
135Fuzzy-Bayesian-network-based Safety Risk Analysis 2018 46 3

Abstract
This study presents a fuzzy Bayesian network (FBN) method 
to analyze the influence on the safety risk of railway passen-
ger transport applying different risk control strategies. Based 
on the fuzzy probability of the basic event determined by the 
expert group decision method, the proposed FBN method can 
reasonably predict the probability of railway passenger safety 
risk. It is also proven that control the risk in the safety man-
agement of railway passenger transport will be the most effec-
tive way to reduce the risk probability of the railway passenger 
transport safety.

Keywords
railway passenger transport, fuzzy Bayesian network, 
probabilistic forecast modeling, safety risk analysis, fuzzy 
probability reasoning

1 Introduction
In the last several decades, the Chinese railway passenger 

transportation with the rapid development of high-speed train 
technology has entered the golden age. Unfortunately, the inci-
dence of railway safety accidents also significantly increased with 
the emergence of this phenomenon. According to the statistics 
published by the National Railway Administration of China, the 
average accident rate has reached 1.47% and caused a direct eco-
nomic loss of 62.92 million yuan annually. Though many safety 
precautions have been attempted to prevent railway accidents, 
these current measures are difficult to determine which the main 
risk factor affecting railway passenger safety is. In this regard, it 
is necessary to study a new method that considers the uncertainty 
relationship of different risk factors to provide decision support 
for ensuring the safety of railway passenger transportation.

In fact, many risk-based analysis methods for avoiding 
casualties and property losses have been developed, includ-
ing pre-hazard analysis (PHA) (Khakzad et al., 2013; Savage, 
2005), fault tree analysis (FTA) (Fink et al., 2014; Johnston, 
2000), safety check list (Muttram, 2002), risk matrix analysis 
and risk probability analysis (Khakzad et al., 2011; An et al., 
2011). In particular, The Bayesian network modeling method 
based on probability statistics is a powerful tool for dealing with 
the uncertainty and causality of the multiple influencing factors 
(Holický et al., 2013; Trucco et al., 2008). It can also be used to 
effectively resolve the correlation between security risk factors 
at all levels of the network and to provide an early warning to 
prevent railway accidents (Lee et al., 2008; Helge and Verner, 
2007; Paul and Maiti, 2007). In addition to the safety evalua-
tion, BNs has now been widely used in various fields (Anacleto 
et al., 2013; Eleye-Datubo et al., 2008; Leu and Chang, 2013).

It is difficult to calculate the prior probability of root nodes 
by the traditional BN method (Liu et al., 2015; Ayha and Ismail, 
2011). The group decision-making technique based upon fuzzy 
set theory (FST) is generally used to obtain the prior probability 
of root nodes more accurately (Horčík, 2008). From the perspec-
tive of government regulation, this research has newly proposed 
an approach to predict the risk probabilities of the railway passen-
ger transport safety in different management scenarios.
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2 Data Survey
The research field of this study is mainly focused on the safety 

risk in the process of railway passenger transportation in China. 
According to the Yearbook of China Railway published by the 
China Railway Corporation, The railway passenger transporta-
tion system in China has a high incidence of major railway acci-
dents. Moreover, the statistics shown in Fig. 1 and Fig. 2 illus-
trate the types and causes of major railway accidents. As we can 
see from Fig. 1, the train collision and derailment accounted for 
68.89% of the types of railway passenger accidents, while train 
fires and explosions each accounted for 13.33% and 17.78%. It 
is obviously recognized that the collision and derailment is the 
main type of railway passenger accidents.

Fig. 1 Analysis of the major accidents types in past years.

Fig. 2 Analysis of the major accidents causes in past years.

Also national statistics shown in Fig. 2, attribute more than 
fifty percentages of the accidents at rail to human and man-
agement errors, while only 13.33% to equipment failures and 
15.56% to environment factors. It is obviously recognized that 
the human and management elements play the major role in 
most railway passenger transportation accidents.

3 Methods and process
According to the analysis of existing statistical data of the 

railway accidents, it is found that the risk factors (such as per-
sonnel factors, management factors) which affect the safety of 
railway passenger transport are independent from each other, 
and the probability of occurrence of these risk factors is highly 
uncertain. FST provides an analytical technique to deal with 

the inaccuracy of the previous failure probability (Halliwell 
and Shen, 2009). Adopted the advantages of the BN and FST, 
a risk analysis method based on fuzzy Bayesian network is 
proposed in this study.

3.1 BN model construction
In the practice of railway passenger transport, the occurrence 

probability of the basic risk factors is difficult to be accurately 
calculated (i.e. the data is rare). However, Khakzad et al. (2011) 
summarize the simplified procedure which consists of graphical 
and numerical mapping FT into BN is shown in Fig. 3.

Fig. 3 Transformation flow chart from FT to BN.

In this study, the risk factors (i.e. individual factors, man-
agement factors, equipment factors and environmental factors) 
were defined as intermediate nodes of the BN. Subsequently, 
the BN model of RPTS is newly developed, as shown in Fig. 4. 
In addition, the descriptions of all nodes in the BN of RPTS are 
illustrated in Table 1.

