal over S;respectively.
Now we have assume that (iv) holds, then we have

�(B;E)~\�(L;E) �(;�) (�(B;E)� �(S;E))� �(L;E).

So,

��(B\L) = (;�)�
�
B \ �

�
L

� _q(;�)(�
�
B � �

�
S) � �

�
L

= (;�)�
�
(BS)L.

Thus B \ L � (BS)L:
(ii)) (i)
B [a] = a[a2[ (aS) a; and L [a] = a[Sa are principle bi-ideal and prin-

ciple left ideal of S generated by a respectively. Thus by (ii) left invertive
law,medial law, paramedial law and using law a(bc) = b(ac); we have,

(Sa) \ (Sa) � [Sa)S](Sa) = [S(aS)](Sa)

= (aS)(Sa) � (aS) a:

Hence S is regular.

Theorem 152 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For an ideal I and left ideal L of S; I \ L � (IS)L:
(iii) hF; Ii~\hG;Li �(;�) (hF; Ii��hS;Ei�hG;Li); for any (2 ;2 _q�)-

fuzzy soft ideal hF;Ai and (2 ;2 _q�)-fuzzy soft left ideal hH;Bi of S.
(iv) hF; Ii~\hG;Li �(;�) (hF; Ii� hS;Ei)�hG;Li; for any (2 ;2 _q�)-

fuzzy generalized soft ideal hF;Ai and (2 ;2 _q�)-fuzzy generalized soft
left ideal hH;Bi of S.

Proof. (i)) (iv)
Let hF; Ii and hG;Li be any (2 ;2 _q�)-fuzzy generalized soft ideal

and (2 ;2 _q�)-fuzzy generalized soft left ideal over S; respectively. Let
a be any element of S, hF; Ii~\hG;Li = hK1; I [ Li:For any " 2 I [ L. We
consider the following cases,
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Case 1: " 2 I � L: Then K1(") = F (") \ G(") and K2(") = (F � G)(");
so we have K1(") � _q(;�)K2(")
Case 2: " 2 L� I: Then K1(") = H(") and K1(") = H(") = K2(")
Case 3: " 2 I \ L: Then K1(") = F (") \G(") and K2(") = F (") �G("):

Now we show that F (") \ G(") � _q(;�)(F (") � G(")): Now since S is
regular AG-groupoid, so for a 2 S there exist x 2 S such that using medial
law; we have,

a = (ax) a = (ax)f(ax) ag = fa(ax)g(xa) 2 (IS)L.

Thus we have,

max
�
((F (") � X �

S) �G("))(a); 
	

= max

(
_

a=pq

(F (") � X �
S)(p) ^G(")(q); 

)

� maxf(F (") � X �
S)fa(ax)g ^G("))(xa); g

= maxf
_

fa(ax)g=uv

(F (")(u) ^ X �
S(v)) ^G(")(xa)g; g

� max
�
F (")(a) ^ X �

S(ax) ^G(")(xa); 
	

= max fF (")(a) ^ 1 ^G(")(xa); g

= min fmaxfF (")(a); g ;maxfG(")(xa); gg

� minfminf(F (")(a); �g;minfG(")(xa); �gg

= min f(F (") ^G("))(a); �g

= min f(F (") \G("))(a); �g

Thusmin f(F (") \G("))(a); �g � max
�
((F (") � X �

S) �G("))(a); 
	
: This

implies that F (") \G(") � _q(;�)(F (") � X
�
S) �G("):

Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF; Ii~\hG;Li �(;�) (hF; Ii � �hS;Ei)� hG;Li:

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that I and L are ideal and left ideal of S; respectively, then

�(I; E) and �(L;E) are (2 ;2 _q�)-fuzzy soft ideal, (2 ;2 _q�)-fuzzy
soft ideal and (2 ;2 _q�)-fuzzy soft left ideal over S;respectively. Now we
have assume that (iv) holds, then we have

�(I; E)~\�(L;E) �(;�) (�(I; E)� �(S;E))� �(L;E).

