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Abstract: This paper presents a sensor fusion method based on the combination of cubature Kalman

filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as

the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree

spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically

instability in the system model. In processing navigation integration, the performance of nonlinear

filter based estimation of the position and velocity states may severely degrade caused by modeling

errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting

the process noise covariance through personal experience or numerical simulation, a scheme called

the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust

the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF

framework as a mechanism for timely implementing the tuning of process noise covariance matrix

based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm

shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented

Kalman filter (UKF), and CKF approaches.
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1. Introduction

The Global Positioning System (GPS) and inertial navigation system (INS) have complementary

operational characteristics and the synergy of both systems has been widely explored [1–3].

The GPS/INS integration is the adequate solution to provide a navigation system that has superior

performance in comparison with either a GPS or an INS stand-alone system. The performance of

GPS/INS integrated navigation system depends heavily on the design of sensor fusion, which is

typically carried out through the extended Kalman filter (EKF) to estimate the state variables of a

vehicle system and suppress the navigation measurement noise. Since most of the GPS/INS integration

is based on the complimentary filter architecture, the feedback configuration leads to an EKF mode

of operation in contrast to an ordinary linearized Kalman filter (LKF) that is associated with the

feedforward case. Due to this reason, the system nonlinearity is remained for the feedback case

as in the EKF. Although the Kalman filter has been shown to be a minimum mean square error

(MMSE) estimator, the fact that EKF relies on the first order linearization of the system model to

propagate the mean and covariance of the state might suffer from the performance degradation and

divergence problem due to the linearization process and system miss-modeling. In addition, the

complete calculation of the Jacobian matrix is cumbersome and time-consuming [4].

Sensors 2016, 16, 1167; doi:10.3390/s16081167 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1167 2 of 22

To better treat the nonlinearity, the unscented Kalman filter (UKF) [5–7] has been developed to

address nonlinear state estimation in the context of control theory, which uses a finite number of sigma

points to propagate the probability of state distribution through the nonlinear dynamics of system.

Unlike the conventional EKF achieving first-order accuracy where the linearization process using

the Jacobian matrices is involved, the UKF employs a minimal set of sigma points by deterministic

sampling approach and at least the second order accuracy of the posterior mean and covariance can be

captured. The UKF makes a Gaussian approximation with a limited number sigma points through the

unscented transform (UT) [8,9]. When the sample points are propagated through the true nonlinear

system, the posterior mean and covariance can be captured accurately to the second order of Taylor

series expansion for any nonlinear system. However, the rounding errors of numerical calculation for

UKF may destroy the non-negative and asymmetry of covariance matrix, therefore, the convergence

rate of the UKF approach is slow and the system may also be unstable. Investigation of the nonlinear

filtering approach to the integrated navigation problem has been seen using the sigma-point filters

(SPFs) (e.g., [8,9]).

Under the Bayesian filtering framework, the CKF [10–12] provides a new direction to realize the

nonlinear transformation. As opposed to the unscented transformation applied in UKF approach, the

third-degree spherical-radial cubature rule is employed in the CKF to compute numerical integration

encountered in the nonlinear Bayesian filter. The CKF can be treated as a special case of the UKF, which

can be seen in some of the existing literature [13,14]. It is claimed in [14] that the UT is essentially a

Gauss quadrature rule and other similar rules can also be applied. The spherical-radial cubature rule

used in CKF is a special case of the quadrature rules. Although the positioning performance of the

UKF and the CKF might be similar or even identical if the parameters of the UKF are well tuned, the

possible negative weights of the center point in UT can be avoided through tuning the parameters [5].

Comparing with the UKF, there are no parameters to tune in CKF approximating nonlinear functions

of the system and measurement. In general, using the additional tuning parameters of UKF compared

to CKF is not a demerit. They provide flexibility. If one does not want to bother to tune them, just fix

them as their default values, or just exclude the center point, and the CKF is automatically obtained.

The spherical-radial cubature rule is composed of two different integrals, spherical and radial

integrals. This is based on the spherical-radial transformation and generates an even number of equally

weighted cubature points. However, these integrals are then numerically computed by the spherical

cubature rule and the Gaussian quadrature rule, respectively. The performance can be improved in

terms of estimation accuracy, numerical stability and computational costs [11–14]. On the other hand,

The UKF-calculated estimation covariance matrix is not always guaranteed to be positive definite,

which it should be for correct functioning of the UKF. In view of the stability of the nonlinear filter,

the CKF can effectively avoid round-off errors of numerical computation, and possesses more stable

performance than the UKF and EKF [12]. The applicability and effectiveness of CKF based positioning

system for sensor data fusion is presented in [15,16]. Liu et al. [16] presents an adaptive cubature

Kalman filter (ACKF) algorithm based on maximum a posterior estimation and fading factor. In their

research, the integration of inertial with distance measuring equipment (DME) was presented for

the land-based navigation system. The adaptation of the measurement noise covariance matrix was

introduced into the algorithm to enhance the applicability, where the adaptation module is based on

the fading factor configuration with fuzzy logic.

There are basically two main factors that influence the estimation performance. First, there is

model uncertainty because the adopted system model may not satisfy the actual state transition

process. Second, there exist parameter uncertainties in the system model. The fixed value of

covariance matrix cannot reflect the actual characteristics of the system error and measurement

error. For a nonlinear system, the nonlinearity approximating capability may not be satisfied during

the high-dynamic vehicle maneuvers, no matter what kind of filter: the Taylor series-based EKF,

the unscented transformation-based UKF, or the spherical-radial transformation-based CKF is used.

