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Fuzzy and Randomized Confidence
Intervals and P -Values
Charles J. Geyer and Glen D. Meeden

Abstract. The optimal hypothesis tests for the binomial distribution and
some other discrete distributions are uniformly most powerful (UMP) one-
tailed and UMP unbiased (UMPU) two-tailed randomized tests. Conven-
tional confidence intervals are not dual to randomized tests and perform badly
on discrete data at small and moderate sample sizes. We introduce a new con-
fidence interval notion, called fuzzy confidence intervals, that is dual to and
inherits the exactness and optimality of UMP and UMPU tests. We also in-
troduce a newP -value notion, called fuzzyP -values or abstract randomized
P -values, that also inherits the same exactness and optimality.

Key words and phrases: Confidence interval,P -value, hypothesis test, uni-
formly most powerful unbiased (UMP and UMPU), fuzzy set theory, ran-
domized test.

1. INTRODUCTION

1.1 Bad Behavior of Conventional
Confidence Intervals

It has long been recognized that conventional con-
fidence intervals, which we also call crisp confidence
intervals, using a term from fuzzy set theory, can per-
form poorly for discrete data. A recent article (Brown,
Cai and DasGupta, 2001) reviewedcrisp confidence
intervals for binomial models. The authors and dis-
cussants of that paper do recommend some crisp
confidence intervals (not all recommending the same
intervals), and the crisp confidence intervals they rec-
ommend are indeed better than the intervals they dis-
like (for some definitions of “better”). However, even
the best crisp confidence intervals behave very badly.
The actual achieved confidence level oscillates wildly
as a function of both the true unknown parameter value
and the sample size. See our Figure 1, Figures 1–5,
10 and 11 in Brown, Cai and DasGupta (2001), Fig-
ures 4 and 5 in Agresti and Coull (1998) and Figure 1
in Casella (2001).

It is important to recognize that the behavior of all
crisp intervals for discrete data must exhibit oscillatory
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behavior similar to that shown in Figure 1. The fun-
damental reason is discreteness. When the datax are
discrete, so are the endpointsl(x) and u(x) of pos-
sible crisp confidence intervals. As the parameterθ

passes from just inside to just outside a possible con-
fidence interval(l(x), u(x)), the coverage probability
jumps discontinuously by Prθ (X = x). This flaw is
unavoidable—an irreconcilable conflict between crisp
confidence intervals and discrete data.

Standard asymptotic theory says that as the sam-
ple size goes to infinity, the oscillations get smaller in
small neighborhoods of one fixed parameter valueθ in
the interior of the parameter space. For the binomial
distribution, this means the oscillations get smaller for
success probabilityθ not near 0 or 1, but the oscilla-
tions remain large for shockingly large sample sizes
(Brown, Cai and DasGupta, 2001) and remain large for
all sample sizes forθ sufficiently near 0 and 1. The in-
herent flaws of the crisp confidence interval idea sug-
gest there should be a better approach to this problem.

1.2 Randomized Tests and Confidence Intervals

The testing problem for discrete models was solved
long ago by the introduction of randomized tests. For
the binomial distribution and many other discrete dis-
tributions there exist uniformly most powerful (UMP)
one-tailed tests and UMP unbiased (UMPU) two-tailed
tests (Lehmann, 1959, Chapters 3 and 4). These tests
are optimal procedures.
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FIG. 1. Coverage probability of the nominal 95%confidence in-
terval for the binomial distribution with sample size n = 10 calcu-
lated by the function prop.test in the R statistical computing
language (R Development Core Team, 2004).This is the Wilson
(also called, score) interval with continuity correction and modifi-
cations when x = 0 or x = n. The dashed line is the nominal level.
The solid line is the coverage probability of the interval as a func-
tion of the success probability θ .

Tests and confidence intervals are dual notions.
Hence randomized confidence intervals based on these
tests can achieve their nominal coverage probabil-
ity and inherit the optimality of these tests. For the
binomial distribution Blyth and Hutchinson (1960)
gave tables for constructing such randomized intervals
(for sample sizes up to 50 and coverage probabilities
0.95 and 0.99). Due to the discreteness of the tables,
the randomized intervals they produce are not close to
exact, hence a computer should now be used instead of
these tables (see Sections 2 and 3.3 below).