So,

��(I\L) = (;�)�
�
I \ �

�
L

� _q(;�)(�
�
I � �

�
S) � �

�
L

= (;�)�
�
(IS)L.
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Thus I \ L � (IS)L:
Proof. (ii)) (i)
I [a] = aS [ Sa; and L [a] = a [ Sa are principle .ideal and principle left

ideal of S generated by a respectively. Thus left invertive law, paramedial
law and using law a(bc) = b(ac); we have,

f(aS) [ (Sa)g \ (Sa) � [f(aS) [ (Sa)gS](Sa)

= [f(aS)Sg [ f(Sa)Sg](Sa)

= [fS(Sa)g [ f(Sa)Sg](Sa)

= [Sa [ f(Sa)Sg](Sa)

= [(Sa)(Sa)] [ f(Sa)Sg(Sa)

� (Sa2)S [ (aS) a:

Hence S is regular.

Theorem 153 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For bi-ideal B of S; B � B2S:
(iii) hF;Bi �(;�) (hF;Bi�hF;Bi)��hS;Ei; for any (2 ;2 _q�)-fuzzy

soft bi-ideal hF;Ai of S.
(iv) hF;Bi �(;�) (hF;Bi� hF;Bi)��hS;Ei; for any (2 ;2 _q�)-fuzzy

generalized soft bi-ideal hF;Ai of S.

Proof. (i)) (iv)
Let hF;Bi be any (2 ;2 _q�)-fuzzy generalized soft bi-ideal. Let a be

any element of S, Now since S is regular AG-groupoid, so for a 2 S there
exist x 2 S such that using left invertive law, medial law, paramedial law
and also using law a(bc) = b(ac); we have,

a = (ax) a = (ax)f(ax) agfa(ax)g(xa) = x[fa(ax)ga]

= x[f(ea)(ax)ga] = x[f(xa)(ae)ga] = (ex)[f(xa)(ae)ga]

= [af(xa)(ae)g](xe) = [af((ae)a)xg](xe) = f(xe)xg[af(ae)ag]

= a[f(xe)xgf(ae)ag] = a[(ae)f((xe)x)ag]

= (ea)[(ae)f((xe)x)ag] = [f(ae)f((xe)x)agga]e

= [f(ae)(ta)ga]e = [f(at)(ea)ga]e = [f(at)aga]e 2 B2S, where t = f(xe)xg:
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Thus we have,

max
�
((F (") � F (")) � (X �

S))(a); 
	

= max

(
_

a=pq

(F (") � F ("))(p) ^ (X �
S)(q); 

)

� maxf(F (") � F ("))f((at)a)ag ^ (X �
S)(e); g

= maxf
_

f((at)a)ag=uv

fF (")(u) ^ F (")(v) ^ X �
S(e)g; g

� max
�
F (")f(at)ag ^ F (")(a) ^ X �

S(e); 
	

= max fF (")f(at)ag ^ F (")(a) ^ 1; g

= min fmaxfF (")f(at)ag; g ;maxfF (")(a); gg

� minminfF (")(a); �g;minfF (")(a); �gg

= min f(F (")(a); �g

= min f(F (")(a); �g

Thus min f(F (")(a); �g � max
�
((F (") � F (")) � (X �

S))(a); 
	
: This im-

plies that F (") � _q(;�)((F (") � F (")) � X
�
S):

Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF;Bi �(;�) (hF;Bi � hF;Bi)� �hS;Ei:

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that B is bi-ideal of S; then �(B;E) is (2 ;2 _q�)-fuzzy soft

bi-ideal, (2 ;2 _q�)-fuzzy soft ideal over S;respectively. Now we have
assume that (iv) holds, then we have

�(B;E) �(;�) (�(B;E)� �(B;E))� �(S;E).

So,

��B = (;�)�
�
B2 \ ��S

� _q(;�)(�
�
B � �

�
B) � �

�
S

= (;�)�
�
B2S .

Thus B � B2S:
(ii)) (i)
B [a] = a[a2[ (aS) a; and L [a] = a[Sa are principle bi-ideal and prin-

ciple left ideal of S generated by a respectively. Thus by (ii), left invertive
law, paramedial law and using law a(bc) = b(ac); we have,

Sa � [(Sa)(Sa)]S = [S(Sa)](Sa)

= (SS)[a(Sa)] = S[a(Sa)] � (aS) a:

Hence S is regular.
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Theorem 154 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For bi-ideal B, ideal I and left ideal L of S; L \B � (LS)B:
(iii) hF;Li~\hG;Bi �(;�) (hF;Li � �hS;Ei) � hG;Bi; for any (2 ;2

_q�)-fuzzy soft left ideal hF;Ai and (2 ;2 _q�)-fuzzy soft bi-ideal hH;Bi
of S.
(iv) hF;Li~\hG;Bi �(;�) (hF;Li�hS;Ei)�hG;Bi; for any (2 ;2 _q�)-

fuzzy generalized soft left ideal hF;Ai and (2 ;2 _q�)-fuzzy generalized
soft bi-ideal hH;Bi of S.