Using a nonlinear filter with fixed values of parameters in the varying dynamic environment has a
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risk on divergence due to modeling errors. To overcome the problem, an adaptive mechanism that

dynamically identifies modeling errors can be adopted.

To deal with the system nonlinearity as well as the noise uncertainty, the fuzzy logic adaptive

system (FLAS) is introduced [16–19] into the CKF to form the fuzzy adaptive cubature Kalman filter

(FACKF), in which the FLAS is employed to continually adjust the noise strength in the internal

model of the CKF framework, and tune the filter as well as possible. The FACKF scheme is applied

to the GPS/INS navigation to improve the navigation estimation accuracy. In FACKF, the CKF is

involved in the algorithm to estimate the nonlinear system states, while the process noise covariance

is adjusted through the FLAS. The fuzzy logic reasoning system [19] based on the Takagi-Sugeno

(T-S) model [20] is used in the FLAS. The fuzzy inference system (FIS) is constructed for obtaining the

suitable weighting factor according to the time-varying change in dynamics. In addition, degree of

divergence (DOD) parameters [21] are employed to identify the degree of change in vehicle dynamics.

By monitoring the innovation information, the FLAS, as the filter’s internal module, is employed for

dynamically adjusting the weighting factor based on the fuzzy rules so as to enhance the estimation

performance and tracking capability.

The remainder of this paper is organized as follows. In Section 2, the preliminary background

on the nonlinear filter is introduced, where the UKF and the CKF will be reviewed. The proposed

sensor fusion strategy, FACKF approach, is introduced in Section 3. In Section 4, two illustrative

examples are provided to evaluate the sensor fusion performance of the integrated navigation systems

for the FACKF approach in comparison to those by conventional approaches. Conclusions are given in

Section 5.

2. The Nonlinear Filters

Kalman filtering has been recognized as one of the most powerful state estimation techniques.

The purpose of the Kalman filter is to provide the estimation with minimum error variance.

The UKF is a nonlinear version of the Kalman filter and is widely used for the navigation sensor

fusion. The unscented Kalman filtering deals with the case governed by the nonlinear stochastic

difference equations:

xk`1 “ fpxk, kq ` wk (1)

zk “ hpxk, kq ` vk (2)

where the state vector is xk P ℜn, process noise vector is wk P ℜn, measurement vector is zk P ℜm, and

measurement noise vector is vk P ℜm. The vectors wk and vk are zero mean Gaussian white sequences

having zero cross-correlation with each other:

ErwkwT
i s “

#

Qk, i “ k

0, i ‰ k
; ErvkvT

i s “
#

Rk, i “ k

0, i ‰ k
; ErwkvT

i s “ 0 for all i and k (3)

where Qk is the process noise covariance matrix, and Rk is the measurement noise covariance matrix.

2.1. The Unscented Kalman Filter

The UKF was first proposed by Julier et al. [7] to address nonlinear state estimation in the context

of control theory. The first step in the UKF is to generate the sigma points through the UT. One of the

popular UT approaches is the scaled unscented transformation. Consider an n dimensional random

variable x, having the mean x̂ and covariance P, and suppose that it propagates through an arbitrary

nonlinear function f. The unscented transform creates 2n ` 1 sigma vectors X (a capital letter) and

weighted points W, given by

Xp0q “ x̂; Xpiq “ x̂ ` p
a

pn ` λqPqT

i ; Xpi`nq “ x̂ ´ p
a

pn ` λqPqT

i , i “ 1, . . . , n (4)
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W
pmq
0 “ λ

pn ` λq ; W
pcq
0 “ W

pmq
0 ` p1 ´ α2 ` βq; W

pmq
i “ W

pcq
i “ 1

2pn ` λq , i “ 1, . . . , 2n (5)

where p
a

pn ` λqPqi is the ith row of the matrix square root.
a

pn ` λqP can be obtained from the

lower-triangular matrix of the Cholesky factorization; λ “ α2pn ` κq ´ n is a scaling parameter;

α determines the spread of the sigma points around>x; κ is a secondly scaling parameter; β is used to

incorporate prior knowledge of the distribution of x; W
pmq
i is the weight for the mean associated with

the ith point; and W
pcq
i is the weight for the covariance associated with the ith point.

The sigma vectors are propagated through the nonlinear function to yield a set of transformed

sigma points,

yi “ f pXiq, i “ 0, . . . , 2n (6)

The mean and covariance of yi are approximated by a weighted average mean and covariance of

the transformed sigma points as follows:

yu “
2n
ÿ

i“0

W
pmq
i yi (7)

Pu “
2n
ÿ

i“0

W
pcq
i pyi ´ yuqpyi ´ yuqT (8)

As compared to the EKF’s linear approximation, the unscented transformation is accurate to the

second order for any nonlinear function. Table 1 shows the algorithm for implementation of the UKF,

given as in Equations (9)–(18).

Table 1. Implementation algorithm for the unscented Kalman filter.