These randomized tests and intervals have been lit-
tle used in practice, however, because users object to
a procedure that can give different answers for the ex-
act same data due to the randomization. It is annoying
that two statisticians analyzing exactly the same data
and using exactly the same procedure can nevertheless
report different results. We can avoid the arbitrariness
of randomization while keeping the beautiful theory of
these procedures by a simple change of viewpoint to
what we callfuzzy andabstract randomized concepts.

1.3 Fuzzy Set Theory

We actually use only some concepts and terminology
of fuzzy set theory, which can be found in the most el-

ementary of introductions to the subject (Klir, St. Clair
and Yuan, 1997). We do not need the theory itself.

A fuzzy set A in a spaceS is characterized by its
membership function, which is a mapIA :S → [0,1].
The valueIA(x) is the “degree of membership” of the
pointx in the fuzzy setA or the “degree of compatibil-
ity . . . with the concept represented by the fuzzy set”
(Klir, St. Clair and Yuan, 1997, page 75). The idea is
that we are uncertain about whetherx is in or out of
the setA. The valueIA(x) represents how much we
think x is in the fuzzy setA: The closerIA(x) is to 1.0,
the more we thinkx is in A; the closerIA(x) is to 0.0,
the less we thinkx is in A.

A fuzzy set whose membership function only takes
on the values 0 or 1 is calledcrisp. For a crisp set, the
membership functionIA is the same thing as the in-
dicator function of an ordinary setA. Thus “crisp” is
just the fuzzy set theory way of saying “ordinary,” and
“membership function” is the fuzzy set theory way of
saying “indicator function.” Thecomplement of a fuzzy
set A that has membership functionIA is the fuzzy
setB that has membership functionIB = 1− IA (Klir,
St. Clair and Yuan, 1997, page 90).

If IA is the membership function of a fuzzy setA, the
γ -cut of A (Klir, St. Clair and Yuan, 1997, Section 5.1)
is the crisp set

γIA = {x : IA(x) ≥ γ }.
Clearly, knowing all theγ -cuts for 0≤ γ ≤ 1 tells us
everything there is to know about the fuzzy setA. The
1-cut is also called thecore of A, denoted core(A) and
the set

supp(A) = ⋃
γ>0

γIA = {x : IA(x) > 0}

is called thesupport of A (Klir, St. Clair and Yuan,
1997, page 100). A fuzzy set is said to beconvex if
eachγ -cut is convex (Klir, St. Clair and Yuan, 1997,
pages 104–105).

1.4 Fuzzy and Abstract Randomized Procedures

Let φ be the critical function of a randomized test.
This is a function from the sample space to the inter-
val [0,1]. Since it is a function on the sample space,
it is usually writtenφ(x), but since the function also
depends on the size of the test and the hypothesized
value of the parameter, we prefer to write itφ(x,α, θ),
wherex is the data,α is the significance level (size)
and θ is the hypothesized value of the parameter un-
der the null hypothesis. Arandomized test of size α
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rejectsH0 : θ = θ0 when datax are observed with prob-
ability φ(x,α, θ0). If the test is one-tailed with com-
pound null and alternative hypotheses, sayH0 : θ ≤ θ0
versusH1 : θ > θ0, then it must be equivalent to a test
of H0 : θ = θ0 versusH1 : θ > θ0 to fit into our scheme.

The only well-known examples come from UMP and
UMPU theory, but the exact form of the critical func-
tion does not matter for the discussion in this section.
Curious readers who have forgotten UMP and UMPU
theory can look at (3.1) and (3.4) below.

Now we come to the two main ideas of this paper.
The first is that the critical functionφ can be viewed as
three different functions:

x �→ φ(x,α, θ0),(1.1a)

θ �→ 1− φ(x,α, θ),(1.1b)

α �→ φ(x,α, θ0).(1.1c)

• For fixedα andθ0, the function (1.1a) is called the
fuzzy decision or theabstract randomized decision
for the sizeα test ofH0 : θ = θ0.

