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ABSTRACT Recently, homes consume around 40% of world power and produce 21% of the total 
greenhouse gas emissions. Thus, the proper management of energy in the domestic sector is a vital element 
for creating a sustainable environment and cost reduction. In this study, an intelligent home energy 
management system (HEMS) is developed to control domestic appliances load. The motivation of this work 
is reduced the electricity cost and power consumption from all the appliances by maintaining the customer's 
high comfort level using an efficient optimized controller. The domestic household appliances such as 
heating ventilation and air conditioning (HVAC), electric water heater (EWH) and lighting were modelled 
and analysed using Simulink/Matlab. The developed models analysed the appliances’ energy consumption 
and cost sceneries during peak, off-peak and both peak and off-peak hours. Fuzzy logic controller (FLC) 
was developed for the HEMS to perform energy utilization estimation and cost analysis during these 
periods taking the Malaysian tariff for domestic use into consideration. To improve the FLC outcomes and 
the membership function constraint, particle swarm optimization (PSO) is developed to ensure an optimal 
cost and power consumption. The results showed that the developed FLC controller minimized the cost and 
energy consumption for peak period by 19.72% and 20.34%, 26.71% and 26.67%, 37.5% and 33.33% for 
HVAC, EWH, and dimmable lamps, respectively. To validate the optimal performance, the obtained results 
shows that the FLC-PSO can control the home appliances more significantly compared to FLC only. In this 
regard, the FLC-PSO based optimum scheduled controller for the HEMS minimized power and cost by 
36.17%-36.54%, 54.54%-55.76%, and 62.5%-58% per day for HVAC, EWH, and light, respectively. In 
sum, the PSO shows good performance to reduce the cost and power consumption toward efficient HEMS. 
Thus, the developed fuzzy-based heuristic optimized controller of HEMS is beneficial towards sustainable 
energy utilization. 

INDEX TERMS Home energy management, cost of energy, fuzzy logic controller, particle swarm 
optimization, home appliances, building energy, energy saving.

I. INTRODUCTION 

The houses are accountable for 21% of the total greenhouse 
gas emissions and 40% of the world power consumption 
[1]. Thus, buildings are the main components in the 
objective to decrease the power consumption and to 
implement sustainable improvement programs. The 
greenhouse gas (GHG) emission can significantly by 

implementing advanced technologies and transforming the 
buildings into manageable entities [1, 2]. According to the 
International Energy Agency (IEA), the global energy 
demand is expected to rise by more than 2.3 by the end of 
2035 [3]. 

A building energy management system (BEMS) is 
getting significant attention because of concerns related to 
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global warming and power storage, especially in domestic 
areas. In this regard, the home energy management system 
(HEMS) framework helps decline the demand for power, 
particularly at peak load periods [4]. HEMS not only should 
allow for the automated control of energy at home, but also 
can be used as a way to combat climate change [5]. 
Different efforts, which incorporate the control of different 
home appliances (i.e., water heater, heating ventilation air 
condition (HVAC), coolers, electric vehicles, lighting, and 
others), have been applied to build up various HEMS 
frameworks. In residential homes, HEMS can be 
implemented to help manage the energy supply by 
interacting with building loads and utilities, controlling 
power consumption, and get data, (for example, traffic 
costs) to minimize power utilization by scheduling the use 
of building appliances [6]. HEMS innovations can give a 
common fulfilment between consumers by understanding 
their comfort inclinations and the utility by helping energy 
sparing techniques [7]. The smart home is one of the 
utilization of smart innovations in domestic buildings that 
can give chances to improved energy management, 
decreased energy consumption, energy-saving, reduced 
greenhouse gas emission, and improved home automation. 
Energy utilization in a domestic building depends on 
numerous factors, including the number of inhabitants 
living in the building, people are at home awake, and 
electrical appliance power [8]. 

The continuous increase in home energy tariffs has led to 
the effort by homeowners to search for the solutions to 
reduce their electricity bills. In the same context, minimizing 
power consumption can contribute to the sustainability of 
energy and environment [9]. Therefore, the proper 
management of energy in the domestic sector is a vital 
element for creating a sustainable environment and cost 
reduction [10]. The emersion of smart grids and the rising 
electricity demand have introduced new advantages for 
HEMS for the objective of decreasing electricity usage. Prior 
works in scheduling domestic appliances focused on saving 
power consumption and decreasing energy cost without 
considering user comfort. Therefore, there is a need to build 
up an intelligent HEMS that considers demand response 
(DR) enabled domestic loads, user comfort and the use of a 
suitable optimization technique to decide optimal scheduling 
of residential loads [4]. 
    Demand response (DR) plays a vital role in reducing 
energy use at peak hours and can assist enhance efficiency 
and reliability in operation [11]. DR is a program that 
inspires customers to reduce their power consumption 
during period of high power demand. Accordingly, DR can 
be depicted as changes in the utilization of power by 
demand-side sources from their ordinary kinds of reaction 
consumption and changes in power expenses or incentives 
to decrease power utilization with high discount costs [12]. 
In addition, participating users in DR programs can save 
more electricity bills when they decrease their energy 

usages during peak periods and shifting peak time load to 
off-peak time. HEMSs can help to decrease of total power 
consumption though domestic appliances scheduling of 
loads and to acquire several aim and functions in homes 
[13].Time of use (TOU) is the most general domestic 
electricity tariff and is currently utilized for use in 
enormous utility companies around the world. In TOU 
pricing, several power tariff costs are divided into time slots 
and various seasons in the year or hours of the day. The 
time of use pricing technique a day is divided into three 
periods such as, peak, off-peak and both peak and off-peak 
period. In this case, the power tariff prices will be 
expensive at peak periods with high electricity demand, 
cheap price at off-peak times with low demand, and 
moderate electricity price at peak and off-peak times to 
inspire customers to switch their appliances according to 
the rise in power prices [14]. 