- Initialization: Initialize state vector x̂0|0 and state covariance matrix P0|0

- Time update

(1) The transformed set is given by instantiating each point through the process model

ζi,k|k´1 “ fpXi,k´1q, i “ 0, . . . , 2n (9)

(2) Predicted mean

x̂k|k´1 “
2n
ÿ

i“0

W
pmq
i ζi,k|k´1 (10)

(3) Predicted covariance

Pk|k´1 “
2n
ÿ

i“0

W
pcq
i rζi,k|k´1 ´ x̂k|k´1srζi,k|k´1 ´ x̂k|k´1sT ` Qk´1 (11)

(4) Instantiate each of the prediction points through observation model

Zi,k|k´1 “ hpζi,k|k´1q (12)

(5) Predicted observation

ẑk|k´1 “
2n
ÿ

i“0

W
pmq
i Zi,k|k´1 (13)

(6) Innovation covariance

Pzz “
2n
ÿ

i“0

W
pcq
i rZi,k|k´1 ´ ẑk|k´1srZi,k|k´1 ´ ẑk|k´1sT ` Rk (14)
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Table 1. Cont.

-Measurement update

(7) Cross covariance

Pxz “
2n
ÿ

i“0

W
pcq
i rζi,k|k´1 ´ x̂k|k´1srZi,k|k´1 ´ ẑk|k´1sT (15)

(8) Performing update

Kk “ PxzP´1
zz (16)

x̂k|k “ x̂k|k´1 ` Kkpzk ´ ẑk|k´1q (17)

Pk|k “ Pk|k´1 ´ KkPzzKT
k (18)

2.2. The Cubature Kalman Filter

A nonlinear Bayesian filter called the cubature Kalman filter (CKF) was presented by Arasaratnam

and Haykin [9]. Proposed for nonlinear state estimation, the CKF is a Gaussian approximation of a

Bayesian filter that provides a more accurate filtering estimate then existing Gaussian filters.

The Bayesian filter solution reduces to computing multi-dimensional integrals, whose integrands

are of the form nonlinear function ˆ Gaussian density. The CKF utilizes the property of the efficient

numerical integration method known as spherical-radial cubature rule for those multi-dimensional

integrals [22]. Based on the third-degree cubature rule, a set of 2n points are selected in the CKF

to capture the mean and covariance in each update cycle. The cubature rule to approximate an

n-dimensional Gaussian weighted integral is

ż

Rn
fpxqpx; mx, Pqdx « 1

2n

2n
ÿ

i“1

fpmx `
?

Pζ iq (19)

where fpxq is the arbitrary function, Rn is domain of integration. mx is the mean of state x.
?

P is a

square root factor of the covariance matrix P satisfying the relation P “
?

P
?

P
T

and the set of 2n

cubature point. ξ i is the ith cubature point.

The CKF algorithm involves the following stages: Firstly, it approximates the mean and variance

of the probability distribution through a set of 2n cubature points with the same weight, propagates

the cubature points through the nonlinear functions, and then calculates the mean and variance of the

current approximate Gaussian distribution by the propagated cubature points. A set of 2n cubature

points is given by rξ i, ωis, where ξ i is the ith cubature point and ωi is the corresponding weight:

¸i “
# ?

nr1si, i “ 1, 2, . . . , n

´?
nr1si´n, i “ n ` 1, n ` 2, . . . , 2n

(20)

ωi “ 1

2n
, i “ 1, 2, . . . , 2n (21)

where r1si P ℜn denotes the ith column vector of the identity matrix Inˆn.

Under the assumption that the posterior density at time k ´ 1 is known, the steps involved in the

time and measurement updates of the CKF are derived, given by Equations (22)–(35), summarized in

Table 2. The kernel method of the CKF is that the mean and variance of probability distribution can

be approximated by cubature points without any linearization of the system model. Thus, the CKF

algorithm does not demand to calculate Jacobian matrices so that the truncation errors can be avoided.
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Table 2. Implementation algorithm for the cubature Kalman filter.

- Initialization: Initialize state vector x̂0|0 and state covariance matrix P0|0

- Time update

(1) Factorize the covariance

Pk´1|k´1 “ Sk´1|k´1ST
k´1|k´1 (22)

(2) Evaluate the cubature points

Xi,k´1|k´1 “ Sk´1|k´1ξi ` x̂k´1|k´1 (23)

(3) Evaluate the propagated cubature points through the process model

X˚
i,k|k´1 “ fpXi,k´1|k´1q (24)

(4) Estimate the predicted mean

x̂k|k´1 “
2n
ÿ

i“1

ωiX
˚
i,k|k´1 (25)

(5) Estimate the predicted error covariance

Pk|k´1 “
2n
ÿ

i“1

ωiX
˚
i,k|k´1X˚T

i,k|k´1 ´ x̂k|k´1x̂T
k|k´1 ` Qk´1 (26)

- Measurement update

(6) Factorize the covariance

Pk|k´1 “ Sk|k´1ST
k|k´1 (27)

(7) Evaluate the cubature points

Xi,k|k´1 “ Sk|k´1ξi ` x̂k|k´1 (28)

(8) Evaluate the propagated cubature points through observation model

Zi,k|k´1 “ hpXi,k|k´1q (29)

(9) Evaluate the propagated observation

ẑk|k´1 “
2n
ÿ

i“1

ωiZi,k|k´1 (30)

(10) Estimate the innovation covariance

Pzz “
2n
ÿ

i“1

ωiZi,k|k´1ZT
i,k|k´1´ẑk|k´1ẑT

k|k´1 ` Rk (31)

(11) Estimate the cross-covariance

Pxz “
2n
ÿ

i“1

ωiXi,k|k´1ZT
i,k|k´1´x̂k|k´1ẑT

k|k´1 (32)

(12) Perform update state vector x̂k|k and its covariance matrix Pk|k

Kk “ PxzP´1
zz (33)

x̂k|k “ x̂k|k´1 ` Kkpzk ´ ẑk|k´1q (34)