• For fixed x and α, the function (1.1b) is called
(the membership function of ) thefuzzy confidence
interval with coverage 1− α.

• For fixedx andθ0, the function (1.1c) is called (the
membership function of ) thefuzzy P -value or (the
distribution function of ) theabstract randomized
P -value for the test ofH0 : θ = θ0.

Fuzzy decision and abstract randomized decision are
different interpretations of the same mathematical ob-
ject (Section 1.4.1), and similarly for fuzzyP -value
and abstract randomizedP -value (Section 1.4.3). There
does not seem to be a unique abstract randomized con-
fidence interval (Section 2.1).

The second main idea is that statistical analysis
should stop with these functions. They are what a sta-
tistician or scientist should report. No additional and
arbitrary randomization should be done.

1.4.1 Fuzzy decisions. In a situation where a clas-
sical randomized test would be done, whereα andθ0
are fixed, we think a statistician using a randomized
test should just report the valueφ(x,α, θ0). We call
this afuzzy test and the reported value afuzzy decision.
(When one does not want to test at fixedα, use the
fuzzyP -value described in Section 1.4.3 below.)

A statistician preferring a classical randomized test
can always generate his or her own Uniform(0,1) ran-
dom variateU , and rejectH0 if U < φ(x,α, θ0) and
acceptH0 otherwise.

Of course, if an actual immediate decision is re-
quired, then the randomized test must be used. How-
ever, in scientific inference the decision is often merely
metaphorical, a way to discuss results that have no
effect other than whatever impression they make on
readers of a paper. Such metaphorical decisions more
accurately describe the data when they are left fuzzy.

If one prefers, one can also call a fuzzy decision an
abstract randomized decision, emphasizing the distinc-
tion between anabstract random variable (a mathe-
matical object that has a probability distribution) and
a realization of the random variable (data assumed
to be generated according to that probability distrib-
ution). The random variableD that takes the value re-
ject H0 with probabilityφ(x,α, θ) and takes the value
acceptH0 with probability 1− φ(x,α, θ) is an ab-
stract randomized decision. Generating a realization of
D and carrying out the indicated decision is what is
usually called a randomized test, but we recommend
stopping with the description ofD, leaving it to read-
ers to generate a realization if they find it helpful.

1.4.2 Fuzzy confidence intervals. The fuzzy con-
fidence interval (1.1b) is a function taking values
between 0 and 1, and is to be interpreted as (the mem-
bership function of ) a fuzzy set, the fuzzy complement
of θ �→ φ(x,α, θ).

As with any mathematical function, a fuzzy confi-
dence interval is best visualized by plotting its graph.
Figure 2 shows three different fuzzy confidence inter-
vals.

The dashed curve in Figure 2 is the (graph of the
membership function of ) the fuzzy confidence interval
for n = 10 andx = 4. It is not very different from an in-
dicator function: the rise and fall at the edges are fairly
steep; its core is the interval 0.169≤ θ ≤ 0.660 and its
support is the interval 0.098< θ < 0.749. So this fuzzy
interval is not so different from (the indicator function
of ) a crisp interval. The amount of fuzziness is fairly
small and gets smaller still for larger sample sizes.

The solid and dotted curves in the figure do not look
much like (the indicator functions of ) conventional
confidence intervals. In particular, the core of the inter-
val represented by the solid curve is empty. The cases
x = 0, 1, n − 1 andn for the binomial are unusual
(more on this in Section 3.2 below), but conventional
procedures also treat these data values as special cases.

Many scientists like “error bars,” which are essen-
tially confidence intervals indicated by bars on a plot.
Error bars can be made fuzzy by giving them the shape
of the fuzzy confidence interval as shown below for the
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FIG. 2. Fuzzy confidence intervals for binomial data with sam-
ple size n = 10, confidence level 1 − α = 0.95, and observed data
x = 0 (solid curve), x = 4 (dashed curve) and x = 9 (dotted curve).
Note that the x = 0 curve starts at 1 − α at θ = 0 and the x = 9
curve ends at 1 − α at θ = 1 (Section 3.2 explains this behavior).
The parameter θ is the probability of success.

x = 4, n = 10 confidence interval shown as the dashed
curve in Figure 2.