In the literature, there are many studies conducted 
concerning the properties of domestic HEMS. For instance, 
Lin et al. [15] developed an optimal energy-saving approach 
to minimize the energy cost in Guangdong, China. The 
lighting, air-condition, and some other common electrical 
equipment were considered in this study. The results have 
shown a high reduction in the cost; however, the 
occupancies’ comfort is not taken into consideration. Zhou et 
al. [16] have introduced a design of a demand management 
system for building heating and cooling to decrease the 
energy cost and shift the peak demand of power system based 
on constant power estimating framework, ZigBee checking 
system and genetic algorithm-based control method. A 
discussion on the role of home appliance scheduling and 
peak load reduction through demand-side management is 
introduced in [13]. The purpose of the study was to analyses 
the power consumption of the washing machine and 
dishwasher for one four-person family household. However, 
both studies discussed above are not considering the 
electricity cost reduction. 

Fuzzy logic controller (FLC) has been developed and 
utilized in several fields to solve the imprecise control 
problems using the computer. FLC has been successful in 
controlling home appliances as well as achieving 
minimization of financial cost and power consumption. In 
line with this, Rajeswari and Janet [17] presented load 
scheduling in a HEMS using fuzzy logic to minimize energy 
consumption and thereby reduce the power cost. Based on 
the accessible energy, the load can be turned ON or OFF 
around then without influencing the comfort of the 
customers. The real-time scheduling of domestic load 
through conditional value-at-risk (CVaR) in the building 
energy management system (BEMS), with electric water 
heater (EWH), air conditioner (AC), clothes dryer (CD), 
electric vehicle (EV), photovoltaic (PV) cell and battery are 
conducted in [18]. The results demonstrated that the 
proposed method can considerably reduce the energy bill for 
the household. In another study, the FLC is used to determine 
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the output power of the battery and minimize the cost and 
energy consumption [19]. In this study, the FLC also is 
developed and employed to decrease power consumption and 
cost of both illumination and HVAC systems, resulting in a 
significant reduction in the energy consumption, monetary 
cost, and peak to average ratio (PAR). Abdo-Allah et al.[20] 
concluded that the function of HVAC systems are significant 
for effective thermal management and operational costs. 
Therefore, the FLC is used to control indoor temperatures, 
CO2 concentrations in air handling units (AHUS), fan speeds 
and power consumption. However, accurate evaluating of the 
fuzzy domestic appliances-based grid feeding not discussed.  
To manage the prediction of indoor temperature variation 
without knowledge of solar radiation, various optimization 
methods have been proposed such as artificial neural network 
[21], other methods are compared in [22]. 

To improve the controller outcomes, an optimization 
technique is very important to get optimal solution/results 
[23]. The particle swarm optimization (PSO) optimization 
controller theory is a control obtainment that has been used in 
numerous fields in home appliances. For instance, the PSO 
has been used in [24] to solve the HEMS problem, and three 
several types of domestic load models have been researched 
with the enhanced PSO. Based on the time of use (TOU) 
tariff, DR and critical peak pricing (CPP) from the utility, the 
introduced PSO algorithm reduces the electricity bill by 
controlling the domestic appliances. A proficient controlling 

algorithm for the smart domestic area to decrease the 
electricity cost is developed in [25]. The smart appliances 
under discrete power level and quadratic pricing model have 
been improved using the PSO algorithm. Anzar Mahmood et 
al. [26] have proposed a HEMS that improved appliance 
categorization in a smart grid. Besides, energy cost reduction 
problem has been solved by PSO. However, the drawback of 
the PSO optimization in both studies is not present to 
minimize the energy consumption in HEMS. Different 
optimization and controllers studies were proposed in the 
HEMS. For instance, Mixed-Integer Linear Programming 
[27] introduced to reduce the cost and peak demand, 
however, this model showed quite complex. New intelligent 
HEMS algorithm introduced to reduce power consumption 
[28] and Fractional programming used to reduce the cost and 
increase the efficiency for HEM [29], but the PAR not taken 
into consideration in both studies. FLC is used to improve the 
energy consumption of buildings HVAC [30] and to 
minimize the grid power fluctuations in [31]. However, 
electricity cost, PAR, and energy consumption are ignored.  
The PSO is used in the literature to reduce cost [32], 
however, PAR and power consumption are not considered. It 
also used to minimize cost and power consumption [33, 34], 
but customer comfort and PAR are ignored. To highlights the 
importance of this study, a comparison of existing works has 
been depicted in Table I.  

 
TABLE I  

COMPARISON OF THE EXISTING STUDIES   

Technique Objective Features Limitations Ref. 

Mixed-Integer Linear 
Programming  

Cost reduction and peak 
demand minimization 

Automated demand 
response for controlling of 
home appliances 

Model complexity is 
raised  

Althaher et 
al.,[27] 

Intelligent HEMS 
algorithm  

Customer comfort and 
reduce power consumption 

Mathematical model for 
high consumption 
appliances by eBox solver 

PAR is not considered Pipattanaso
mporn et 
al.,[28] 

Fractional 
programming  

Increase cost efficiency 
and cost reduction 

Cost efficient system is 
proposed in HEMS 

PAR is ignored and 
multi objectives are not 
considered 

Jinghuan at 
al.,[29] 

Fuzzy logic  Enhanced energy 
consumption of the 
buildings HVAC systems 

Effective HVAC system is 
proposed for HEMS 

Energy cost and demand 
is not considered 

Anastasiadi 
et al.,[30] 

Fuzzy logic  Minimize the grid power 
fluctuations and keeping 
the batter SOC within 
secure limits 

25 rules, 5 MF for two 
inputs, rate-of change of 
SOC used as inputs to 
fuzzy to delivered power  

Energy consumption, 
cost and PAR are 
ignored 

Arcos-
Aviles et 
al.,  [31] 

Fuzzy logic  Decrease energy 
consumption during high 
electricity demand 

SFLL, wireless sensors 
capabilities and dynamic 
electricity pricing 

Electricity cost, PAR 
and user comfort are not 
considered 

Keshtkar et 
al.,[35] 

Particle Swarm 
Optimization  

Cost reduction Mathematical formulation 
of objective function on 
energy cost 

PAR and power 
consumption are 
neglected 

Faria et 
al.,[32] 

Particle Swarm 
Optimization  

Minimizes cost and power 
consumption 

Considering customer 
preferences and keeping 
user comfort high 

PAR is not considered Wang et 
al.,[33] 

Particle Swarm 
Optimization  

Reduce energy 
consumption and minimize 
cost 

customer-driven DSM 
operation, several DERs 
based on load demand 

Customer comfort and 
PAR are ignored 

Gudi et 
al.,[34] 

 
 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039965, IEEE Access

 