Proof. (i)) (iv)
Let hF;Li and hG;Bi be any (2 ;2 _q�)-fuzzy generalized soft left ideal

and (2 ;2 _q�)-fuzzy generalized soft bi-ideal over S; respectively. Let a
be any element of S, hF;Li~\hG;Bi = hK1; L [ Bi:For any " 2 L [ B. We
consider the following cases,
Case 1: " 2 L� B: Then K1(") = F (") \G(") and K2(") = (F �G)(");

so we have K1(") � _q(;�)K2(")
Case 2: " 2 B � L: Then K1(") = H(") and K1(") = H(") = K2(")
Case 3: " 2 L \B: Then K1(") = F (") \G(") and K2(") = F (") �G("):

Now we show that F (") \ G(") � _q(;�)(F (") � G(")): Now since S is
regular AG-groupoid, so for a 2 S there exist x 2 S such that using left
invertive law; we have,

a = (ax) a = [f(ax) agx]a = [(xa)(ax)]a 2 (LS)B.

Thus we have,

max
�
((F (") � X �

S) �G("))(a); 
	

= max

(
_

a=pq

(F (") � X �
S)(p) ^G(")(q); 

)

� maxf(F (") � X �
S)f(xa)(ax)g ^G("))(a); g

= maxf
_

f(xa)(ax)g=uv

(F (")(u) ^ X �
S(v)) ^G(")(a)g; g

� max
�
F (")(xa) ^ X �

S(ax) ^G(")(a); 
	

= max fF (")(xa) ^ 1 ^G(")(a); g

= min fmaxfF (")(a); g ;maxfG(")(a); gg

� minfminf(F (")(a); �g;minfG(")(a); �gg

= min f(F (") ^G("))(a); �g

= min f(F (") \G("))(a); �g

Thusmin f(F (") \G("))(a); �g � max
�
((F (") � X �

S) �G("))(a); 
	
: This

implies that F (") \G(") � _q(;�)(F (") � X
�
S) �G("):
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Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF;Li~\hG;Bi �(;�) (hF;Li � hS;Ei)� hG;Bi:

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that L and B are left ideal and bi-ideal of S; respectively, then

�(L;E) and �(B;E) are (2 ;2 _q�)-fuzzy soft left ideal, (2 ;2 _q�)-
fuzzy soft ideal and (2 ;2 _q�)-fuzzy soft bi-ideal over S;respectively.
Now we have assume that (iv) holds, then we have

�(L;E)~\�(B;E) �(;�) (�(L;E)� �(S;E))� �(B;E).

So,

��(L\B) = (;�)�
�
L \ �

�
B

� _q(;�)(�
�
L � �

�
S) � �

�
B

= (;�)�
�
(LS)B .

Thus L \B � (LS)B:
(ii)) (i)
L [a] = a[Sa; and B [a] = a[a2[(aS) a are principle left ideal and prin-

ciple bi-ideal of S generated by a respectively. Thus by (ii), left invertive
law, paramedial law and using law a(bc) = b(ac); we have,

(Sa) \ (Sa) � [(Sa)S](Sa) = [S(aS)](Sa)

= (aS)(Sa) � (aS) a:

Hence S is regular.

Theorem 155 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For left ideal L;quasi ideal Q and an ideal I of S; L\Q\I � (LQ) I:
(iii) hF;Li~\hG;Qi~\hH; Ii �(;�) (hF;Li � hG;Qi � hH; Ii); for any (2

;2 _q�)-fuzzy soft left ideal hF;Ai; (2 ;2 _q�)-fuzzy soft quasi ideal
hG;Bi and (2 ;2 _q�)-fuzzy soft ideal hH;Ci of S.
(iv) hF;Li~\hG;Qi~\hH; Ii �(;�) (hF;Li � hG;Qi � hH; Ii); for any (2

;2 _q�)-fuzzy generalized soft left ideal hF;Ai; (2 ;2 _q�)-fuzzy gener-
alized soft quasi ideal hG;Bi and (2 ;2 _q�)-fuzzy generalized soft ideal
hH;Ci of S.