To interpret fuzzy confidence intervals we need a little
theory. The test that has critical functionφ is exact if

Eθ {φ(X,α, θ)} = α for all α andθ.(1.2)

Note that this trivially implies

Eθ {1− φ(X,α, θ)} = 1− α for all α andθ .(1.3)

The left-hand side of (1.3) is called thecoverage prob-
ability of the fuzzy confidence interval. This makes the
fuzzy confidence interval inherit the exactness of the
corresponding test. Since UMP and UMPU tests are
exact, so are the corresponding fuzzy confidence inter-
vals, such as those in Figure 2.

Any interpretation of fuzzy confidence intervals that
accurately reflects the mathematics embodied in (1.3)
is correct. As with conventional confidence intervals,
the hardest thing for naive users to absorb is that only
the lucky intervals cover the unknown true parameter
value: It is called a 95% confidence interval because

it misses 5% of the time. Whether any particular in-
terval covers or misses can never be known. We claim
the fuzziness at the edges of a fuzzy interval is a mi-
nor part of the interpretative problem, but some readers
will nevertheless want a precise interpretation. We say
that when the true parameter valueθ happens to be in
the fuzzy edge of an interval, this only counts as par-
tial coverage and the degree to which it counts is the
degree to whichθ is considered to be in the fuzzy in-
terval, which is 1− φ(X,α, θ), and this is reflected in
the stated confidence level (1.3).

Our definition makes conventional confidence in-
tervals a special case of fuzzy confidence intervals
(the fuzzy intervals that just happen to be crisp). Thus
our fuzzy theory is a generalization of current theory.
It includes all current results. In particular, fuzzy con-
fidence intervals based on UMP and UMPU tests for
continuous data are automatically crisp because those
UMP and UMPU tests are not randomized. So our the-
ory only says new things about discrete data. For con-
tinuous data, it is the same old story.

There does not seem to be any simple way to treat
the function (1.1b) as an abstract random variable (see
also Section 2.1 below).

1.4.3 Fuzzy and abstract randomized P -values. For
conventionalP -values to even be definable, a test must
have nested critical regions. For fuzzy and randomized
P -values to even be definable, a test must have the
fuzzy analog of nested critical regions, which is

α1 ≤ α2 implies φ(x,α1, θ) ≤ φ(x,α2, θ)
(1.4)

for all x andθ.

When the data are discrete and (1.4) holds, it can eas-
ily be shown that the fuzzyP -value (1.1c) is for each
x andθ a continuous nondecreasing function that goes
from 0 to 1 asα goes from 0 to 1. Thus (1.1c) has two
possible interpretations: the membership function of a
fuzzy set called the fuzzyP -value or the distribution
function of a random variable called the abstract ran-
domizedP -value (for brevity just randomizedP -value
for the rest of this section). For example, consider the
UMPU (two-tailed) test with binomial datax = 10 and
n = 10, and null hypothesisθ = 0.7. Then this function
(which can be considered either the membership func-
tion of the fuzzyP -value or the distribution function
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of the randomizedP -value) is

F(α) =




0, α ≤ 0,

24.8 · α, 0≤ α ≤ 0.00002,
0.00002+ 23.6 · α,

0.00002≤ α ≤ 0.00043,
0.00066+ 22.1 · α,

0.00043≤ α ≤ 0.00429,
0.0088+ 20.2 · α,

0.00429≤ α ≤ 0.0253,
0.0073+ 17.7 · α,

0.0253≤ α ≤ 0.0524,
1, 0.0524≤ α.

(1.5)

When using the alternative interpretation of (1.5) as
the distribution function of a randomizedP -value, per-
haps neither (1.5) nor a graph of the function it defines
is the best way to display the function. As with any con-
tinuous random variable, a randomizedP -value is best
visualized by plotting its probability density function

α �→ ∂

∂α
φ(x,α, θ0),

which is shown in Figure 3. Since (1.5) is piecewise
linear, its derivative is a step function. As we show be-
low (Section 3.2), every probability density function of

FIG. 3. The density of the randomized P -value for the UMPU
(two-tailed) test with binomial data x = 10 and n = 10 and null
hypothesis θ = 0.7. The plotted step function has five steps. The
intervals of constancy are the intervals in (1.5).The heights are the
coefficients of α in (1.5).

a randomizedP -value that corresponds to a UMP or
UMPU test is a step function.