VOLUME XX, 2017 1 

Based on the above discussion and comparison table, the 
optimal solution to minimize cost and power consumption 
under considering the DR and PAR not sufficiently covered. 
Therefore, this research aims to develop an intelligent HEMS 
considering Malaysian environment, electricity tariff and 
home occupancy. In this study, the commonly used domestic 
household appliances such as HVAC, EWH and lighting 
were modelled and analyzed using Simulink/Matlab. The 
developed models analyzed the appliances’ energy 
consumption and cost sceneries during peak, off-peak and 
both peak and off-peak hours. FLC was developed for the 
HEMS to perform energy utilization estimation and cost 
analysis. Three home appliances namely, HVAC, EWH and 
light for HEMS were modelled using FLC taking peak and 
non-peak tariff of Malaysian grid into consideration. Later, 
we develop the PSO algorithm to optimize the controller. The 
PSO shows good performance to reduce the cost and power 
consumption toward efficient HEMS. Thus, the developed 
fuzzy-based heuristic optimized controller of HEMS is useful 
for sustainable energy utilization. The key contribution and 
motivation of this paper focuses on the modelling of 
domestic appliances and developing HEMS controller to 
achieve power and energy cost saving based on the FLC and 
PSO algorithm. The result of FLC and PSO are compared. 
Therefore, the result proves that PSO reduces more energy 
and electricity cost than FLC. The major drawback of FLC is 
that its energy cost and power consumption is high than PSO. 
In this study, the consumer uses the domestic loads 
considered for three cases, namely, peak, off-peak and both 
peak and off-peak period. If the customers to switch their 
appliances in the off-peak time they will save more energy 
and electricity cost. 
 
II. PROBLEM FORMULATION 

The objective function is made to represents the fitness of a 
solution and is considered as an interface between the 
optimization problem and the algorithm. The target of the 
optimization finds out the best value based on the objective 
function [36]. This research aims to propose an optimal 
control of the home appliance. The objective function 
searches for the optimal value of the FLC output to control 
the cost and power effectively and minimize the energy cost 
and power consumption. Therefore, the objective function 
of the optimization can be described as follows:  

21

1

n
Objective function X Yi iN k

 
 = −

=
       (1) 

Where, objective function developed based on the estimated 
value Xi, actual value Yi  and the number of iterations N. 

Optimization has the constraints for the overlap between 
the membership functions (MFs). However, in each input and 
output, the variables or problem dimensions (Xij

1 to Xij
3), (Xij

4 

to Xij
6) and (Xij

7 to Xij
9) should not cross each other. The 

limitation of the optimization can be depicted in the 
following equation: 
 

1 1f f fX X X
if if if
− +                                                    (2) 

Now the constraints for the fuzzy MF optimization can be 
expressed as follows: 

 

( )e e t eiMIN MAX                                                  (3) 

e e eMIN opt MIN MAX −
                                    (4) 

e e eMIN opt MAX MAX −                                   (5) 

( )e e t eiMIN MAX                                          (6) 

                                          (7) 

e e eMIN opt MAX MAX  −
                          (8) 

where eMIN, eMAX, e (ti), and eopt represent the minimum. 
Maximum, time, and optimization errors. The Δ mention the 
difference of error. With the help of optimization, the FLC 
can be improved further to control the energy consumption 
and electricity cost of the home appliances. 

III. HOME APPLIANCES MODELS 

In this study, simulation models of home appliances namely 
HVAC, EWH, and light have been developed based on 
mathematical models using the Matlab/Simulink software. 
The home appliances for which the state of functioning 
(on/off) is provided, the power consumed by the load, the 
set-points of load, and the available energy provided by the 
electric main grid and provide the model of energy cost. 
This systems allow for a HEMS control of various kind of 
loads and perform power consumption estimation. Indeed, 
the loads' system is integrated into a simulator to analysis 
their power consumptions and costs. Besides, we add the 
FLC system to control the home appliances and reducing 
energy consumption, minimize total cost and maintaining 
the customer's high comfort level. In this simulation model, 
the FLC has 9 rules are used to calculate the change of the 
difference between the measured and desired temperatures 
and, power. Fuzzy inputs of the HVAC system are two 
inputs, the first one is the error and the second one is the 
change of error while the output is T (the difference 
between the measured and desired temperatures). The fuzzy 
inputs of the EWH and light are error and derivative error 
and output is power. Furthermore, we add the PSO fuzzy 
optimization algorithm for controlling both cases either 
with or without controller home appliances. 

A. HEATING VENTILATION AND AIR CONDITIONINGC) 

The HVAC system is widely utilized in large buildings, 
particularly in the residential, industrial, and commercial 
areas to control the environment of the rooms or offices. 
The environmental factors controlled may, for instance, 
involve temperature, air-flow, and humidity. The ideal set-
point of the environmental variables will rely upon the 
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proposed utilization of the HVAC system [37]. It is 
essential to discover ideal working purposes of HVAC 
frameworks to minimize power utilization which dependent 
on certain limitations, e.g., provide thermal comfort in the 
spaces. Power utilization optimization for HVAC is usually 
based on two stages: (a) an optimal working point to 
maximize power consumption under such constraints and 
(b) a mathematical model between the output and input 
variables of the HVAC system [38]. Commonly, these 
devices are made out of outer and inner units associated 
with pipelines in which a refrigerant flows. They have two 
types including ON/OFF or inverter is driven. In the first 
type, a thermostat regulates the key on/off of the 
compressor voltage source to maintain the air temperature 
at the optimum level. On the contrary, in the second form, 
the inverter drives the compressor in proportion to the 
variation between both the measured temperature and the 
set-point value. An explanation to ensure better results for 
power consumption minimization from the second type of 
HVAC system is introduced in this following sub-section. 
Overall, there have been three forms of sub-modelling for 
modelling a single subsystem component of the entire 
HVAC model including (a) building thermodynamic model; 
(b) heating model and cooling model; and (c) energy cost 
model.  

