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In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a uni	ed
interpretation. �e best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and
de	nitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based
on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET). In the
proposed technique, we considered four input sensor readings (antecedents) and one output (consequent). �e employed mobile
nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, �e
Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash Severity is considered as the consequent variable. �e
processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed
protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate
of the vehicles’ crashes.

1. Introduction

Wireless sensor networks (WSNs) are composed of a large
number of sensor nodes, which are constrained in power and
communication range and are having multimodal sensing
capacity. �e tiny motes consist of sensing, data processing,
and communication components, which leverage on the idea
of sensor networks based on the collaborative e
ort of a
large number of nodes [1]. �e operations of the network
are performed under environmental conditions, which are
characterized by low signal-to-noise ratio, interference, and
multipath e
ects [2]. �e nodes are randomly distributed
over a region to detect a physical phenomenon or an event.
�e harsh 	elds and power constraint may make some sen-
sor nodes inoperable. Hence, the network’s lifetime mainly
depends on the power source.Due to the network constraints,
it is necessary to 	nd out some techniques that improve the
�ow of information. One of the suggested solutions is data
aggregation or data fusion. Data fusion techniques provide
a single data by collecting a set of various source data. Data

fusion can reduce the amount of data �owing and the energy
consumed for data processing and transmission by eliminat-
ing redundant data. As a de	nition, data fusion is a process of
combining information from several sources to reduce ben-
e	ciary and reliable information. In WSNs, data fusion can
be achieved by deletion of redundancy, energy consumption,
and assuring fault-tolerance among sensor nodes.

In order to reduce nodes’ power consumption and con-
sequently enlarge the network life time, numerous research
works considered data aggregation and sensor fusion tech-
niques, such as those regarding aggregation, metadata nego-
tiation, or data fusion [3–8]. �e authors in [3] address
the fusion problem in WSNs where the cross-correlation
between the estimates is unknown. With the assumptions
that the covariance matrix has a prior distribution and
also information about the covariance of each estimate
is known, the conditional distribution of the o
diagonal
blocks is derived. In [4], the authors focused on a data
aggregation mechanism to the number of transmissions
and thereby minimize energy consumption. For congestion
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control, a fusion-centric scheme is proposed in [7]. While
most of the other approaches focused on controlling link level
congestions, the authors in [7] proposed a scheme to control
the congestion at node level. A hybrid energy-e�cient data
aggregation protocol for large scale WSNs is proposed in [8],
which uses the spatial and temporal correlation of the data
for e
ective aggregation and thereby preserving energy. �e
proposed scheme in [5] performs 	ltration of sensed data by
eliminating the redundancy in the sensed data pattern of the
nodes using Brownian motion. In [6], information fusion is
used to improve the accuracy of location estimation inWSNs
with less computation complexity.

We already, in [9], have introduced a new system called
cognitive radio-based vehicular ad hoc and sensor networks
(CR-VASNET). In our system there are two kinds of sensor
nodes, some are embedded on the vehicles (called as mobile
nodes) and others are deployed at a predetermined distance
beside the highway road, known as road side sensor (RSS),
whereas the generated packet by the sensor nodes is time
sensitive and must be received in a minimum time by
the base station (BS), and because of spectrum scarcity
issue, CR-VASNET nodes are equipped with cognitive radio
technology. Cognitive radio enables the nodes to utilize
licensed spectrum bands in an opportunistic manner with
any harmful interference to the incumbents. �ese mobile
nodes are used to sense the vehicle’s activity. �ere are some
BSs, such as Police Tra�c station, Fire	ghting Group, or
Rescue Team. �e BSs may be stationary or mobile. We
have already considered diverse aspects of the proposed CR-
VASNET such as routing, localization, and spectrum access,
in [9]. In this paper we focus on sensor fusion aspect to detect
vehicles crashes.

Whereas fuzzy logic methods have the ability of fusing
uncertain data from several sources to improve the quality
of information, we employed fuzzy inference model for our
sensor fusion protocol, in order to estimate crash (accident)
severity in CR-VASNET. �e mobile nodes attached to the
vehicles provide required antecedent variables, that is, the
jerk, collision intensity, temperature, and inclination degree.
And the system provides the crash severity as consequent
variable. �e generated consequent as an accident alarm is
then transmitted to the BSs. Based on the crash severity
the required type of rescue will be decided by rescue team
(BSs).�is paper presents the research further undertaken to
fuse information from the mobile nodes to make composite
information from them more robust and make the overall
crash detection system more reliable.