Sometimes the step function has just one step, that
is, the randomizedP -value is uniformly distributed on
an interval. This always happens when the test is UMP
(one-tailed). For example, the upper-tailed UMP test
for the same null hypothesis (θ0 = 0.7) and the same
data (x = 10 andn = 10) used for Figure 3 has its
randomizedP -value uniformly distributed on the in-
terval (0,0.028). This can also happen in a UMPU
(two-tailed) test when the observed datax are in the
long thin tail of its null distribution. For example, for
the UMPU test for the same null hypothesis (θ0 = 0.7)
and the same sample size (n = 10) used for Figure 3,
the randomizedP -value is uniformly distributed when
x = 0, 1, 2, or 3, and these are the data values in the
lower tail that the UMPU test always rejects at the 0.05
level. The complicated behavior seen in Figure 3 arises
because the datax = 10 are in the short fat tail of the
null distribution.

As with conventionalP -values, the hardest thing for
naive users to absorb is that aP -value is not a prob-
ability. Only in the special case of a point null hy-
pothesis can a conventionalP -value be interpreted as
a probability. A better interpretation of a conventional
P -value, at least better for our purposes here, is the
leastα at which the null hypothesis can be rejected.

When theP -value becomes fuzzy or randomized,
there is no longer a sharp cutoff between acceptance
and rejection. The fuzzyP -value gives the range of
α for which the null hypothesis can be rejected as a
fuzzy set. The “fuzzy edge” of this range, where the
membership function is strictly between 0 and 1, al-
lows both acceptance and rejection to varying degrees.
The degree to whichα is considered to be in the fuzzy
P -value is the probabilityφ(x,α, θ0) that the classi-
cal randomized test rejects (so the connection between
fuzziness and probability is very close here).

The theory of abstract randomizedP -values is also
simple. By the definition of distribution function, if
P is a randomizedP -value, then

Prθ {P ≤ α|X} = φ(X,α, θ)(1.6)

for all α andθ . Hence by iterated conditional expecta-
tion,

Prθ {P ≤ α} = Eθ

{
Prθ {P ≤ α|X}}

= Eθ {φ(X,α, θ)}(1.7)

= α.

Thus P is Uniform(0,1) distributed marginally (not
conditioning onX), and this is the sense in which a
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randomizedP -value inherits the exactness of the cor-
responding randomized decision (the probability that
the test rejects at levelα is exactlyα).

Any interpretation of abstract randomizedP -values
that accurately reflects the mathematics embodied
in (1.7) is correct. The null hypothesis is to be rejected
for all α ≥ P , but P is now random rather than de-
terministic. So this means rejected for allα ≥ P(ω),
where ω ranges over some underlying probability
space. Theα for which we reject are random (depend
onω). Property (1.7) assures that this test is exact when
the randomness in bothX andP is accounted for.

As with conventional crispP -values, there is no dif-
ficulty interpreting the extreme cases. If a randomized
P -value is concentrated below 0.01, then this is strong
evidence againstH0. If a randomizedP -value is con-
centrated above 0.2, then this is evidence againstH0 so
weak as to be inconsequential. If a randomizedP -value
is uniformly distributed on(0.04,0.06), then one has
an interpretative problem, but really no more severe
a problem than for crispP -values likeP = 0.045 or
P = 0.055. The equivocalness ofP -values of moder-
ate size is not made worse by making them fuzzy.

2. REALIZED RANDOMIZED PROCEDURES

To each fuzzy or abstract randomized concept in the
trio of decisions, confidence intervals andP -values,
there is an analogous realized randomized concept. The
first two of these concepts have existing literature cited
in the Introduction. We do not actually recommend
any of these realized randomized procedures, prefer-
ring their fuzzy or abstract randomized analogs, but we
need to be clear about the relationship between fuzzy,
abstract randomized and realized randomized proce-
dures, if for no other reason than to avoid confusion.