• Heating and Cooling Model 

More particularly, the simple cooling and heating 
subsystem component of the HVAC model, where the 
variable power works an inverter, the thermal power (Pt) is 
corresponding to (ΔT) that represents the contrast between 
the measured and desired temperatures. Moreover, the 
technical maximum value of a saturation block imposes is 
expressed as follows: 

( ) ,max, 0

0
t t

dQ t K T if K T P

otherwisedt

   
= 


 (9) 

where K is the related value that involves the coefficient of 
heat transfer and the surface area. Therefore, based on the 
thermal power, an electric power Pe (t) could be computed 
as per the equation below: 

( )
( )

t

e

dQ t

dtP t


=  (10) 

where,  denotes the coefficient performance (COP) for the 

heating system while in case of a cooling system, it 
represents the energy efficiency ratio (- EER). 

• Building Thermodynamic Model 

Building thermodynamic is a sub-system that measures the 
variations between indoor and outdoor temperature. It takes 
care of the heat losses to the environment and heat flow 
from the heater [39]. In this context, various optimization 
methods have been used to manage the indoor temperature 
prediction without knowledge of solar radiation. For 
instance, in Ref. [21] a data-based model for indoor 

temperature forecasting by the selection of pertinent input 
parameters after a relevance analysis of a large set of input 
parameters, outdoor temperature history, outdoor humidity, 
indoor facade temperature, and humidity. Taken the transfer 
function of walls, Laplace transform and frequency domain 
for building a thermodynamic model are important factors 
for efficient modeling as proposed in [40]. The necessary 
variables and parameters of the building model are defined 
as: Tin(t)[°C,], indoor air temperature; Tin,set(t)[°C,], set-
point indoor air temperature; Tout(t)[°C,], outdoor air 

temperature; 2[ ] /o
thR m C W equivalent thermal resistance 

of the space; Mair[Kg],  air mass inside the room; 
( )gc J K k=  , the heat capacity of air at constant pressure; 

[ ( )]gc J K k  represent the thermal power; ( )
t

dQ t dt , 

thermal loss power. Eq. (11) describes the impact on the 
change of indoor temperature and the lack of heat due to the 
outside climate. Eq. (12) and (13) represent the change of 
the indoor temperature, taking into account the heat transfer 
by the HVAC system and the lack of heat by the outside 

temperature for cooling and heating, respectively[41]. 

( ) ( ) ( )
loss in out

th

dQ t T t T t

dt R

−
=  (11) 

( ) ( ) ( )1
,

*
in t loss

air

dQ t dQ t dQ t

dt M c dt dt

 
= −  

 
Cooling system (12) 

( ) ( ) ( )1
,

*
in t loss

air

dQ t dQ t dQ t

dt M c dt dt

 
= +  

 
Heating system (13) 

• Power Cost Model 

In this design, the “cost calculator" is a Gain block. To 
analysis the cost of energy, the cost meter incorporates the 
heat flow over time and multiplies it by the peak and off-
peak period of energy cost. In this regard, the equation of 
HVAC energy cost is expressed according to the following 
equation: 

0

Cos ( ) ( ) ( )
end start h

start end

T T T

p op op

T T

t C P t dt C P t dt C P t dt= + +  
 

(14) 

where, Cp[RM/kWh] denotes the peak period within the 
energy cost (Tstart, Tend); Cop[RM/kWh] represents the off-
peak period within the energy cost (Tstart, Tend); and Th, is the 
time horizon which is determined the cost of energy. Based 
on the equations (9-14), the HVAC model is designed in 
this study using Matlab/Simulink environment as explained 
in Fig. 1. 
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FIGURE 1.  Simulink model of the HVAC system [41]. 

B. ELECTRIC WATER HEATER (EWH) 

The second domestic loads modelled and controlled in this 
study is the EWH. EWHs are one of the most noticeable 
energy-intensive devices in domestic areas [42]. The 
electrical water heater uses energy based on the amount of 
hot water used by people. Domestic EWH model is 
modelled to show how the water temperature in a water 
heater may change because of the electric resistance and 
warms up the water heater. Fig.2 illustrates a schematic 
representation of the water heater model in which Tavg is the 
average water temperature, Tamb is the ambient water 
temperature, Cw is the thermal capacitance and R is the 
resistance of the water heater. 

By considering the heat transfer in a single element 
domestic EWH as shown in Fig. 3, the energy flow 
differential equation describing the temperature of DEWH 
can be expressed as follows [43] : 

( ) ( ( )) ( )( ( )) ( )a H d in H tCT t G T T t HW t T T t Q t= − + − +
 

(15) 

Water heater tank

Electrical Energy

T
Q

C R

Tambient

Tavg

 
FIGURE 2.  Simple electric water heater model. 

where, C=ρCpV, G=SA/Rth, and H=ρCp..  Besides, the heat 
loss in the tank is represented by ( ( ))a HG T T t− . The 

( )( ( ))d in HHW t T T t− represents the heat lost.The fundamental 

factors of the DEWH model are following: C[J/°C], the 
thermal capacity of water in the tank; TH (t)[°C], the 
temperature of the hot water tank; Ta [°C], the temperature 
of the ambient air outside the tank; Tin[°C], cold water inlet 

temperature; Wd(t) [1/sec], inlet cold water temperature; 
ρ[kg/J], the water density; V[l], tank volume; 

[ ]o
p gC J k C  specific water heat; SA[m2], the tank surface 

area, 2[ ] /o
thR m C W  is the tank thermal resistance; and 

Q(t)[W] represents the rate of energy input. 

Energy Flow

Water Flow

Outgoing
Hot Water

Incoming
Cold Water

T

SA/Rth,(Ta-TH(t))

HWd(t)(Tin–TH(t))

Tin

Q
Incoming
 Electric
Power

Tout

Heat Lost in 
the tank

Heat Lost to
 handle hot water 

 
FIGURE 3.  Heat transfer in a single element DEWH. 