�e rest of the paper is organized as follows. Section 2
describes our system framework. Simulation and perfor-
mance evaluation are discussed in Section 3. And 	nally,
Section 4 concludes the paper.

2. System Framework

When an accident occurs especially on the highway roads,
informing the relevant authorities, for example, rescue team,
	re	ghting group, and tra�c police within minimum time, is
an important issue to save injured people. In CR-VASNET,
sensor nodes are employed to detect and notify vehicles’

crashes.When the nodes detect collision or overturns, imme-
diately a packet will be generated and transmitted towards the
BSs. For example, if a simple collision takes place with no
damages, then there is no need for the attention of the 	re-
	ghting, rescue team, or ambulance. Hence, the details about
the accident (severity) such as what kind and level of accident
have taken place should also be considered and conveyed for
relevant action which in turn saves time and resources.

In general, fuzzy logic is a multivalue logic, by which
intermediate values can be de	ned using expressions, such
as true/false, high/low, and below/above [10]. As shown in
Figure 1, data fusion process is completed in four phases: (1)
fuzzi	cation, (2) rule evaluation, (3) combination and aggre-
gation of rules, and (4) defuzzi	cation. In our system, the jerk,
collision intensity, inclination degree, and also temperature
are the input fuzzy variables (antecedents) and the crash
(accident) severity is the output variable (consequent).

As abstracted in Figure 1, we have to devise an interpo-
lation mechanism that is capable of generating a numeric
output from a numeric set of inputs a�er considering all the
rules in the rule base. Our fuzzy control system comprises
the following modules. (1) Fuzzi	cation interface: it fuzzi	es
the crisp inputs by assigning grades of membership using
fuzzy sets de	ned for that particular variable. (2) Fuzzy rule
base: it consists of a “database” and a “linguistic control rule
base.” �e database is maintained to provide the required
de	nitions to de	ne linguistic control rules and fuzzy data
manipulation. It characterizes the control goals and control
strategies of the domain experts bymeans of a set of linguistic
control rules. (3) Fuzzy inference engine: it infers output by
employing the fuzzy implications and the rule of inference of
fuzzy logic. And (4) defuzzi	cation, which yields a nonfuzzy
control action from an inferred control action. We use (IF
antecedent THEN consequent) function for our system.

Table 1, shows some examples, where �, � and � are the
input values (jerk, temperature, and collision, resp.) and �1,
�2, �3, �2 and �1 are the terms for input variables, and CS
(Crash Severity) is output variable with values �1, �2, and �3.
�ere are three famous and common fuzzy logic inference
methods, for example, Mamdani, Tsukamoto, Sugeno and
Larsen, which work with crisp data as input [11].�ese meth-
ods are di
erent in terms of fuzzy rules consequents, aggrega-
tions, and defuzzi	cation procedures. Mamdani method has
been proposed to control a steam engine and boiler using a
set of linguistic control rules. In Mamdani method, inputs
are crisp values and by using defuzzi	cation, a fuzzy set will
be converted to crisp value. In the Tsukamoto method, the
output of each fuzzy rule is represented using a fuzzy set with
a monotonic feature while Sugeno method was proposed to
develop a systematic technique to produce fuzzy rules from a
given input or output dataset. In this paperwe follow themost
commonly used Mamdani method [12] instructions, because
it allows us to describe the expertise in more intuitive and
more human-like manner.

As the 	rst step in the Mamdani method, we assign a
degree of membership for each input value to the appro-
priate de	ned fuzzy set. �e membership functions LOW,
MEDUIM, HIGH, and VERY HIGH are de	ned on each
input variable and VERY LOW, LOW, MEDUIM, HIGH,
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Table 1: Some examples of system’s rules.

Rule Rule description using crisp values

1 IF � is �1 OR � is �2, THEN CS is �1
2 IF � is �2 AND � is �1,THEN CS is �2
3 IF � is �3, THEN CS is �3

Collision Inclination Temperature

Sensor readings

Jerk

Fuzzi�cation Fuzzi�cation Fuzzi�cation Fuzzi�cation

Fuzzy inference engine

Rule evaluation Rule base

Deuzzi�cation

Crash severity

(Crisp output)

Crisp input data

Figure 1: Flow of data in our fuzzy control system.