Proof. (i)) (iv)
Let hF;Li; hG;Qi and hH; Ii be any (2 ;2 _q�)-fuzzy generalized soft

left ideal, (2 ;2 _q�)-fuzzy generalized soft quasi ideal and (2 ;2 _q�)-
fuzzy generalized soft ideal over S; respectively. Let a be any element of S,
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hF;Ai~\hG;Ai~\hH;Bi = hK1; A [ Bi:For any " 2 A [ B. We consider the
following cases,
Case 1: " 2 A�B: Then K1(") = F (") \G(") and K2(") = (F �G)(");

so we have K1(") � _q(;�)K2(")
Case 2: " 2 B �A: Then K1(") = H(") and K1(") = H(") = K2(")
Case 3: " 2 A\B: Then K1(") = F (")\G(") and K2(") = F (") �G("):

Now we show that F (") \ G(") � _q(;�)(F (") � G(")): Now since S is
regular AG-groupoid, so for a 2 S there exist x 2 S such that using medial
law and left invertive law, we have,

a = (ax) a = (ax)f(ax) ag = fa(ax)g(xa)

= f(xa)(ax)ga 2 (LQ)I.

Thus we have,

max f((F (") �G(")) � (H("))(a); g

= max

(
_

a=pq

(F (") �G("))(p) ^H(")(q); 

)

� maxf(F (") �G("))f(xa)(ax)g ^H("))(a); g

= maxf
_

f(xa)(ax)g=uv

(F (")(u) ^G(")(v)) ^H(")(a)g; g

� max fF (")(xa) ^G(")(ax) ^H(")(a); g

= min fmaxfF (")(xa); g ;maxfG(")(ax); g;maxfH(")(a); gg

� minfminf(F (")(a); �g;minfG(")(a); �g;minfH(")(a); �gg

= min f(F (") ^G(") ^H("))(a); �g

= min f(F (") \G(") \H("))(a); �g

Thusmin f(F (") \G(") \H("))(a); �g � max f((F (") �G(") �H("))(a); g :
This implies that F (") \G(") \H(") � _q(;�)(F (") �G(")) �H("):
Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF;Li~\hG;Qi~\hH; Ii �(;�) (hF;Li � hG;Qi)� hH; Ii:

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that L;Q and I are left ideal,quasi ideal and ideal of S; respec-

tively, then �(L;E); �(Q;E) and �(H;E) are (2 ;2 _q�)-fuzzy soft left
ideal, (2 ;2 _q�)-fuzzy soft quasi ideal and (2 ;2 _q�)-fuzzy soft ideal
over S;respectively. Now we have assume that (iv) holds, then we have

�(L;E)~\�(Q;E)~\�(H;E) �(;�) (�(L;E)� �(Q;E))� �(I; E).
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So,

��(L\Q\I) = (;�)�
�
L \ �

�
Q \ �

�
I

� _q(;�)(�
�
L � �

�
Q) � �

�
I

= (;�)�
�
(LQ)I .

Thus L \Q \ I � (LQ)I:
(ii)) (i)
L [a] = a [ Sa ;Q [a] = a and I [a] = aS [ Sa; are principle bi-ideal

and principle left ideal of S generated by a respectively. Thus by (ii), left
invertive law, paramedial law and using law a(bc) = b(ac); we have,

f(Sa) \ (Sa)g \ (Sa) � [f(aS) [ (Sa)gS](Sa)

= [f(aS)Sg [ f(Sa)Sg](Sa)

= [fS(Sa)g [ f(Sa)Sg](Sa)

= [Sa [ f(Sa)Sg](Sa)

= [(Sa)(Sa)] [ f(Sa)Sg(Sa)

� (aS) a:

Hence S is regular.

Theorem 156 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For an ideal I and bi-ideal B of S; I \B � I (IB) :
(iii) hF; Ii~\hG;Bi �(;�) hF; Ii� (hF; Ii�hG;Bi); for any (2 ;2 _q�)-

fuzzy soft ideal hF;Ai and (2 ;2 _q�)-fuzzy soft bi-ideal hH;Bi of S.
(iv) hF; Ii~\hG;Bi �(;�) hF; Ii� (hF; Ii� hG;Bi); for any (2 ;2 _q�)-

fuzzy generalized soft ideal hF;Ai and (2 ;2 _q�)-fuzzy generalized soft
bi-ideal hH;Bi of S.