Pk|k “ Pk|k´1 ´ KkPzzKT
k (35)

Like the UKF, the CKF is another type of nonlinear filtering approach without linearization of

nonlinear model. The CKF and UKF are distinguished in several aspects: (1) there has been emphasis on

spherical-radial integration rule of the CKF approach which has desirable numerical accuracy criterion

than on the efficiency; (2) the approaches to perform the Cholesky factorization on the error covariance

matrix as the first step of both the time and measurement updates in each time step; (3) the CKF

follows directly from the spherical-radial cubature rule for numerically computing Gaussian-weighted

integrals whose important property is that it does not entail any free parameters, whereas the UKF
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introduces a nonzero scaling parameter; and (4) the covariance matrix in the UKF is not always

guaranteed to be positive definite, hence, the decomposition of the covariance matrix is unavailable.

In view of numerical stability, the use of UT in the design of the UKF may marginally improve its

performance at expense of a reduced numerical stability because the estimation error covariance

matrix is not always guaranteed to be positive semidefinite. Compared to the CKF, which builds on

the numerical-integration perspective of Gaussian filters, employs a third-degree spherical-radical

cubature rule to compute Gaussian-weighted integrals numerically and is a relatively derivative-free

nonlinear filter with improved performance over the UKF in terms of numerical stability. In addition,

they are fundamentally different in sampling point set: for the sigma-point set, the stem at the center is

highly significant as it carries more weight, whereas the cubature point set does not have a stem at

the center and thus does not have the numerical instability problem of UKF. To avoid the numerical

instability problem, the CKF can effectively improve filtering stability [11–14].

3. The FLAS-assisted CKF Strategy

The fuzzy logic adaptive system is introduced to the CKF framework to enhance improvement

for vehicular navigation in high-dynamic environments. There are many state estimation methods

that were found to have practical applications for vehicle positioning and navigation in various

dynamic environments, with a pursuit of estimation accuracy and adaptive capability. Although the

cubature-based CKF solution solves the nonlinear approximation issue in a different way from

UKF, it still has to meet the requirements of robust estimation and performance stability in high

dynamic environments. In the design of CKF, tolerance to the uncertainty factors, including the noise

uncertainty and system modeling inaccuracy, is not a high concern, which require the development

of robust demand for CKF filtering scheme. The problem in this work is described as a strategy to

adaptively adjust the weighting factor in CKF framework and achieve a balance between robustness

and estimation performance.

3.1. The Fuzzy Logic Adaptive System (FLAS)

Fuzzy modeling is the method of describing the characteristics of a system using fuzzy rules,

which are linguistic IF-THEN statements involving fuzzy sets, fuzzy logic, and fuzzy inference.

There are two major types of fuzzy rules exist, namely, Mamdani fuzzy rules and Takagi-Sugeno (T-S)

fuzzy rules. The designed FLAS utilizes a fuzzy inference system of Takagi-Sugeno type, which has

special properties since it represents the nonlinear systems in the form of an interpolation between local

linear models. A typical fuzzy system consists of three components: fuzzification, fuzzy reasoning

(fuzzy inference), and fuzzy defuzzification, as shown in Figure 1. The fuzzification process converts a

crisp input value to a fuzzy value, the fuzzy inference is responsible for drawing calculations from the

knowledge base, and the fuzzy defuzzification process converts the fuzzy actions into a crisp action.






 



 




















  ’

 



ˆ υ






 υ

υυυυ m

Rule base 

Membership functions 

Fuzzification Fuzzy inference Defuzzification 

Figure 1. A fuzzy system.

The T-S fuzzy model represents the conclusion by functions. A typical rule in the T-S fuzzy model

has the form:

Model Rule i: IF Input x1 is F1
1 and Input x2 is F1

2 and Input xn is F1
n
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THEN Output yk “ fkpx1, x2, . . . , xnq “ Ck0 ` Ck1x1 ` ¨ ¨ ¨ ` Cknxn.

where F is a triangle-shaped membership function of the input variable vector, Ckipi “ 0 „ nq are

constants in the k-th rule. For a zero-order model, the output level is a constant:

Model Rule i: IF Input x1 is F1
1 and Input x2 is F1

2 ; THEN Output yk “ C10.

For the first-order model, the fuzzy rule can be expressed in the form:

Model Rule i: IF Input x1 is F1
1 and Input x2 is F1

2

THEN Output yk “ C10 ` C11x1 ` C12x2.

where F1
1 and F1

2 are fuzzy sets and C10, C11 and C12 are constants.

In the FLAS, the weighted average method of defuzzification to find the crisp output.

The weighted average defuzzification method can be expressed as:

y “
M
ÿ

k“1

wk.yk (36)

where the weights wk are computed as:

wk “

n
ś

i“1
µFk

i
pxiq

M
ř

j“1

„

n
ś

i“1
µ

F
j
i

pxiq


(37)

with
M
ř

i“1
wi “ 1, and the µ’s represent the membership function.

3.2. FLAS-Assisted CKF for Vehicle Navigation

In processing navigation states using the model-based filters as discussed in this paper, the time

varying parameters are considered uncertainties to exist in the covariance matrices. The FLAS module

in the CKF is employed to adapt the filter on-line. The T-S fuzzy model was used to directly estimate

the variance and covariance components for the measurements and adapt the CKF. Generally, when

the covariance is becoming large and is deviating from zero mean, the filter will be toward to the

instability. To avoid filter divergence and improve the robustness, the fuzzy logic system is used to

adapt the CKF by selecting the appropriate weighting factor ε, which is used to adaptively adjust the

process noise covariance based on a degree of divergence (DOD) parameters.