and VERY HIGH are de	ned on output variables. �ere
are several types of membership function in fuzzy, for
example, triangular, trapezoidal, Gaussian, Bell, Sigmoidal,
Asymmetric, and L-R. We used triangular, trapezoidal, and
Gaussian for our model. �e advantages of using these
three member functions are as follows: (1) de	ning of the
membership functions based on a small amount of data, (2)
simplicity in parameters modi	cation based on antecedents’
measured values to obtain the consequent, (3) the possibility
of obtaining input and outputmapping of themodel, a hyper-
surface composed on linear segments, and (4) polygonal
membership functions meaning the condition of a partition
of unity whereas the sum of membership grades for each
valuemust be one, by using polygonal membership functions
it can be easily achieved. As mentioned already, we have
four input variables as our antecedents: (1) jerk, (2) collision
intensity, (3) inclination degree, and (4) temperature. In the
following subsections, we explain how to obtain the crisp
value of each antecedent as well as fuzzi	cation assignment
for each one.

2.1. Jerk. �e velocity is de	ned as speed of movement of an
object:

V = Δ

Δ� , (1)

where “V” is velocity, “
” is position, and “�” stands for time.
�e acceleration, �, is the di
erentiation of velocity with
respect to the time:

⃗� = ΔV
Δ� or ⃗� = �V⃗

�� =
�2
⃗
��2 . (2)

�e jerk or derivative of acceleration is the 	rst order
di
erentiation of acceleration with respect to time, or the
second derivative of velocity, or the third derivative of the
position. �e jerk is directly related to a physical damage
process of materials and structures [13]. We measure the
instantaneous acceleration, for example, by accelerometer,
and then, by taking the di
erence with respect to the time,
compute the time rate of change of acceleration, which is the

jerk. Meter per second cubed is the unit of jerk (m/s3):

→�� = ��(�)
�� = ⃗�(�) = �2V⃗(�)

��2 = ̈
V⃗(�) = �3
⃗(�)

��3 = ̈⃗�(�). (3)

According to [14], the jerk in 3D motion consists of three
components that can be expressed as

��
�� =

�3

��3� + � (��2)

���
+ � ������3����� (−�� + ( 1

|�|2)(
� |�|
�� )� + Υ�) ,

(4)

where � is the unit vector tangent to the curve, pointing
in the direction of motion, � is the normal unit vector,
� is the binormal unit vector and the cross product of �
and �, and � is used to e
ectively de	ne the curvature and
torsion of a space curve. �e 	rst expression is the rate of
change of linear acceleration, the second expression is normal
acceleration change rate, and the last term is the fundamental
Frenet vector. Υ is the only parameter that cannot be
determined without ��/��. Generally, the jerk’s conventional
measurement works as follows: a signal input, which can be a
displacement or a force excitation, is detected or measured
by an accelerometer. �e numerical di
erentiation of the
measured acceleration yields the jerk output [15]. �e output
of the jerk sensor is a voltage proportional to jerk, which can
be measured by a jerk sensor. When an accident happens,
two cars collide, the situation is more complex, and both
vehicles produce negative acceleration and jerk. Negative
acceleration makes passengers jerk in the forward direction
and at times even cause casualty and death. Jerk is the cause
of parts’ molecular rupture, resulting in destruction. �e
fuzzy input jerk is fuzzi	ed using triangular and trapezoidal
functions as shown in Figure 2, where the LOW, MEDIUM,
HIGH, and VERY HIGH components represent magnitude
of participation for the input. Trapezoidal and triangular
membership functions have been chosen because they have
been shown to be a good compromise between e
ectiveness
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Figure 2: Fuzzi	cation assignment for the jerk input variable.

and e�ciency.�ese, trapezoidal and triangular membership
functions can be calculated as follows:

tringle (
; �, �, �) = max(min(
 − �� − � ,
� − 

�−���) , 0) ,

trapezoid (
; �, �, �, �) = max(min(
 − �� − � , 1,
� − 

� − � ) , 0) ,

(5)

where ��, ��, ��, and �� are coordinates of the �th trapezoid
apexes for fuzzy set �.
2.2. Collision Intensity. Collisions with a static obstacle or
a mobile vehicle are two cases when a crash happens. We
measure the intensity of the collision with respect to the mass
of the vehicle and also its velocity, which is equal to the kinetic
energy:

� = 1
2�V
2, (6)

where “�” is the mass of the vehicle and “V” is the velocity.
�e metric of the collision is Joules. �e fuzzy input collision
intensity is fuzzi	ed using triangular and trapezoidal func-
tions as shown in Figure 3.