Fig. 4 Established Bayesian network model for RPTS

3.2 Fuzzy probability assessment
In view of the method described in previous section, it 

is reasonable to carry out the safety risk analysis in various 
railway safety control strategy applying the built BN model. 
Nevertheless, the prior information based on expertise knowl-
edge (i.e., the node prior probability) needs to be provided 
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into the Bayesian network model. Unfortunately, according to 
previous related research (Ozbay and Noyan, 2006; Liu et al., 
2014; Zhang et al., 2014), it is hard to accurately evaluating 
the prior probability simply based on expertise experiential 
knowledge. In order to obtain more precise prior probabilities 
of the root nodes, Zhang et al. (2014) have proposed an exper-
tise-based fuzzy probability calculation method which is used 
in this study to estimate the probabilities of the nodes applying 
triangle fuzzy numerals. 

Table 1 Descriptions of nodes in the BNs of RPTS

Nodes Descriptions

T Railway passenger transportation safety

A1 Personnel risk

A2 Management risk

A3 Equipment risk

A4 Environmental risk

X1 Personnel Composition

X2 Staff training

X3 Staff assessment

X4 Safety production objectives

X5 Safety production system

X6 Safety production process

X7 Safety education and publicity

X8 Emergency rescue system

X9 Equipment failure rate

X10 Maintenance protection

X11 Natural environment

X12 Social environment

The process of this method contains four sequential steps 
of probability interval division, expert credibility calculation, 
probability fuzzification and probability defuzzification. The 
specific steps of the fuzzy probability calculation method in 
each of these steps are presented below.

Step 1 Probability interval division
A reasonable interval division is helpful to improve the accu-

racy of expert investigation. Therefore, this research introduces 
the Wickens’ 7-level theory (Wickens and Hollands 2000) to 
express the probability range of natural language division. And 
the probability of the event is divided into very high (VH), high 
(H), the higher (FH), medium (M), the lower (FL), low (L), 
very low (VL) 7 intervals, as seen in Fig. 5., and the corre-
sponding form of fuzzy numbers level is shown in Table 2.

Fig. 5 Division of fuzzy probability interval

Table 2 Descriptions of fuzzy probability interval

Intervals(k) Fuzzy expressions
Fuzzy numbers

ak ck bk

1 very low 0.00 0.10 0.20

2 low 0.10 0.20 0.30

3 the lower 0.20 0.35 0.50

4 medium 0.40 0.50 0.60

5 the higher 0.50 0.65 0.80

6 high 0.70 0.80 0.90

7 very high 0.80 0.90 1.00

Step 2 Expert credibility calculations
In this step, the expert reliability index which taking edu-

cational background, working years and title level into con-
sideration is presented to improving the rationality of expert 
knowledge. The expert reliability index, denoted by ω in this 
study, is calculated by Eq. (1).

ω =
=
∑
i

i iw q
1

3

Where qi refers to the credibility of the ith expert level as 
shown in Table 3; wi refers to weight values of the three influ-
encing factors. Here the weight value of the professional quali-
fications is 0.5, the weight value of the years of work experience 
is 0.4, and the weight value of the education background is 0.1.

Table 3 The level of expert credibility

level
Years of work 
experience

Professional
qualifications

Education
background

q

I
more than
30 years

Senior engineers 
Graduate
degree or above

1.0

II 20-30 years Engineers bachelor degree 0.9

III 10-20 years
Assistant
engineers 

College degree 0.8

IV 5-10 years Skilled worker 
Secondary
education

0.7

V 1-5 years Ordinary worker 
The following
secondary education

0.6

(1)
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Step 3 Probability fuzzification
The distribution of the probability which one expert considers 

a basic event lying in the ith fuzzy probability interval is pre-
sented, as seen in Eq. (2). Continually, According to the “3σ cri-
terion”, the characteristic values is calculated by the Eq. (3) - (6).
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Where pi refers to the probability which one expert consid-
ers a basic event lying in the ith fuzzy probability interval; ω 
refers to the expert confidence indicator; ak, aj, ak-i, and a8+k-i 
refer to the values of lower boundary as shown in Table 1; i, j, 
and k refer to the level of fuzzy probability interval.
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Where Pi refers to the probability which some experts con-
sider a basic event lying in the ith fuzzy probability interval; j 
and n refer to the number of the experts; ci refers to the interme-
diate value of the ith probability interval as shown in Table 2; 
a, m, and b refer to characteristic values (i.e. the fuzzy numbers 
ak, bk, ck) of the fuzzy probability.

Step 4 Probabilistic defuzzification
Several defuzzification methods (Braae and Rutherford, 1978; 

Mamdani, 2010) have currently been presented for decision anal-
ysis in the Bayesian inference. The α-weighted valuation method 
(Detyniecki and Yager, 2000) is employed in the study to calcu-
late the exact value represented the probability of the root nodes 
and the related formulations are shown in Eq. (7)-(10).