By a realized randomized decision we mean the de-
cision of a conventional randomized test. Since this is
well known, we need say no more about it.

2.1 Randomized Confidence Intervals

Let

Ix(θ) = 1− φ(x,α, θ)

be the fuzzy confidence interval with coverage 1− α

for observed datax. Then therealized randomized con-
fidence interval we suggest is theU -cut UIX of the
fuzzy interval, whereU is a Uniform(0,1) random
variate.

By construction

Prθ {θ ∈ UIX|X} = Eθ {IX(θ)|X} = 1− φ(X,α, θ),

so

Prθ {θ ∈ UIX} = Eθ {IX(θ)} = 1− α

and the randomized confidence interval inherits exact-
ness from the fuzzy confidence interval.

Interestingly, this is not the randomized confidence
interval suggested by Blyth and Hutchinson (1960).
Their intervals can be related to fuzzy confidence inter-
vals as follows. Generate two randomized confidence
intervals, which in our notation areUIX and 1−UIX.
Then construct a new interval by taking the left end-
point from one of these and the right endpoint from
the other. This only works when the fuzzy confidence
interval is convex, but that is the usual case.

Yet a third recipe for generating randomized confi-
dence intervals that also only works when the fuzzy in-
terval is convex also generates two randomized confi-
dence intervals, which in our notation areUIX andVIX,
whereU andV are independent Uniform(0,1) random
variates. Then construct a new interval by taking the
left endpoint from one of these and the right endpoint
from the other.

There is, of course, no difference in performance be-
tween these three recipes, and many other recipes with
identical performance are possible. Since we do not ex-
pect that randomized procedures will find much use,
there is little point in trying to justify any particular
recipe, but the first does have a simpler relationship to
fuzzy intervals.

2.2 Randomized P -Values

A realized randomized P -value is a numberP gen-
erated by a mechanism that gives it the probability dis-
tribution of the abstract randomizedP -value, that is,
the distribution with distribution function (1.1c). Prop-
erty (1.7) assures us that the test that rejectsH0 when
P ≤ α is the traditional randomized test.

We show in Section 3.2 below that, for UMP and
UMPU tests, the fuzzyP -value is a continuous random
variable that has piecewise constant density, hence a
mixture of uniforms and trivial to simulate given a uni-
form random number generator.

3. UMP AND UMPU FUZZY PROCEDURES

The most important case of our theory is UMP and
UMPU procedures. To understand some of their behav-
ior we need to look more deeply at that theory.
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3.1 UMP

Lehmann (1959, pages 68–69) said for a one-para-
meter model with likelihood ratio monotone in the
statistic T (X) there exists a UMP test that has null
hypothesisH0 = {ϑ :ϑ ≤ θ}, alternative hypothesis
H1 = {ϑ :ϑ > θ}, significance levelα and critical
functionφ defined by

φ(x,α, θ) =



1, T (x) > C,
γ, T (x) = C,
0, T (x) < C,

(3.1)

where the constantsγ andC are determined by

Eθ {φ(X,α, θ)} = α.

The description of the analogous lower-tailed test is the
same except that all inequalities are reversed.

The constantC is clearly any(1 − α)th quantile of
the distribution ofT (X) for the parameter valueθ . If
C is not an atom of this distribution, then the test is
effectively not randomized and the value ofγ is irrele-
vant. Otherwise

γ = α − Prθ {T (X) > C}
Prθ {T (X) = C} .(3.2)

In considering the distribution function of the ran-
domizedP -value, we look atφ(x,α, θ) as a function
of α for fixed x andθ ; hence we look at (3.2) in the
same way. NowT (x) will be a (1− α)th quantile if

Prθ {T (X) > T (x)} ≤ α ≤ Prθ {T (X) ≥ T (x)}.(3.3)

Since (3.2) is linear inα, so is the distribution func-
tion of the randomizedP -value (where it is not 0 or 1).
Hence the randomizedP -value is uniformly distrib-
uted on the interval (3.3).