2.3. Inclination Degree. Inclination degree or the angle of the
vehicle with respect to gravity can be found based on the
following formula:

 = arcsin( !�−!) , (7)

where “!�” is the acceleration due to gravity in the “
”
direction.

Table 2 represents mapping for a universe of discourse of
inclination of the vehicle to degrees of the possibility that a
vehicle is overturned. Figure 4 shows the fuzzy set de	ned on
the universe of discourse, inclination degree using Gaussian
function.

2.4. Temperature. As shown in Figure 5, the fuzzy sets for
temperature input variable are de	ned by triangular and
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Figure 3: Fuzzi	cation assignment for the collision intensity input
variable.
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variable.
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Figure 5: Fuzzi	cation assignment for the temperature input varia-
ble.

trapezoidal functions. �e core of the set de	ned as the most
representative element of that set is de	ned as core� = {
 |

 ∈ #, $� = 1}. Table 3 shows the core of our fuzzy sets.

�e four input variables are used to assign a weight
factor to each sensor that detects an event. �e input fuzzy
values are saved using array vectors. By the formed array
vectors, we try to eliminate redundancy data coming from
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Figure 6: Rule evaluation process.

Table 2: �e possibility that a vehicle is overturned.

Inclination (angle) Mem. Fun. degree

180∘ 1

150∘ 0.75

135∘ 0.5

120∘ 0.25

90∘ 0

60∘ 0.25

45∘ 0.5

30∘ 0.75

0∘ 1

Table 3: Core of our fuzzy sets.

Variable/range � � �
L <15 <0.07 <10
M 35 0.3 40

H 55 0.6 60

VH >75 >0.8 >85

the same sensors.�en, the second step is the rule evaluation,
where the fuzzi	ed inputs are applied according to certain
appropriate rules. �e logic operators, for example, (AND)
and (OR), which represent minimum (intersection) and
maximum (union), respectively, are used to estimate a crisp
value.�is value describes the result a�er the rule evaluation,
in case where a fuzzy rule has more than one condition
element, as depicted by Figures 6(a) and 6(b). �e numerical
values, such as minimum, maximum, mean, and standard
deviation of the input fuzzy magnitudes, are used to select

the center and width used in triangular, trapezoidal, and
Gaussian functions during the second step.

As an example we draw the graph in case � and � are 63.3
and 0.73, respectively. Based on triangular and trapezoidal
membership function assignment: $�63.3 = 0.45, $VH63.3 =0.25, and, 4; $�0.73 = 0.32 and $�0.73 = 0.12.

�e aggregation of all outputs is the third step. Combina-
tion of the outputs of each rule to compose a new fuzzy set is
the most considerable issue in this step. See Figure 7.

As we are going to estimate the severity of crash (acci-
dent), Figure 8 describes the expected fuzzy output variable
(crash severity), where VL, %, &, ', and VH represent the
magnitude of participation for that output.

�e conversion of the aggregated new fuzzy set into a
number (crisp value) is the 	nal step, which is known as the
defuzzi	cation.�ementioned conversion can be done by the
Centroid technique. As shown in Figure 9, determination of
the point, at which a vertical line split the combined set into
two parts, is known as the Centroid technique. �e Centroid
method is given by the following formula [11]:

́
- = ∫ $� (9) ∗ 9 �9

∫ $� (9) �9 , (8)

where $�(9) is the membership function of set �. Consider
the following:

COG = (((0 + 10 + 20 + 30 + 40) × 0.32)
+ ((40 + 50 + 60 + 70 + 80) × 0.12))

⋅ (0.32 × 5 + 0.12 × 5)−1
= 28.72.

(9)
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Figure 9: Defuzzi	cation process.

3. Simulation and Results

�e fuzzy (IF antecedent THEN consequent) rules in expert
systems are de	ned as follows:

IF � is �1 and C is �1, THEN CS is cs1,

else

IF � is �2 and � is �2 OR � is �1, THEN CS is cs2,

where �, �, and � are the antecedent variables and CS is a
single consequent variable.�ere are four input variables and
each consists of four linguistic variables. �erefore, the total

44 = 256 rules are used, which are all possible combinations

of antecedents. Some of the example rules in the rule based
system are given below:

(i) IF (jerk is%) and (collision is%) and (temperature is%)
and (inclination is not high), THEN (Crash Severity
is %),

(ii) IF (jerk is %) and (collision is %) and (temperature is
&) OR (inclination is high), THEN (Crash Severity
is&),

(iii) IF (jerk is&) OR (collision is %) and (temperature is
%) and (inclination is high), THEN (Crash Severity is
'),

(iv) IF (jerk is') OR (collision is') and (temperature is
VH) and (inclination is high), THEN (Crash Severity
is VH).