The innovation information is a critical factor for the filter, including the CKF. For the filter to

be optimal, the innovation is a zero-mean Gaussian white noise. Therefore, the performance of the

CKF can be monitored using the value of the innovation information. It is defined as the discrepancy

between actual measurements and predicted measurements:

υi “ zk ´ ẑk|k´1 (38)

The DOD parameters for identifying the degree of change in vehicle dynamics need to be defined.

Examples of possible approaches are given as follows. The innovation information at the present

epoch is employed for timely reflect the change in vehicle dynamics. The DOD parameter µ1 defined

as the averaged magnitude of innovation at the present epoch can be employed for timely reflection of

the time-varying vehicle dynamics:

µ1 “ 1

m

m
ÿ

i“1

|υi| (39)

where υi “ rυ1υ2 . . . υmsT , and m is the number of measurements (e.g., number of satellites in the

tightly-coupled configuration). Furthermore, the trace of innovation covariance matrix at present

epoch divided by the number of measurements employed for navigation processing can also be used:

µ2 “ υT
i υi

m
(40)
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In the FLAS, the DOD parameters are employed as the inputs for the fuzzy inference engines.

By monitoring the DOD parameters, the FLAS is able to on-line tune the weighting factor according

to the innovation information. In this work, the fuzzy logic used to perform adaptation involves

two parameters, µ1 and µ2 [21]. For this reason, this scheme can adjust the process noise covariance

adaptively and therefore improves estimation performance. The adjustments are performed simply

introducing a weighting factor ε as the scaling factor of the process noise covariance, in the

following way:
Qk Ñ ε ¨ Qk (41)

The FLAS is used to identify the appropriate weighting factor so as to keep the innovation

sequence toward to the zero-mean white sequence. Two DOD parameters based on the innovation are

chosen as the input variables for timely reflection of the time-varying vehicle dynamics. The output is

the weighting factor for tuning the process noise covariance matrix. Generally, when the covariance is

becoming large and is deviating from zero mean, the filter will be toward to the instability. In such

cases, the process noise covariance needs to be increased by applying a larger weighting factor for

compensating the modeling error. When the innovation mean and covariance are small, the residual

between actual and predicted measurements are small as well, meaning that the two measurements

match adequately well.

In this paper, the first-order T-S fuzzy model has been employed. The membership functions (MFs)

of input fuzzy variables as shown in Figure 2, where the triangle MFs are involved. The presented

FLAS has the IF–THEN form and consists of 9 rules:

1. IF µ1 is zero and µ2 is zero THEN ε is C10

2. IF µ1 is zero and µ2 is small THEN ε is C20

3. IF µ1 is zero and µ2 is large THEN ε is C30

4. IF µ1 is small and µ2 is zero THEN ε is C40 ` C41µ1 ` C42µ2

5. IF µ1 is small and µ2 is small THEN ε is C50 ` C51µ1 ` C52µ2

6. IF µ1 is small and µ2 is large THEN ε is C60 ` C61µ1 ` C62µ2

7. IF µ1 is large and µ2 is zero THEN ε is C70 ` C71µ1 ` C72µ2

8. IF µ1 is large and µ2 is small THEN ε is C80 ` C81µ1 ` C82µ2

9. IF µ1 is large and µ2 is large THEN ε is C90 ` C91µ1 ` C92µ2

where Ckipi “ 0 „ 2q are constants in the k-th rule. Parameters Cki can be tuned for different rules based

on a value calculated by the combination of the DOD parameters, µ1 and µ2. The parameter values

selected in this work are as follows: C10 “ C20 “ C30 “ 5; C40 “ C50 “ C60 “ 10; C70 “ C80 “ C90 “ 20;

C41 “ C51 “ C61 “ 5; C71 “ C81 “ C91 “ 10; C42 “ C52 “ C62 “ C72 “ C82 “ C92 “ 20.

Figure 3 shows the sensor fusion architecture of the tightly-coupled GPS/INS navigation

based on the FLAS-assisted CKF filtering mechanism. In this research, the error state integrated

navigation model with feedback configuration is used. The residual between GPS pseudorange and

INS predicted range is used as the measurement of the CKF in the tightly-coupled configuration.

For the loosely-coupled case, the measurement then is the residual of the position/velocity instead of

pseudoranges/pseudorange rates. The block indicated by the dashed-line on the right-hand side is the

fuzzy logic adaptive system (FLAS), which determines the value of weighting factor ε.
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4. Results and Discussion

Numerical simulations have been carried out to evaluate the performance of the FACKF approach

in comparison with those of EKF, UKF and CKF approaches for the integrated navigation data fusion.

The commercial software Satellite Navigation (SATNAV) Toolbox by GPSoft LLC was employed for

generating the satellite positions and pseudoranges after the test trajectory has been defined. It is

assumed that the differential GPS mode is used and only the multipath and receiver thermal noise

are included.