Proof. (i)) (iv)
Let hF; Ii and hG;Bi be any (2 ;2 _q�)-fuzzy generalized soft ideal

and (2 ;2 _q�)-fuzzy generalized soft bi-ideal over S; respectively. Let a
be any element of S, hF; Ii~\hG;Bi = hK1; I [ Bi:For any " 2 I [ B. We
consider the following cases,
Case 1: " 2 I � B: Then K1(") = F (") \G(") and K2(") = (F �G)(");

so we have K1(") � _q(;�)K2(")
Case 2: " 2 B � I: Then K1(") = H(") and K1(") = H(") = K2(")
Case 3: " 2 I \B: Then K1(") = F (") \G(") and K2(") = F (") �G("):

Now we show that F (") \ G(") � _q(;�)(F (") � G(")): Now since S is
regular AG-groupoid, so for a 2 S there exist x 2 S such that using left
invertive law; we have,

a = (ax) a = [f(ax) agx]a = (ax)[(ax)a] 2 I(IB).
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Thus we have,

max f(F (") � (F (") �G("))(a); g

= max

"(
_

a=pq

F (")(p) ^ (F (") �G("))(q)

)

; 

#

� maxf(F (")(ax) ^ (F (") �G("))f(ax)ag); g

= maxf(F (")(ax)
_

f(ax)ag=uv

(F (")(u) ^G(")(v)g; g

� max fF (")(ax) ^ (F (")(ax) ^G(")(a); g

= max fF (")(a) ^ F (")(a) ^G(")(a); g

= min fmaxfF (")(a); g ;maxfG(")(a); gg

� minfminf(F (")(a); �g;minfG(")(xa); �gg

= min f(F (") ^G("))(a); �g

= min f(F (") \G("))(a); �g

Thusmin f(F (") \G("))(a); �g � max f(F (") � (F (") �G("))(a); g : This
implies that F (") \G(") � _q(;�)(F (") � (F (") �G(")):
Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF; Ii~\hG;Bi �(;�) (hF; Ii � (hF; Ii)� hG;Bi):

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that I and B are ideal and bi-ideal of S; respectively, then

�(I; E) and �(B;E) are (2 ;2 _q�)-fuzzy soft ideal and (2 ;2 _q�)-
fuzzy soft bi-ideal over S;respectively. Now we have assume that (iv) holds,
then we have

�(I; E)~\�(B;E) �(;�) (�(I; E)� (�(I; E)� �(B;E)).

So,

��(I\B) = (;�)�
�
I \ �

�
B

� _q(;�)(�
�
I � (�

�
I � �

�
B))

= _q(;�)(�
�
I) � (�

�
IB)

= (;�)�
�
I(IB).

Thus I \B � I(IB):
(ii)) (i)
I [a] = aS[Sa; and B [a] = a[a2[(aS) a are principle ideal and principle

bi-ideal of S generated by a respectively. Thus by (ii), left invertive law,
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paramedial law and using law a(bc) = b(ac); we have,

f(aS) [ (Sa)g \ (Sa) � [f(aS) [ (Sa)gS](Sa)

= [f(aS)Sg [ f(Sa)Sg](Sa)

= [fS(Sa)g [ f(Sa)Sg](Sa)

= [Sa [ f(Sa)Sg](Sa)

= [(Sa)(Sa)] [ f(Sa)Sg(Sa)

� (aS) a:

Hence S is regular.

Theorem 157 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For an ideal I and left ideal L of S; I \ L � (IS)L:
(iii) hF; Ii~\hG;Li �(;�) (hF; Ii��hS;Ei�hG;Li); for any (2 ;2 _q�)-

fuzzy soft ideal hF;Ai and (2 ;2 _q�)-fuzzy soft left ideal hH;Bi of S.
(iv) hF; Ii~\hG;Li �(;�) (hF; Ii� hS;Ei� hG;Li); for any (2 ;2 _q�)-

fuzzy generalized soft ideal hF;Ai and (2 ;2 _q�)-fuzzy generalized soft
left ideal hH;Bi of S.