Figure 4 illustrates that the thermostat is used to control 
the temperature of a single element EWH. In this design, the 
thermostat will take the action to control the on/off status of 
the power source to keep the desired temperature and can be 
manually set up to the set-point of water heater temperature. 
The incoming electric power (P(t)) is represented according 
to the equation of the water heater as expressed in Eq. (16) 
[44]. The strategy depends on that in case the water tank 
temperature is lower than the set-point temperature, then the 
incoming power will be equal to the nominal power (i.e. the 
WH coils are switch ON). On the other hand, the WH heat 
coils will be switched OFF if the temperature of the water 
tank is greater than the set-point temperature.  
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FIGURE 4.  A dynamic model of a thermostatically controlled DEWH. 
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where, Tewh,t, is the temperature of water; Tset,t  is the set-
point temperature; and ΔT is the dead-band of the water 
heater temperature (±2 °C). The amount of power used in 
Watt by the EWH relies on the thermostat that operates and 
runs in the OFF / ON states. At a certain time, the power of 
EWH is determined using the following equation: 

( ) ( )* ( )Q t P t u t=  (17) 

where P(t) is the status of the device rated power, thus; in 
case P(t) =1 that means the device is switched on. On the 
other hand, if the P(t) = 0 that means the device is switched 
off. Given constant values of  C, G, H, Tin, and Tout and 
assuming WD(t) and Q(t) are piecewise constant over the 
time interval t ∈ [to, tf], then Eq. (18) can be re-expressed as 
follows [45]: 

1 1
( ) ( )

( ) ( ) ( )* 1
o ot t t t

RC RC
H o a inT t T t e RGT RBT RQ e

   − − − −   
   

 
 = + + + −
  

 
( ) ( )

( ) ( ) 1
o ot t t t

H oT t T t e K e 
− −   − −   

   
 
 = + −
  

 (18) 

where, 
1

,R
G B

=
+

,a inGT GT Q
K

G B

+ +
=

+
,

C

G B
 =

+
RC =  

In sum, based on the equations (7-10), the EWH model is 
developed in this study using Matlab/Simulink environment 
as illustrated in Fig.5. 
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FIGURE 5.  The Simulink model of the EWH system [41].

C. DIMMABLE LAMP  

The lighting system plays a significant role in each 
building, regardless of whether it is a natural or artificial 
source. In general, the most alluring light source is the 
normal light from sun alluded to as daylight. However, 
artificial sources of dimmable lighting are incandescent 
lamps, fluorescent-lights (F-Lamp), light-emitting diode 
(LED), and compact fluorescent lights (CFL). Dimmable- 
Lamp has become a major method of lighting systems and 
have become widely used in the residential area. 
Dimmers are devices used to lower the brightness of the 
light and connected to a light fixture. Therefore, this type of 
lamb is selected to be modelled in this study. The dimmer is 
modelled by getting the Simscape block (Simscape tool, 
2017a) in Simulink that enables in short order to make 
physical frameworks. The physical tools from Simscape are 
represented as a voltage sensor, a dc voltage source, a 
current sensor, a resistor, an electric reference, and a solver 

configuration. The input of the Simulink blocks and the 
output of the Simscape blocks are connected through the 
PS-Simulink converter that converts physical signals into 
Simulink signals. Moreover, the energy cost model used in 
the Simulink model of the dimmable lamp and number of 
three lamps used in this system. The dimmable lamp works 
according to the following values, 220 V, 15 W and the 
voltage source range [Vmin = 0, Vmax = 120]. It worth 
mentioning that through changing the voltage waveform of 
the lamp, the light output intensity can be decreased and the 
lighting performance improved. The Simscape block 
diagram designed of the dimmable lamp is shown in Fig. 6. 
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FIGURE 6.  Simscape model of the dimmable lamp [41]. 

IV. FUZZY BASED HOME APPLIANCES 

In this paper, we illustrated fuzzy-based home appliances 
namely HVAC, EWH and light. After theoretical modelling 
based on the mathematical equations that represent the three 
main domestic appliances using Simulink, the FLC is 
applied to achieve efficient energy management and cost 
reduction. The basic structure and method developed of the 
FLC system are described in details in the following 
subsections: 

A. FUZZY CONTROLLER BASED-HEATING 
VENTILATION AND AIR CONDITIONING MODELLING 

 
In this part, the role of FLC has applied in the modelling of 
HVAC systems. The FLC consists of two inputs and one 
output: the first one is an error and the second one is a 
change of error (the input error is derived and convert to the 
change of error input). In this system, the T output is used 
as the variation between the HVAC indoor air temperature 
and the set-point temperature. For the fuzzy system of the 
HVAC control, nine membership functions were used: three 
per each input and output as interpreted in Figure 7. The 
linguistic error variable is defined to have three fuzzy sets, 
very cool, medium cool, and large cool with associated 
membership functions as left trapezoidal, middle 
trapezoidal, and right trapezoidal, respectively. The fuzzy 
variable change of error is defined to have three fuzzy sets 
which are small, medium, and large with associated 
membership functions as left trapezoidal, middle 
trapezoidal, and right trapezoidal, respectively.  In addition, 
the fuzzy variable T is defined to have three fuzzy sets, 
off, steady, and on with associated membership functions as 
left triangle, middle triangle, and right triangle, 
respectively. The nine fuzzy rules are just used to measure 
the error and change of the output error as follows: 
 

(i) If (e is very cool) and (de is small) then ( T is on) 

(ii) If (e is very cool) and (de is medium) then ( T is 

steady) 

(iii) If (e is very cool) and (de is large) then ( T is off) 

(iv) If (e is medium cool) and (de is small) then ( T is 

on) 

(v) If (e is medium cool) and (de is medium) then ( T is 

steady) 

(vi) If (e is medium cool) and (de is large) then ( T is 

off) 

(vii) If (e is large cool) and (de is small) then ( T is on) 

(viii) If (e is large cool) and (de is medium) then ( T is 

steady) 

(ix) If (e is large cool) and (de is large) then ( T is off) 

 

Small Medium Large

0 1

1

Change of Error of input 2 
D

eg
re

e 
of

 m
em

be
rs

hi
p 

Very 
Cool

Medium
Cool

Large 
Cool

0 1

1

Error of input 1

D
eg

re
e 

of
 m

em
be

rs
hi

p 

OFF Steady ON

0 4.5

1

DeltaT of outputD
eg

re
e 

of
 m

em
be

rs
hi

p 

 
FIGURE 7.  Fuzzy Membership function for the HVAC. 

B. FUSSY CONTROLLER BASED-ELECTRIC WATER 
HEATER 

In this study, two input variables and one output variable 
for the proposed fuzzy logic framework for the EWH model 
is developed. The different types of input and output were 
divided into three fuzzy subsets. The linguistics system of 
the water heater controller overall used nine membership 
functions as shown in Fig. 8. Table II displays the rule-
based FLC which is a set of if-then rules that maps inputs to 
outputs to control the EWH. 
• Let X = (low, medium, and high temperature) denote 

the error of the water heater. Each error is delineated by 
a membership function of a trapezoidal and triangular 
form. 