Assume that the differential GPS (DGPS) mode is used and most of the errors can be corrected,

but the multipath and receiver thermal noise cannot be eliminated. The measurement noise variances

rpi are assumed a priori known, which is set as 9 m2. Let each of the white-noise spectral amplitudes
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that drive the random walk position states be Sp “ 0.003pm{s2q{rad{s. Furthermore, let the clock

model spectral amplitudes be S f “ 0.4p10´18qs and Sg “ 1.58p10´18qs´1. In this paper, two illustrative

examples are given to confirm the effectiveness of the FACKF approach by valuation of the performance

for the various approaches including EKF, UKF, CKF, and FACKF. The simulation tests involve the

scenarios of two-dimensional loose integration and three-dimensional tight integration. For both

examples, several sets of parameters have been tested and two sets of parameters for the UKF are

presented. The UKF parameters are set as α “ 2.5, β “ 2, κ “ 0.

4.1. Scenario 1 (Example for 2D Land Vehicle Navigation)

For the first test, a simulated vehicle originates from the (0, 0) m location in the ENU coordinate

frame. A loosely-coupled GPS/INS integration configuration is used for this two dimensional

case. The trajectory can be divided mainly into thirteen time intervals (or segments) according

the dynamic characteristics, as indicated in Figure 4. Figure 5 shows the yaw angle of the vehicle

for two-dimensional simulation. The vehicle is simulated to conduct constant-velocity, straight-line

moving during seven time intervals, 0–300, 501–600, 701–1000, 1101–1400, 1501–1600, 1701–1800 and

1901–2000 s, all at a speed of 10π m/s. Furthermore, the higher dynamic maneuvering conducted

counter-clockwise circular and turn motion during 301–500, 601–700, 1001–1100, 1401–1500, 1601–1700

and 1801–1900 s. Table 3 presents description of the vehicle motion for providing better insight into

vehicle dynamic information in each time interval. The standard deviations of inertial sensors are

9 ˆ 10´4 m/s2 for the accelerometers and 9 ˆ 10´4 rad/s for the gyroscope, respectively.
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Figure 4. Two-dimensional vehicle trajectory for Scenario 1.
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Table 3. Description of the vehicle motion for Scenario 1.

Segment Number Time Interval (s) Motion

1 (0–300) Constant velocity straight line
2 (301–500) Counter-clockwise circular motion
3 (501–600) Constant velocity straight line
4 (601–700) Counter-clockwise turn
5 (701–1000) Constant velocity straight line
6 (1001–1100) Counter-clockwise turn
7 (1101–1400) Constant velocity straight line
8 (1401–1500) Counter-clockwise turn
9 (1501–1600) Constant velocity straight line
10 (1601–1700) Clockwise turn
11 (1701–1800) Constant velocity straight line
12 (1801–1900) Clockwise turn
13 (1901–2000) Constant velocity straight line

The differential equations describing the two-dimensional inertial navigation state, where two

accelerometers and one gyroscope are involved as follows:
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(42)

where rau, avs are the measured acceleration in the body frame, and ωr is the measured yaw rate in

the body frame. The error model for INS is constructed by the navigation states augmented by the

accelerometer biases and gyroscope drift:

d
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(43)

which is utilized in the integration navigation filter as the inertial error model. In Equation (43), δn

and δe represent the east and north position errors, respectively; δvn and δve denote the east and north

velocity errors, respectively; δψ indicate yaw angle; and δau, δav and δωr are the accelerometer biases

and gyroscope drift, respectively. The measurement model is written as

«
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Figure 6 shows the position errors based on the three filters: EKF, UKF, and CKF. The results for

EKF versus UKF are presented by the two plots shown in the left column while those for UKF versus

CKF in the right column. Figure 7 provides the comparison of position errors for the UKF, CKF and

FACKF. In additions, the estimation performance for the Euler angles among various approaches is

presented. The results for the yaw angle errors based on the EKF, UKF, and CKF are shown in Figures 8

and 9. In Figure 8, the result for EKF versus UKF is shown in the left plot while that for UKF versus CKF

in the right plot. Comparison of yaw angle errors for UKF, CKF, and FACKF is presented in Figure 9.

The FACKF has demonstrated performance improvement capability when compared to the CKF and

UKF, due to better treatment on nonlinearity caused by vehicle maneuvers. The FLAS is adopted to

on-line determine the weighting factor in the FACKF, hence prevents the divergence problem, and

results in improved navigation accuracy. Table 4 provides the summary of root mean square (RMS)

errors and the time consumption for all the four approaches: EKF, UKF, CKF and FACKF. It can be

seen that the incorporation of the FLAS mechanism can remarkably improve the estimation accuracy

of the navigation states. Among the four approaches, the FLAS-assisted CKF strategy demonstrates

superior navigation accuracy performance as compared to the other three approaches.

  

(a) (b) 

  

(c) (d) 

—

—

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-40

-30

-20

-10

0

10

20

30

Time (s)

E
a
s
t 

(m
)

 

 

EKF

UKF

200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

E
a
s
t 

(m
)

 

 

UKF

CKF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-15

-10

-5

0

5

10

15

20

25

30

Time (s)

N
o
rt

h
 (

m
)

 

 

EKF

UKF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

N
o
rt

h
 (

m
)

 

 

UKF

CKF

Figure 6. Position errors for EKF, UKF, and CKF—Scenario 1: (a,c) EKF versus UKF; and (b,d) UKF

versus CKF.



Sensors 2016, 16, 1167 14 of 22—

  

(a) (b) 

—

200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

E
a
s
t 

(m
)

 

 

UKF

CKF

FACKF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

N
o
rt

h
 (

m
)

 

 

UKF

CKF

FACKF

Figure 7. Comparison of position errors based on the UKF, CKF, and FACKF—Scenario 1. (a) East

position error; (b) North position error.