3.2 UMPU

Lehmann (1959, pages 126–127) said for a one-
parameter exponential family model with canonical
statisticT (X) and canonical parameterθ there exists a
UMPU test that has null hypothesisH0 = {ϑ :ϑ = θ},
alternative hypothesisH1 = {ϑ :ϑ �= θ}, significance
levelα and critical functionφ defined by

φ(x,α, θ) =




1, T (x) < C1,
γ1, T (x) = C1,
0, C1 < T (x) < C2,
γ2, T (x) = C2,
1, C2 < T (x),

(3.4)

whereC1 ≤ C2 and the constantsγ1, γ2, C1 andC2 are
determined by

Eθ {φ(X,α, θ)} = α,(3.5a)

Eθ {T (X)φ(X,α, θ)} = αEθ {T (X)}.(3.5b)

If C1 = C2 = C in (3.4), then the test only depends
onγ1+γ2 = γ . This occurs only in a very special case.
Define

p = Prθ {T (X) = C},(3.6a)

µ = Eθ {T (X)}.(3.6b)

Then, to satisfy (3.5a) and (3.5b), we must have

1− (1− γ )p = α,

µ − C(1− γ )p = αµ,

which solved forγ andC gives

γ = 1− 1− α

p
,(3.7a)

C = µ.(3.7b)

Thus this special case occurs only whenµ is an atom of
the distribution ofT (X) for the parameter valueθ , and
then only for very large significance levels:α > 1− p.
Hence this special case is of no practical importance,
although it is of some computational importance to get
every case right.

Returning to the general case, assume for a second
that we have particularC1 andC2 that work for some
α and θ . With µ still defined by (3.6b) and with the
definitions

pi = Prθ {T (X) = Ci}, i = 1,2,(3.8a)

p12 = Prθ {C1 < T (X) < C2},(3.8b)

m12 = Eθ {T (X)I(C1,C2)[T (X)]},(3.8c)

(3.5a) and (3.5b) solved forγ1 andγ2 become

γ1 = 1− (1− α)(C2 − µ) + m12 − C2p12

p1(C2 − C1)
,(3.9a)

γ2 = 1− (1− α)(µ − C1) − m12 + C1p12

p2(C2 − C1)
.(3.9b)

These equations are valid over the range ofα (if any)
such that both equations giveγ1 andγ2 values between
0 and 1.

Since (3.9a) and (3.9b) are linear inα (when they
are valid), the distribution function of the randomized
P -value is piecewise linear and the density is a step
function. Further analysis of this phenomenon given
in the documentation for the R implementation (Geyer
and Meeden, 2004) shows that the support of the ran-
domizedP -value is connected.

The UMPU test is not well defined when the null
hypothesis is on the boundary of the parameter space,
but (3.4), (3.5a) and (3.5b) still make sense and define a
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test. Since the probability and the expectation in those
equations are continuous inθ , this also characterizes
the behavior asθ converges to a boundary point (which
we need to know to calculate fuzzy confidence inter-
vals, which involve allθ in the parameter space).

Suppose that, in addition to the setup for UMPU
tests described at the beginning of this section, the
canonical statisticT (X) of the exponential family has
a topologically discrete distribution (concentrated on a
countable set of atoms that are topologically isolated,
integer valued, e.g.). Suppose the range ofT (X) is
bounded below (as with the binomial or Poisson distri-
bution). As the canonical parameter goes to−∞, the
critical functionφ(x,α, θ) converges toα for x such
that T (x) is equal to either of itstwo smallest values
and converges to 1 for all otherx. A proof is given
in the documentation for the R implementation (Geyer
and Meeden, 2004). By symmetry, the analogous thing
happens for thetwo largest values when there is an up-
per bound. This endpoint behavior is clearly shown for
the binomial distribution in Figure 2.

3.3 Computation

To present a fuzzy or abstract randomized decision,
confidence interval orP -value, one needs to be able
to computeφ(x,α, θ) for every set of possible values.
We have written an R packageump that does this for
the binomial model (Geyer and Meeden, 2004). This
package is available from the authors’ web sitewww.
stat.umn.edu/geyer/fuzz/ or from the Com-
prehensive R Archive Networkcran.r-project.
org/.