• Let Y = (small, medium, and large) denote the change 
of error of the water heater. Each error is depicted by a 
membership function of a trapezoidal and triangular 
form. 

• Let Z = (on, steady, and off) denote the power of the 
water heater. Each error is delimitated by a 
membership function of a triangular form. 
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FIGURE 8.  Fuzzy membership function for the EWH. 

TABLE II 
 THE RULE-BASED FUZZY LOGIC CONTROLLER OF EWH 

Rules IF (error) 
AND (change 

of error) 

THEN 

(power) 

1 Low Temperature Small ON 
2 Low Temperature Medium Steady 
3 Low Temperature Large Off 
4 Medium Temperature Small ON 
5 Medium Temperature Medium Steady 
6 Medium 

Temperature 

Large Off 

7 High Temperature Small OFF 
8 High Temperature Medium Steady 
9 High Temperature Large ON 

B. FUSSY CONTROLLER-BASED LIGHT MODELLING 

The dimmable lamp model developed in this study has two 
inputs and one output linguistic variables. The input 
variables are represented from the voltage and current, 
however, the power is the output variable. In the proposed 
fuzzy system of the dimmable lamp control, nine 
membership functions were used: three per each input and 
output as illustrated in Fig. 9. The fuzzy variable current is 
defined to have three fuzzy sets, (low, medium, and high) 
with associated membership functions as left triangle, 
middle trapezoidal, and right triangle, respectively. In this 
design, the fuzzy variable voltage is defined to have three 
fuzzy sets, (low, medium, and high) with associated 
membership functions as left triangle, middle trapezoidal, 

and right triangle, respectively.  

TABLE III 
 THE RULE-BASED FUZZY LOGIC CONTROLLER OF LIGHT 

         Voltage 

Current  
LOW MEDIUM HIGH 

LOW Low Low Low 

MEDIUM Low Medium Medium 

HIGH Low Medium Medium 

On the other hand, the fuzzy variable power is defined to 
have three fuzzy sets (low, medium, and high) with 
associated membership functions as left triangle, middle 

triangle, and right triangle. The following nine fuzzy rules 
are used to calculate the voltage and current output. It is 
worth noting that the controller incorporated nine inference 
rules that conclude to four IF-THEN rules, as seen in Table 
III in which the “IF” part is called antecedent and “THEN” 
part which is called the consequent. 

Voltage of input 2

Low Medium High

0 1

1

Low Medium High

0 1Current of input 1

1

OFF Steady ON

0 1

1

Power of output

D
eg

re
e 

of
 m

em
be

rs
hi

p

D
eg

re
e 

of
 m

em
be

rs
hi

p

D
eg

re
e 

of
 m

em
be

rs
hi

p

FIGURE 9.  Fuzzy Membership function for Light. 

V. PARTICLE SWARM OPTIMIZATION 

PSO is a computational system to find the best solution 
iteratively by enhancing a candidate solution rely on the 
given measure of quality. It solves the problem using a 
population of particles and moving these particles around in 
the search space according to the simple mathematical 
formula over the particle’s position and velocity [46, 47]. 
Following this theory, the particles in the PSO algorithm 
search the space in two locations. The first location is the 
best point where the swarm finds the current iteration (local 
best). The second location is the best point found through 
all previous iterations (global best). For example, it is 
appeared below that the position X of S particle and speed V 
of S particle are part of a space that has N parameter and S 
particle which means is N dimensional space [48]. 
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The th 
bestP , bestG , velocity and speed particles are 

represented below respectively,  
 

, , ,.................,1 2 3X x x x xi iNi i i=                             (23) 

, , ,....................,1 2 3V v v v vi iNi i i=                           (24) 

, , ,.............,1 2 3P p p p piNi i ibesti
=                        (25) 

, , ,............,1 2 3G g g g giNi i ibesti
=                         (26) 

 
If we are like to write down the equation for the vector, it 

is obviously the endpoint minus the beginning point can be 
written as k

i
k

iPbest XP −,  and k
ibest XG − . For all these three 

components, the particles move somewhat parallel k
iX to k

iV  
and somewhat parallel to the vector connecting k

iX to 
k

iPbestP ,  and move somewhat parallel to the vector connecting 
k
iX to bestG  and this is a newly updated position denoted by 

1+k
iX  which is the new position and the addition of these 

three vectors from the beginning of the first vector to the end 
of the third vector it is new velocity 1+k

iV  and the new 
position created according to the previous velocity to 
personal best and the global best so this is probably a better 
location. Fig. 10 represents of PSO model as a vector [48]. 
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FIGURE 10.  Diagram of PSO model as vectors. 

The velocity and position can be updated by using the 
following equations [49]: 

( ) ( )k
ibest

k
i

k
iPbest

k
i

k
i XGrcXPrcVwV −+−+=+

22,11
1

 

(27) 

11 ++ += k
i

k
i

k
i VXX  (28) 

where i= 1,2,3…,S; and n= 1, 2, 3,……,N. Besides, 
1+k

iV is 
the updated velocity vector of th

i particle-based on the three 
displacement fundamentals, 

1+k
iX is the updated position of 

th
i  particle, r1and rand r2 denote two random numbers in the 
range [0,1], 1c  and 2c are the learning factors and w refers to 
inertia or momentum weight factor. bestP  is the best previous 
experience of th

i  particle that is recorded and bestG  is the 
best particle (informant) among the entire population. The 
basic structure of the fuzzy-PSO system that explained in this 
study is shown in Fig.11.  
Following to this algorithm, firstly, the PSO parameters are 
initialized with iteration number, population size, inertia 
weight, social rate and cognitive rate. According to this 
initialization, run the simulation with FLC system and 
calculate the objective function. If the current objective value 
is better than the previous objective, then the current 
objective value is assigned for the local best and the current 
position like the local best position. Similar, if the current 
objective value is better than the global best in history, then 
the index value of the current particle is assigned like the 
global best. Afterwards, run the simulation with a FLC 
system and, update the velocity and position of each particle 
in the PSO. According to this method are repeated until the 
algorithm reaches the maximum number of iterations or the 
best fitness is better than the desired value. The proposed 
optimization technique represented in pseudocode, which 
shows how the developed PSO algorithm searches for the 
best space solution for the best position, is presented in 
Fig.12. A detail description of the developed PSO used is 
shown in the flowchart (see Fig.13). 
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FIGURE 11.  Fuzzy optimization model for HEMS 