  

(a) (b) 

—

—

m ns  

 

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.1

-0.05

0

0.05

0.1

0.15

Time (s)

Y
a
w

 (
ra

d
)

 

 

EKF

UKF

200 400 600 800 1000 1200 1400 1600 1800 2000
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (s)

Y
a
w

 (
ra

d
)

 

 

UKF

CKF

Figure 8. Comparison of yaw angle errors for EKF, UKF, and CKF—Scenario 1: (a) EKF versus UKF;

and (b) UKF versus CKF.
—

 

—

m

 

  6.144

 12.70

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (s)

Y
a
w

 (
ra

d
)

 

 

UKF

CKF

FACKF

Figure 9. Comparison of yaw angle errors for UKF, CKF, and FACKF—Scenario 1.



Sensors 2016, 16, 1167 15 of 22

Table 4. Summary of RMS errors and the time consumption for Scenario 1.

RMS Errors (in Units of m for Positions
and Rad for Angles, Respectively) Time Consumption (s)

East North Yaw

EKF 10.2400 8.8917 0.0511 6.144
UKF 2.3966 3.1636 0.0236 12.702
CKF 1.4524 1.6161 0.0165 11.872

FACKF 0.3634 0.2312 0.0096 13.162

4.2. Scenario 2 (Example for 3D Navigation Environment)

The second example for the three-dimensional navigation case is presented for further

confirmation of the robustness and effectiveness of the proposed method. The data for INS error

specifications are taken from Crista IMU specifications [23], as shown in Table 5. The GPS data were

generated at 1 Hz and the IMU has a data rate of 10 Hz.

Table 5. INS error specifications (from Crista IMU Specifications [23]).

Gyros Accelerometers

Range ˘300˝/s ˘10 G

Scale Factor Error
<1% (@ 25 ˝C) <1% (@ 25 ˝C)
(i.e., < 3˝/s) (i.e., < 100 mG or 0.98 m/s2)

In-Run Bias Error
Fixed temperature <0.2˝/s (warmed up) <25 mG (0.245 m/s2)
Over temperature <0.6˝/s <51 mG (0.500 m/s2)

Noise (1σ, no oversamples) <˘ 0.7˝/s <˘12 mG (0.120 m/s2)

The three-dimensional vehicle trajectory for Scenario 2 is shown in Figure 10. Table 6 presents

description of the three-dimensional vehicle motion. Figure 11 shows the Euler angles for the case

of three-dimensional simulation. The trajectory for this example can be mainly divided into nine

time intervals according to the vehicle dynamic characteristics. The vehicle was simulated to conduct

constant acceleration and level flight from 0 to 250 s, counter-clockwise turns from 501 to 2310 s and

clockwise circular motion from 2821–4630 s. In the three time intervals, highly dynamic maneuvering

is involved. The constant-velocity straight-line flight is involved in all the other segments, where the

low dynamic motion is considered.
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Figure 10. Three-dimensional vehicle trajectory for Scenario 2.
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Table 6. Description of the vehicle motion for Scenario 2.

Segment Number Time Interval (s) Motion

1 (0–250) Constant acceleration level flight
2 (251–500) Climbing
3 (501–2310) Counter-clockwise circular motion
4 (2311–2820) Climbing
5 (2821–4630) Clockwise circular motion
6 (4631–4880) Descending
7 (4881–5120) Constant velocity level flight
8 (5121–5470) Descending
9 (5471–5740) Constant velocity level flight
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Figure 11. The Euler angles for the case of three-dimensional simulation. (a) Roll angle; (b) Pitch angle;

(c) Yaw angle.

The INS equations describing the three-dimensional inertial navigation state are:

.
V

n

e “ Cn
b fn ´ rΩpωn

enq ` 2Ωpωn
ieqsVn

e ` gn
l (45)

The error model employed for INS is a terrestrial INS psi angle error model [24]:

δ
.

R “ ´ωen ˆ δR ` δV (46)

δ
.

V “ ´pωie `ωinq ˆ δV ´ψˆ f ` εa (47)

ψ “ ´ωin ˆψ` εg (48)

where δR is the position error vector, δV is the velocity error vector, ψ is the attitude error vector,ωen

refers to the rotation rate of the local geographic frame relative to the earth frame, ωie refers to the

earth rate vector,ωin refers to the rotation rate of the local geographic frame with respect to the inertial

frame, f is the specific force vector, εa is the accelerometer error vector and εg is the gyro drift rate
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vector. The state vector include 17 states: three inertial error states each in position, velocity, attitude,

accelerometer bias, and gyro bias, and one state each for receiver clock bias and drift:

xk “ rx, y, z,
.
x,

.
y,

.
z, ψx, ψy, ψz, ax, ay, az, gx, gy, gz, b, dsT

(49)

A tightly-coupled GPS/INS integration configuration is used. The states and the measurements

are related nonlinearly. The nonlinear pseudorange equation can be linearized by expanding Taylor’s

series around the approximate (or nominal) user position and neglecting the higher terms. If only the

pseudorange observables are available, the linearized measurement equation based on n observables

can be written as given by:
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(50)

where xk is shown as in Equation (49) and vρ is the measurement noise.

The effectiveness of the proposed method for Scenario 2 is given by the results shown

from Figures 12–15. Figure 12 provides the position errors based on the three nonlinear filter

approaches: UKF, CKF and FACKF. It can be seen that the state estimate of the conventional CKF

has deviated from the true state in high dynamic segments, while the FACKF provides remarkable

improvement. Comparison of Euler angle estimation results for UKF versus CKF is shown in Figure 13;

and comparison of Euler angle estimation results for CKF versus FACKF is shown in Figure 14.