�e rules are created using the fuzzy inference system (FIS)
editor contained in the MATLAB Fuzzy Toolbox. Figure 10
depicts a sample fuzzy calculation of crash severity based on
the amount of the jerk, collision intensity, temperature, and
inclination degree. Variations of member function of each
input variable are shown in this 	gure as well. �e red line
indicates the assumed value for the variable.

In our system, diverse sensors detect event parameters by
setting threshold values. To save the power, the sensed data by
diverse sensors is compared to the threshold value, and only if
it is decided to transmit the data, it will trigger the transmitter
and will transmit to the BS via RSS. �e processor part of
the sensor receives the parameters (jerk, collision intensity,
inclination degree, and temperature) by these diverse sensors
and will compute the mean value of the parameters. Based
on the mean value of the sensor-sensed data, the fuzzy logic
system generates a numerical value as the crash severity.
Table 4 shows a sample output of crash severity. From the
last row of the table, it can be seen that jerk is high (65),
collision intensity is high (0.18), temperature is very high (90),
inclination degree is (0), and then crash severity is very high.

As stated already, the consequent, Crash Severity, is
calculated based on the four antecedents. We have shown
how to calculate the consequent based on all antecedents, for
example, the case illustrated by Figure 10. However, because
of limitation for preparing more than 3-dimensional 	g-
ures, the following 	gures depict Crash Severity calculation
based on any two antecedents. Figure 11 shows consequent
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Figure 11: Surface view of crash severity with respect to collision
intensity and the jerk.

calculation with respect to collision intensity and the jerk.
When the two input values are low, the Crash Severity is also
low. Whereas increasing of the jerk and collision intensity is
coherent, it means increasing of the jerk results in increasing
of collision intensity, and then Crash Severity will increase
too. As shown in Figure 12, only occurrence of jerk when it

is less than 70m/s3 does not cause severe accident. However,
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Figure 12: Surface view of crash severity with respect to the jerk and
temperature.

if only temperature is high or simultaneously both the jerk
and temperature increase, the Crash Severity increases as
well. In this case, whenever temperature sensor reports high
temperature, it means 	re takes place and thereby an alarm
message will be sent to 	re	ghting group to go to the accident
area.
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Table 4: Some output samples of crash severity.

Number Jerk Collision intensity Temperature Inclination degree Crash severity

1 8 0.07 12 90 15

2 12 0.05 37 85 25

3 32 0.13 10 50 35

4 65 0.18 90 0 48

Collision

40

35

30

25

20

0
0.2

0.4
0.6

0.8

100

50

0

Temperature

C
ra

sh
S

ev
er

it
y

Figure 13: Surface view of crash severity with respect to collision
intensity and temperature.

Figure 13 shows surface view of Crash Severity with
respect to collision intensity and temperature. Severity of
the crash increases when temperature exceeds 50 centigrade.
However, with respect to the collision intensity, even when
the temperature is less than 50 centigrade, and the collision
intensity is high, theremay be an accident that occurred. And
if both of them increase, Crash Severity increases as well.

Figure 14 illustrates dependency of Crash Severity on
inclination degree and temperature. As it can be seen, when
inclination degree of the vehicle is close to 90 degrees and
temperature is less than 50 centigrades, the severity is zero or
less, but when the inclination degree tends to 0 or 180 degree
and/or temperature increases, then Crash Severity increases
as well. �e graph well illustrates the cases where the type
of the accident is vehicle overturn only and there is no 	re
(inclination degree close to 0 or 180 degrees but temperature
is low, resulting in increasing the crash severity).

4. Conclusion

In this paper we proposed a system for crash severity
detection by a fuzzy-based sensor fusion technique for our
earlier proposed cognitive radio-based vehicular ad hoc and
sensor networks (CR-VASNET). We assumed four sensor
readings as the antecedents, that is, the jerk, collision inten-
sity, temperature and inclination degree, and crash severity as
the consequent variable.�eproposed system e
ectively han-
dles the uncertainty and vagueness present in the vehicular
environment data.�e system improves the accuracy of crash
detection and severity measurement by processing multiple
sensor readings. According to the simulation results it can
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Figure 14: Surface view of crash severity with respect to temperature
and inclination degree.

be concluded that employing the proposed scheme helps to
provide more accurate data to the authorities in comparison
to using data from independent sensors.
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