 

1         Input: iteration number, population size, inertia  
           weight, social rate, cognitive rate and number of particles  
2         Output: Pgbest 
3         Population   φ 
4          Pgbest     φ 
5                        for i = 1 to Population size do  
6                                  Pvelocity      Random Velocity (), 
7                                  Pposition      Random Position (Population size) 
8                                  Ppbest     Pposition 
9                                              If  ((Ppbest )   ≤  (Pgbest ))  
10                                                     Pgbest    Ppbest 
11                                             end                 
12                             end 
13     While (i ≤   Maximum iteration) 
14                         for  (P ϵ Population)  % Update velocity and position 
15                                       Pvelocity   Update velocity (P

pbest, 
P

gbest, 
P

velocity
) 

16                                        Pposition  Update position (P
position, 

P
velocity

)     

17                                If  ((Pposition ) ≤  (Ppbest ))  

18                                                    Ppbest    Pposition  

19                                        If  ((Ppbest ) ≤   (Pgbest ))  
20                                                   Pgbest     Ppbest 

21                                           end 
22                                 end 
23                    end 
24     end 

25  return (Pgbest) 

 
FIGURE 12.  Pseudocode for PSO optimization. 
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FIGURE 13.  Flow chart for PSO optimization.

VI.  RESULTS AND DISCUSSION 

The simulation results of the developed home appliance 
load models considering HVAC, EWH and Light are 
presented in the following subsections. The modelling in 
his study is conducted to manage the energy of domestic 
homes as a case study in Malaysia. In this study, the 
consumer uses the domestic loads considered for three 
cases, namely, peak, off-peak and both peak and off-peak 
period. Total run time of the domestic loads are, during 
peak period (14:00 -16:00) to (20:00-22:00); off-peak 
period (6:00-8:00) to (22:00-24:00) and both peak and off-
peak period (6:00-8:00) to (20:00-22:00). Based on the 
national electrical company (TNB), the tariff for domestic 
use at peak hours is 0.365 RM, and for off-peak hours is 
0.224 RM, therefore these values considered as a reference 

in this study. The target of the PSO schedule controller is 
obtained by minimizing a predefined objective function 
which is the electricity cost and consumption. To enhance 
the performance of the home appliances, energy 
consumption and cost are minimized. 

A. HVAC 

The PSO optimal controller of the appliances is run a 
hundred iterations to achieve the best results. Fig.14 shows 
the convergence characteristics of the PSO in finding the 
best value of energy consumption for the HVAC for peak, 
off-peak and both peak and off-peak case, respectively. 
From the figures, it can be seen that the off-peak case 
achieves faster convergence than the peak and both peak 
and off-peak case because of low error achieved. The result 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039965, IEEE Access

 

VOLUME XX, 2017 9 

of the off-peak period case achieves mean absolute error 
(MAE) of -18.0162 after 15 iterations, the peak and off-
peak both hours case achieves an MAE error of -18.0159 
after 28 iterations and at last peak period case achieves an 
MAE error of -18.0133 after 36 iterations as shown in 
figure 14. 

 
FIGURE 14.  The objective function of PSO for the HVAC system peak, 
off-peak and, both peak and off-peak case. 

The total power consumption and energy cost have been 
collected from the HVAC using PSO schedule controller as 
demonstrated in Fig. 15. The total power consumption of 
FLC is found 4.7 kWh, whereas after used PSO it reaches 3 
kWh. The PSO schedule controller achieves in electricity 
saving by 1.7 kWh per day. The proposed PSO schedule 
controller is compared with the FLC controller in order to 
show the superiority of the proposed schedule controller. 
From the figure, it can be also noticed that the PSO controller 
reduced more energy cost than FLC controller. The results of 
the peak, off-peak and both peak and off-peak of the PSO 
schedule controller provide a better result compare than 
without controller and with the fuzzy controller. 

 

 

 

FIGURE 15.  Power consumption and daily cost for the HVAC  system 
with PSO optimization (a) peak (b) off-peak (c) both peak and off-peak 
period. 

B. EWH 

The objective function of EWH under three cases namely, 
peak, off-peak and both peak and off-peak period are 
evaluated from the optimization response curve as outlined 
in Fig. 16. From the figure, it is evident that the off-peak 
period performs better than peak and both peak and off-
peak period in obtaining the lowest objective function 
which ensures the best result of the EWH. The result shows 
the lowest value of the objective function achieved by the 
off-peak period has MAE equal to10.8562 after 48 
iterations. The value of objective functions of 10.8559 and 
10.8562 are founded after 56 and 90 iterations in both peak 
and off-peak and peak period cases, respectively.  

 
FIGURE 16.  Objective functions of PSO for the EWH system (a) peak 
(b) off-peak (c) both peak and off-peak case. 

The daily energy cost and total power consumption of the 
EWH by using PSO optimization algorithm of three cases 
namely, peak, off-peak, and both peak and off-peak period 
result shown in Fig. 17. It is observed that after using PSO 
algorithm the total energy consumption of EWH is 1 kWh 
which achieved power consumption better than FLC 
controller. Therefore, the proposed algorithm achieves in 
electricity saving 55.55% while reducing the power 
consumption by using PSO optimization. The energy cost-
saving at three cases of the EWH is 55.76%, 55.90% and 
55.60% per day, respectively. In sum, the results 
demonstrated that the PSO optimization can help in EWH to 
minimize the power consumption and reduce the electricity 
bill cost while maintaining the customers' high comfort level. 
Table IV shows the comparison of energy consumption and 
cost with percentage for both FLC and PSO. 
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FIGURE 17.  Power consumption and daily cost for the EWH  system 
with PSO optimization (a) peak (b) off-peak (c) both peak and off-peak 
period. 