Proof. (i)) (iv)
Let hF; Ii and hG;Li be any (2 ;2 _q�)-fuzzy generalized soft ideal

and (2 ;2 _q�)-fuzzy generalized soft left ideal over S; respectively. Let
a be any element of S, hF; Ii~\hG;Li = hK1; I [ Li:For any " 2 I [ L. We
consider the following cases,
Case 1: " 2 I � L: Then K1(") = F (") \ G(") and K2(") = (F � G)(");

so we have K1(") � _q(;�)K2(")
Case 2: " 2 L� I: Then K1(") = H(") and K1(") = H(") = K2(")
Case 3: " 2 I \ L: Then K1(") = F (") \G(") and K2(") = F (") �G("):

Now we show that F (") \ G(") � _q(;�)(F (") � G(")): Now since S is
regular AG-groupoid, so for a 2 S there exist x 2 S such that using medial
law; we have,

a = (ax) a = (ax)f(ax) ag = fa(ax)g(xa) 2 (IS)L.
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Thus we have,

max
�
((F (") � X �

S) �G("))(a); 
	

= max

(
_

a=pq

(F (") � X �
S)(p) ^G(")(q); 

)

� maxf(F (") � X �
S)fa(ax)g ^G("))(xa); g

= maxf
_

fa(ax)g=uv

(F (")(u) ^ X �
S(v)) ^G(")(xa)g; g

� max
�
F (")(a) ^ X �

S(ax) ^G(")(xa); 
	

= max fF (")(a) ^ 1 ^G(")(xa); g

= min fmaxfF (")(a); g ;maxfG(")(xa); gg

� minfminf(F (")(a); �g;minfG(")(xa); �gg

= min f(F (") ^G("))(a); �g

= min f(F (") \G("))(a); �g

Thusmin f(F (") \G("))(a); �g � max
�
((F (") � X �

S) �G("))(a); 
	
: This

implies that F (") \G(") � _q(;�)(F (") � X
�
S) �G("):

Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF; Ii~\hG;Li �(;�) (hF; Ii � �hS;Ei)� hG;Li:

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that I and L are ideal and left ideal of S; respectively, then

�(I; E) and �(L;E) are (2 ;2 _q�)-fuzzy soft ideal and (2 ;2 _q�)-
fuzzy soft left ideal over S;respectively. Now we have assume that (iv)
holds, then we have

�(I; E)~\�(L;E) �(;�) (�(I; E)� �(S;E))� �(L;E).

So,

��(I\L) = (;�)�
�
I \ �

�
L

� _q(;�)(�
�
I � �

�
S) � �

�
L

= (;�)�
�
(IS)L.

Thus I \ L � (IS)L:
(ii)) (i)
I [a] = aS [ Sa; and L [a] = a [ Sa are principle ideal and principle

left ideal of S generated by a respectively. Thus by (ii), left invertive law,



5. Fuzzy Soft Abel Grassmann Groupoids 103

paramedial law and using law a(bc) = b(ac); we have,

f(aS) [ (Sa)g \ (Sa) � [f(aS) [ (Sa)gS](Sa)

= [f(aS)Sg [ f(Sa)Sg](Sa)

= [fS(Sa)g [ f(Sa)Sg](Sa)

= [Sa [ f(Sa)Sg](Sa)

= [(Sa)(Sa)] [ f(Sa)Sg(Sa)

� (aS) a:

Hence S is regular.

Theorem 158 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For left ideal L of S; L � fL (LS)gL:
(iii) hF;Li �(;�) fhF;Li � (hF;Li � �hS;Eig � hF;Li; for any (2 ;2

_q�)-fuzzy soft left ideal hH;Bi of S. (iv)hF;Li �(;�) fhF;Li � (hF;Li �
�hS;Eig � hF;Li (2 ;2 _q�)-fuzzy soft generalized left ideal hF;Bi of S.

Proof. (i)) (iv)
Let hF;Li be any (2 ;2 _q�)-fuzzy generalized soft left ideal over S.

Now we show that F (") \ G(") � _q(;�)(F (") � G(")): Now since S is
regular AG-groupoid, so for a 2 S there exist x 2 S such that using medial
law;paramedial law,left invertive law and also using law a(bc) = b(ac); we
have,

a = (ax) a = [f(ax)agx]a = f(xa)(ax)ga = fa(ax)g(xa)

= f(ea)(ax)g(xa) = f(xa)(ae)g(xa) = [f(ae)agx](xa)

= x[f((ae)a)xga] = (ex)[f((ae)a)xga]

= [af((ae)a)xg](xe) = [af((ae)a)xg]�x = [f(ae)ag(ax)]�x

= [�x(ax)][(ae)a] = [a(�xx)][(ae)a] = [a(ae)][(�xx)a]

= (�xx)[fa(ae)ga] = (�xx)[fa(ae)g(ea)]

= (�xx)[(ae)f(ae)ag] = (ae)[(�xx)f(ae)ag]