4. DISCUSSION

We claim that fuzzy set theory combined with
UMPU testing theory gives an elegant and simple so-
lution to a well recognized problem with conventional
confidence intervals for discrete data (Brown, Cai and
DasGupta, 2001, and discussion). Admittedly, our so-
lution requires a picture like our Figure 2, but con-
ventional confidence intervals also need a picture like
our Figure 1 to accurately describe their performance.
Those who object to statistics that requires graphics
could at least report the core and support of the fuzzy
interval (see the example in Section 1.4.2). This is a
crude approximation to the fuzzy interval, but is still
more informative than any crisp interval.

Although randomized confidence intervals may be
more familiar to statisticians than fuzzy intervals, there
are two reasons why fuzzy intervals are preferable.

First, nonstatistician users may find them more un-
derstandable, randomization being a notoriously tricky
concept. Second, randomized intervals are not unique,
as we explained in Section 2.1, whereas the fuzzy in-
terval (1.1b) is unique.

We also claim that fuzzy and abstract randomized
P -values are a solution to a problem that, although not
yet widely recognized, is just as important. We have no
preference between the two (one of us prefers fuzzy,
the other prefers abstract randomized). Abstract ran-
domizedP -values do have the nice property that they
are uniform on an interval and hence can be described
by two numbers all the time for UMP one-tailed tests
and some of the time for UMPU two-tailed tests.

The picture for a fuzzy confidence interval or fuzzy
or abstract randomizedP -value is no more compli-
cated than a histogram and just as easy to produce us-
ing a computer. They could be taught in elementary
courses. In our experience most students have a very
hard time understanding conventional confidence in-
tervals andP -values. It is not obvious that fuzzy inter-
vals andP -values are harder to understand. The fuzzy
edges of a fuzzy confidence interval may help the stu-
dent understand that the confidence interval does not
capture the unknownθ in an all-or-nothing way. The
fuzzy edge of a fuzzyP -value may help the student
understand that the number 0.05 has no magical prop-
erties.

Statisticians, especially subjective Bayesians, natu-
rally assume that fuzzy set theory can be replaced by
probability theory. However, from the origins of the
subject more than 30 years ago, fuzzy set theorists
have taken great pains to distinguish their subject from
probability theory, and the least acquaintance with the
manipulations done in fuzzy set theory reveals no re-
semblance at all to those of probability theory. We
stress this point because it is so natural for statisticians
(certain statisticians anyway) to try to find priors or
posteriors somewhere in our discussion. Let us assure
all readers that this paper is entirely non-Bayesian and
that whatever fuzzy confidence intervals andP -values
may be, they are not Bayesian. We do not say this
because we are anti-Bayes. We have looked for the
Bayes angle and satisfied ourselves that it just is not
there. This should not be surprising. There are few less
Bayesian areas of statistics than confidence intervals
andP -values. Making them fuzzy does not make them
Bayesian.

It is important to emphasize that the fuzzy or abstract
randomized approach is not restricted to the binomial
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case. There is a UMP or UMPU test for any one-
parameter exponential family, for example, for Poisson
and negative binomial data. In multiparameter expo-
nential families, in which the parameter of interest
is a canonical parameter, one gets a UMP or UMPU
conditional test based on the one-parameter exponen-
tial family obtained by conditioning on the canonical
statistics for the nuisance parameters. Thus there are
UMP and UMPU tests and the analogous fuzzy and
abstract randomized procedures for comparison of two
independent binomials or two independent Poissons
or two independent negative binomials. In large con-
tingency tables, there is not usually a single parame-
ter of interest, but in two-by-two tables, there are the
UMP and UMPU competitors of Fisher’s exact test and
McNemar’s test.

There is nothing that says you can not use fuzzy con-
fidence intervals andP -values whenever you have dis-
crete data. We do not know how to extend the UMPU
construction outside of exponential families, but the
idea of randomized tests and their associated fuzzy
tests, confidence intervals andP -values is perfectly
general. In principle, they can be applied to any dis-
crete data.

Finally, let us say that, although in this paper we have
been very pedantic about distinguishingfuzzy from
abstract randomized (and our first draft was a mess
because it failed to be so pedantic), we do not expect
anyone else to be so pedantic and are not ourselves in

less formal situations. We usually do not distinguish,
calling bothfuzzy.
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