TABLE IV 
COMPARISON OF ENERGY CONSUMPTION AND COST WITH THE PERCENTAGE 

OF FLC AND PSO 

A
p

p
li

a
n

ce
 Period Power  

(kWh) 

Cost  (RM) Energy 

Saving 

(%) 

Cost 

Saving 

(%) With 
FLC 

With 

PSO 

With 
FLC 

With 

PSO 

H
V

A
C

 

Peak  4.7 3 6.84 4.34 36.17% 36.54% 

Off-Peak  4.7 3 4.15 2.63 36.17% 36.62% 

Peak and 

Off-Peak  

4.7 3 5.52 3.50 36.17% 36.60% 

E
W

H
 

Peak  2.2 1 3.21 1.42 54.54% 55.76% 

Off-Peak  2.2 1 1.95 0.86 54.54% 55.90% 

Peak and 
Off-Peak  

2.2 1 2.59 1.15 54.54% 55.60% 

L
ig

h
t 

Peak  0.04 0.015 0.05 0.021 62.5% 58% 

Off-Peak  0.04 0.015 0.03 0.013 62.5% 56.67% 

Peak and 
Off-Peak  

0.04 0.015 0.04 0.017 62.5% 

 

57.5% 

C. Light 

The objective value is evaluated to search for the 
appropriate values of dimmable light in the three cases. A 
comparative study in PSO is performed by developing the 
optimization response curve and associated objective 
function values, as shown in Fig.18. From the figure, the 
performance of the off-peak period is found superior 

concerning dimmable light load profile where off-peak 
achieves the lowest value of the objective function in 
comparison to peak and both peak and off-peak period. It is 
noticed that the lowest value of the objective function is 
estimated to be 6.743 after 8 iterations. The peak and off-
peak both hours case achieves an MAE of 6.744 after 9 
iterations and at last peak hours case achieves an MAE of 
6.746  after 29 iterations as illustrated in the figure. Table V 
shows the performance of the objective and convergence 
value in PSO. 

 
FIGURE 18.  Objective function of PSO for the Light system peak, off-
peak and, both peak and off-peak case. 

A comparative analysis between the FLC and PSO 
optimization of a three cases result is illustrated in Fig. 19. 
Using developed FLC controller, the total power 
consumption of FLC is founded 0.04 kWh and it is also 
noticed that after using PSO techniques the energy 
consumption decreased to 0.015 kWh. The PSO optimization 
technique achieved power saving by 62.5% kWh per day. 
From the figure, it can be observed that the PSO schedule 
controller reduced more energy cost compared to the FLC 
controller. The energy cost saving of the light in the three 
cases is 58%, 56.67% and 57.5% for the peak, off-peak, and 
both peak and off-peak period, respectively. It is evident that 
the PSO technique achieves superior performance than FLC 
controller. Table VI shows the comparison of energy 
consumption and cost for with FLC and PSO.  

TABLE V 
PERFORMANCE OF THE OBJECTIVE AND CONVERGENCE VALUE IN PSO 

A
p

p
li

a
n

c

e 

Period Iteration Population     

Size 

Objective 

Value 

Converge

nce 

Value 

H
V

A
C

 Peak  

100 20 

-18.0133 36 
Off-Peak  -18.0162 15 

Peak and 
Off-Peak  

-18.0159 28 

E
W

H
 Peak  

100 20 

10.8561 90 
Off-Peak  10.8562 48 
Peak and 
Off-Peak  

10.8559 56 

L
ig

h
t 

Peak  

100 20 

6.746 29 
Off-Peak  6.743 8 
Peak and 
Off-Peak  

6.744 9 
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FIGURE 19.  Power consumption and daily cost for the Light system 
with PSO optimization (a) peak (b) off-peak (c) both peak and off-peak. 

TABLE VI 
COMPARISON OF ENERGY CONSUMPTION AND COST WITH RM OF FLC 

AND PSO. 

A
p

p
li

a
n

ce
 Period Power  

(kWh) 

Cost  (RM) Energy 

Saving 

(kW) 

Cost 

Saving 

(RM With 
FLC 

With 

PSO 

With 
FLC 

With 

PSO 

H
V

A
C

 Peak  4.7 3 6.84 4.34 1.7 2.5 
Off-Peak  4.7 3 4.15 2.63 1.7 1.52 

Peak and 
Off-Peak  

4.7 3 5.52 3.50 1.7 2.02 

E
W

H
 

Peak  2.2 1 3.21 1.42 1.2 1.79 

Off-Peak  2.2 1 1.95 0.86 1.2 1.09 

Peak and 
Off-Peak  

2.2 1 2.59 1.15 1.2 1.44 

L
ig

h
t 

Peak  0.04 0.015 0.05 .021 .025 .029 
Off-Peak  0.04 0.015 0.03 .013 .025 .017 
Peak and 
Off-Peak  

0.04 0.015 0.04 .017 .025 .023 

 

VII. CONCLUSION  
An intelligent HEMS with demand response enabled 
domestic appliances that considering Malaysia’s 
environment for controlling home loads are presented in 
this paper. In this research, the commonly used residential 
household loads such as HVAC, EWH, lighting were 
modelled and analyzed using Simulink/Matlab. Firstly, 
FLC was developed for the HEMS to perform energy 
utilization estimation and cost analysis. However, the 
simulation results show that the developed models can 

manage power consumption and cost reduction efficiently. 
Using developed FLC controller, the cost and energy saving 
of the peak period are 19.72% and 20.34%, 26.71% and 
26.67%, 37.5% and 33.33% for the HVAC, EWH, and 
dimmable lamps, respectively. To solve the membership 
function (MF) constraint of FLC, an improved particle 
search optimization (PSO) algorithm is proposed for HEMS 
to determine the optimal schedule operation of home 
devices at specific times of the day. To validate the optimal 
performance, FLC and optimized fuzzy results were 
compared where it shows that the fuzzy-PSO can control 
the home appliances more significantly compared to fuzzy 
only. The obtained results also showed that the fuzzy-PSO 
scheduled controller achieved higher energy saving by 
using PSO. Therefore, the fuzzy-PSO based optimum 
scheduled controller for the HEMS minimized power by 
36.17% per day for HVAC, 54.54% per day for EWH and 
62.5% per day for light, respectively. The energy cost-
saving at the peak period for the three appliances are 
36.54%, 55.76% and 58% per day for HVAC, EWH and 
light consumption and cost by maintaining the customer's 
high comfort level. In sum, the PSO shows good 
performance to reduce the cost and power consumption 
toward efficient HEMS. Thus, the developed fuzzy-based 
heuristic optimized controller of the HEMS is useful for 
sustainable energy utilization.     
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