= [f(ae)ag(�xx)](ea) = [f(ae)agx1]a = [(x1a)(ae)]a

= [(ea)(ax1)]a = fa(ax1)ga 2 [L(LS)]L;where �x = (xe)

and x1 = (�xx)
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Thus we have,

max
�
X �
S � (F (") � F ("))(a); 

	

= max

(
_

a=pq

F (")((F (") � X �
S)(p) ^ F (")(q); 

)

� max[fF (")(F (") � X �
S)gfa(ax)g ^ F ("))(a); ]

= max[min[fF (")(F (") � X �
S)gfa(ax)g]; F ("))(a); ]

= max[min[f
_

a(ax)=uv

F (")(F (") ^ X �
S)g(uv)]; F ("))(a); ]

� max[min[minffF (")(u)(F (") � X �
S)g(v)g; F ("))(a)]; ]

= max[min[minfF (")(a)f(F (") � X �
S)gg(ax)]; F ("))(a); ]

= max[min[minfF (")(a)f
_

ax=lm

(F (") ^ X �
S)g(lm)]; F ("))(a); ]

� max[min[minfF (")(a)fmin(F (")(a);X �
S)(x)g]; F ("))(a)g]; ]

= max[min[minfF (")(a)fmin(F (")(a); 1)(x)g]; F ("))(a)g]; ]

= max[min[minfF (")(a); (F (")(a); F ("))(a)g]; ]

= max[minfF (")(a); g]

= min[maxfF (")(a); g]

� min[minfF (")(a); �g]:

Thus min f(F (")(a); �g � max
�
X �
S � (F (") � F ("))(a); 

	
: This implies

that F (") � _q(;�)(X
�
S � (F (") � F (")):

Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF;Li �(;�) (�hS;Ei � (hF;Li � hF;Li):

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that L is left ideal of S; respectively, then �(L;E) is (2 ;2

_q�)-fuzzy soft left ideal over S. Now we have assume that (iv) holds, then
we have

�(F;L) �(;�) (�(I; E)� �(S;E))� �(L;E).

So,

��(I\L) = (;�)�
�
I \ �

�
L

� _q(;�)(�
�
I � �

�
S) � �

�
L

= (;�)�
�
(IS)L.

Thus I \ L � (IS)L:
(ii)) (i)
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I [a] = aS [ Sa; and L [a] = a [ Sa are principle bi-ideal and principle
left ideal of S generated by a respectively. Thus by (ii), left invertive law,
paramedial law and using law a(bc) = b(ac); we have,

f(aS) [ (Sa)g \ (Sa) � [f(aS) [ (Sa)gS](Sa)

= [f(aS)Sg [ f(Sa)Sg](Sa)

= [fS(Sa)g [ f(Sa)Sg](Sa)

= [Sa [ f(Sa)Sg](Sa)

= [(Sa)(Sa)] [ f(Sa)Sg(Sa)

= [(Sa)(Sa)] [ [(aS)(Sa)]

� (Sa2)S [ (aS) a:

Hence S is regular.

Theorem 159 If S is an AG-groupoid with left identity then the following
are equivalent
(i) S is regular,
(ii) L \B � LB for left ideal I and bi-ideal B,
(iii) hF;Li \ hG;Bi �(;�) (hF;Li � hG;Bi), where f and g are (2 ;2

_q�)-fuzzy left ideal and bi-ideal of S.

Proof. (i) =) (iii) Let a 2 S, then since S is regular so using left invertive
law we get

a = (ax)a = (ax)f(ax)ag = fa(ax)g(xa) = f(xa)(ax)ga

= f(xa)(ax)gf(ax)ag = fa(ax)gf(ax)(xa)g.

maxff � (X �
S � g); g = max

"(
_

a=pq

f(p) ^ (X �
S � g)(q)

)

; 

#

� max
�
f(ax) ^ (X �

S � g)[xf(ae)ag]; 
�

= max
�
minff(ax); (X �

S � g)fx((ae)a)gg; 
�

= max

2

4minff(ax); f
_

x((ae)a)g=st

(X �
S(s) ^ g(t); 

3

5

� max
�
minff(ax); f(X �

S(x) ^ g((ae)a)g; 
�

= max
�
fminff(ax);minf(X �

S(x); g((ae)a)gg; 
�

= max [fminff(ax);minf1; g((ae)a)gg; ]

= max [fminff(ax); g((ae)a)g; ]

= min [maxff(ax); g;maxfg((ae)a); g]

� min[minff(a); �g;minfg(a); �g

= minff \ g(a); �g.
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Thus f \ g � _q(;�)f � (X
�
S � g).