The estimation results of Euler angles based on the UKF are unreliable, while the CKF is able to provide

acceptable results. When using the FACKF, the results are further improved. The reason is that the

FACKF involves the use of appropriate weighting factor online whereas the other three approaches

do not offer this flexibility and depend mainly on the fixed parameters of process noise covariance

matrix based on the prior knowledge. Figure 15 presents the comparison of Euler angle errors for UKF,

CKF, and FACKF, in which the results for the three approaches are shown as in the three plots on the

left column and, for better readability, CKF versus FACKF on the right column. Table 7 provides the

summary of RMS errors and the time consumption for the 3D navigation case. Comparison of RMS

errors is illustrated in Figure 11, which demonstrates that FACKF outperforms significantly the other

approaches: EKF, UKF, and CKF.

Table 7. Summary of RMS errors and the time consumption for Scenario 2.

RMS Errors (in Units of m for Positions and Rad for Angles, Respectively)
Time Consumption (s)

East North Altitude Roll Pitch Yaw

EKF 9.0112 7.6160 6.3685 5.1543 9.2497 6.7151 32.287
UKF 3.7776 4.4502 4.0834 1.1380 1.4199 1.0941 38.418
CKF 1.7921 1.4048 1.1736 0.0047 0.0027 0.0965 37.742

FACKF 0.8075 0.5933 0.6698 0.0005 0.0004 0.0346 40.106
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Figure 12. Position errors for UKF, CKF, and FACKF—Scenario 2. (a) East position error; (b) North

position error; (c) Altitude error.
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Figure 13. Comparison of Euler angle estimation results: UKF (in green) versus CKF (in

blue)—Scenario 2. (a) Roll angle; (b) Pitch angle; (c) Yaw angle.
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Figure 14. Comparison of Euler angle estimation results: CKF (in green) versus FACKF (in

blue)—Scenario 2. (a) Roll angle; (b) Pitch angle; (c) Yaw angle.
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Figure 15. Comparison of Euler angle errors for UKF, CKF, and FACKF—Scenario 2: (a,c,e) UKF, CKF

and FACKF; and (b,d,f) CKF versus FACKF.

Based on the results, several important remarks are given as follows:

(1) During the time intervals the vehicle is conducting maneuvering, i.e., circular motion, turn

motion, constant acceleration, or variable acceleration, the model mismatch to the actual situation

leads to increased errors, as can be seen from the solution obtained by the conventional EKF.

The CKF is about to converge in the high dynamic regions where there still exist noticeably large

errors for the UKF-based solutions.

(2) Since the use of fixed value of covariance matrix cannot reflect the realistic vehicle dynamics,

the performance of the nonlinear filters degrades due to such uncertainties on parameter

values. To improve the performance of the CKF, a robust technique that the FLAS mechanism

is incorporated for dynamically tuning the process noise covariance in the CKF framework.

Remarkable improvement in estimation accuracy is obtained using the FACKF algorithm.
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(3) For the three-dimensional case, the estimation results of Euler angles based on the UKF are

unreliable, while the CKF is able to provide acceptable results. When using the FACKF, the results

are further improved.

(4) The results from the two illustrative examples demonstrate that, by monitoring the innovation

information based on DOD parameters, the FACKF possesses superior capability to detect the

change in vehicle dynamics and adjust the scaling factor so as to prevent the divergence and

remain better navigation accuracy. For the segments with sharp turns or abrupt maneuvers

involved, the performance improvement becomes obvious.

(5) The results show that through tuning of the process noise covariance, the FLAS helps to resolve

the problem on noise uncertainty in the CKF for fusing the integrated navigation system data.

Therefore, when a designer does not have sufficient information to develop the precise model,

the proposed approach provides a useful alternative for designing the GPS/INS integration.

5. Conclusions

This paper has presented a sensor fusion method for the GPS/INS integrated navigation systems.

The proposed approach is based on the combination of cubature Kalman filter (CKF) to treat the system

nonlinearity, and fuzzy logic adaptive system (FLAS) to tune the covariance matrix of the process noise

during the vehicle maneuvering.

The proposed FLAS-assisted CKF enhances the robustness of CKF with better treatment to system

models including statistical uncertainties (mainly for adjusting the covariance matrix of the process

noise) through the FLAS. If the nonlinear filter does not perform satisfactorily well, the FLAS would

provide an appropriate weighting factor to improve the navigation accuracy of the CKF. The FLAS

adaptive mechanism provides adequate tuning of the weighting factor, which enables the system to

achieve a balance between estimation accuracy and robustness. Based on the T-S fuzzy model, the

proposed FACKF scheme timely performs effective detection of vehicle maneuvering motion and

exhibits robustness against the divergence problem. The FACKF method is designed to overcome the

possible degradation problems caused by modeling errors on noise uncertainty, so as to improve the

navigation accuracy in highly dynamic segments without sacrificing precision in the other regions.

To validate the effectiveness of the proposed method, two illustrative examples for the GPS/INS

integration have been presented, one for the two-dimensional land vehicle navigation using the

loosely-coupled configuration; the other for the three-dimensional navigation using the tightly-coupled

configuration. Evaluation of navigation performance among various nonlinear filters, including EKF,

UKF, CKF, and FACKF, has been presented. As an enhanced version of CKF, the FACKF possesses

superior performance improvement in navigational accuracy and reveals very good potential as an

alternative navigation state estimator for the GPS/INS navigation design.
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