(iii) =) (ii) Let L and B are ideal and bi-ideal of S respectively. Then
X �
L and X

�
B are (2 ;2 _q�)-fuzzy left ideal and bi-ideal of S respectively.

Now by (iii)

X �
L\B = X �

L \ X
�
B � _q(;�)X

�
L � (XS � X

�
B)

=
(;�)

_ q(;�)X
�
fL(SB)g:

Thus L \B � L(SB).
(ii) =) (i)Using fS(Sa)g � (Sa) and we get

a 2 (Sa) \ fa [ a2 [ (aS)ag � (Sa)f(aS)ag � (aS)a.

Hence S is regular.

Theorem 160 For an AG-groupoid S; with left identity; the following are
equivalent.
(i) S is regular.
(ii) For bi-ideal B of S; B � B2S:
(iii) hF;Bi �(;�) (hF;Bi�hF;Bi)��hS;Ei; for any (2 ;2 _q�)-fuzzy

soft bi-ideal hF;Ai of S.
(iv) hF;Bi �(;�) (hF;Bi� hF;Bi)��hS;Ei; for any (2 ;2 _q�)-fuzzy

generalized soft bi-ideal hF;Ai of S.

Proof. (i)) (iv)
Let hF;Bi be any (2 ;2 _q�)-fuzzy generalized soft bi-ideal. Let a be

any element of S, Now since S is regular AG-groupoid, so for a 2 S there
exist x 2 S such that using left invertive law, medial law, paramedial law
and also using law a(bc) = b(ac); we have,

a = (ax) a = (ax)f(ax) agfa(ax)g(xa) = x[fa(ax)ga]

= x[f(ea)(ax)ga] = x[f(xa)(ae)ga] = (ex)[f(xa)(ae)ga]

= [af(xa)(ae)g](xe) = [af((ae)a)xg](xe) = f(xe)xg[af(ae)ag]

= a[f(xe)xgf(ae)ag] = a[(ae)f((xe)x)ag]

= (ea)[(ae)f((xe)x)ag] = [f(ae)f((xe)x)agga]e

= [f(ae)(ta)ga]e = [f(at)(ea)ga]e = [f(at)aga]e 2 B2S, where t = f(xe)xg:
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Thus we have,

max
�
((F (") � F (")) � (X �

S))(a); 
	

= max

(
_

a=pq

(F (") � F ("))(p) ^ (X �
S)(q); 

)

� maxf(F (") � F ("))f((at)a)ag ^ (X �
S)(e); g

= maxf
_

f((at)a)ag=uv

fF (")(u) ^ F (")(v) ^ X �
S(e)g; g

� max
�
F (")f(at)ag ^ F (")(a) ^ X �

S(e); 
	

= max fF (")f(at)ag ^ F (")(a) ^ 1; g

= min fmaxfF (")f(at)ag; g ;maxfF (")(a); gg

� minminfF (")(a); �g;minfF (")(a); �gg

= min f(F (")(a); �g

= min f(F (")(a); �g

Thus min f(F (")(a); �g � max
�
((F (") � F (")) � (X �

S))(a); 
	
: This im-

plies that F (") � _q(;�)((F (") � F (")) � X
�
S):

Therefore in any case, we have K1(") � _q(;�)K2("). Hence

hF;Bi �(;�) (hF;Bi � hF;Bi)� �hS;Ei:

(iv) =) (iii) is obvious.
(iii) =) (ii)
Assume that B is bi-ideal of S; then �(B;E) is (2 ;2 _q�)-fuzzy soft

bi-ideal, (2 ;2 _q�)-fuzzy soft ideal over S;respectively. Now we have
assume that (iv) holds, then we have

�(B;E) �(;�) (�(B;E)� �(B;E))� �(S;E).

So,

��B = (;�)�
�
B2 \ ��S

� _q(;�)(�
�
B � �

�
B) � �

�
S

= (;�)�
�
B2S .

Thus B � B2S:
(ii)) (i)
B [a] = a[a2[ (aS) a; and L [a] = a[Sa are principle bi-ideal and prin-

ciple left ideal of S generated by a respectively. Thus by (ii), left invertive
law, paramedial law and using law a(bc) = b(ac); we have,

Sa � [(Sa)(Sa)]S = [S(Sa)](Sa) = (SS)[a(Sa)]

= S[a(Sa)] � (aS) a:

Hence S is regular.
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