Val F
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Where Fα is the α-level set of the membership function F(x); 
f(α) is the α-weighted valuation function; Val(F) refers to the 
transformed exact value; Average(Fα) is the mean of Fα; uα 
refers to the lower limit of Fα; vα refers to the upper limit of 
Fα; aj, mj and bj refer to the minimum, median and maximum 
values of the jth node.

Some experts with different backgrounds are investigated 
in this study to provide sufficient samples for calculating the 
probabilities of the root nodes. According to the process of 
the expertise-based fuzzy probability calculation method, the 
estimated results of fuzzy probability of the root nodes in the 
established FBN model are presented in Table 4.

Table 4 The fuzzy probabilities of root nodes in FBN

Root nodes
The fuzzy probabilities

Val(F)
a m b

X1 0.033 0.045 0.057 0.045

X2 0.055 0.068 0.081 0.068

X3 0.019 0.031 0.043 0.031

X4 0.021 0.037 0.053 0.037

X5 0.043 0.061 0.079 0.061

X6 0.063 0.084 0.105 0.084

X7 0.012 0.018 0.024 0.018

X8 0.037 0.048 0.059 0.048

X9 0.072 0.095 0.118 0.095

X10 0.045 0.059 0.073 0.059

X11 0.003 0.007 0.011 0.007

X12 0.028 0.037 0.046 0.037

4 Results and Discussion
4.1 Model Validation

Before making railway passenger safety risk analysis, 
firstly, it needs to verify the validity of the model by com-
paring the occurrence frequency of the accident statistics with 
the conditional probability calculated by the fuzzy Bayesian 
model of railway passenger safety risk. The reliability of the 
model is considered to be accepted when the relative error is 
within a certain range.

The comparison of the analytical results (i.e. probabilities 
of the four basic risk factors) of the BN model to the safety 
investigation statistics records (i.e. accident statistics shown 
in Fig. 2) is shown in Table 5.

From the table, it can be seen that the relative error rate of 
the posterior probability and the actual statistical probability 
for the four basic risk factors are 12.11%, 13.40%, 16.20% and 
7.99% respectively, and the average error is 12.42%. Because 
both the relative error and average error are less than twenty 
percentages, it can be considered that the FBN-based safety 

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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risk analysis method had certain accuracy and practicability for 
railway passenger transport safety risk assessment. It is worth 
noting that only major railway accident statistics records are 
using to the validation due to the lack of the available data. 
Moreover, it is foreseeable the error rate of the model will be 
further reduced as long as there is enough railway accident sta-
tistics, thereafter, the FBN-based safety risk analysis method 
can be more precisely.

Table 5 Comparison between BN risk assessments and real statistics records

Nodes Descriptions
The proportion
of the posterior
probabilities

Actual
statistics

Relative 
error rate

A1 Personnel risk 29.90% 26.67% 12.11%

A2 Management risk 32.76% 28.89% 13.40%

A3 Equipment risk 15.49% 13.33% 16.20%

A4 Environmental risk 16.80% 15.56% 7.99%

Average 
error rate

12.42%

4.2 Safety Risk Analysis
In the premise of meeting the accuracy requirement, the 

developed method can be used for safety risk analysis in RPTS 
during the stage of security risk prevention.

4.2.1 Scenario Analysis
In fact, the railway passenger transport safety risk in the 

risk prevention phase is related to the basic influencing factors, 
namely Personnel risk, Management risk, Equipment risk and 
Environmental risk. The purpose of the scenario analysis is to 
calculate the conditional probability of the top event (i.e. the 
railway passenger transportation safety risk). Thus, it is success-
ful to obtain the results (i.e. posterior conditional probability) 
which are used for comparison with entering the state variable 
parameters of each scenario (yes or no) into the BN as evidence. 
Obviously, it is the best result without any basic risk in RPTS 
(i.e. scenario A) from the perspective of the administrators, 
according to the inference probabilities in Table 6. Furthermore, 
the highest posterior probability is obtained when the railway 
passenger transport management risk occurs (i.e. scenario C), 
compared to the personnel risk (i.e. scenario B), the equipment 
risk (i.e. scenario D) and the environmental risk (i.e. scenario E). 
The railway passenger transport managers with safety responsi-
bilities can optimize continuously the risk prevention plans by 
this way until the high risk factors are under control.

4.2.2 Sensitivity analysis 
Sensitivity analysis is to identify which factors most affect 

railway passenger transport accident, and therefore according 
which the managers of railway enterprise could take appropri-
ate measures to effectively improve the operating performance 

of railway passenger transport. Adopted by the merit of apply-
ing the sensitivity analysis technique with entering the fuzzy 
probability of the root nodes which have been calculated, three 
key performance indicators (KPIs) by using Eq. (11)-(13) are 
shown in Fig. 6.
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Where Xi refers to the ith risk factor; IREV(Xi) refers to risk 
expansion sensitivity of Xi; I

RRV(Xi) refers to risk reduction sen-
sitivity of Xi; I

AVG(Xi) refers to risk average sensitivity of Xi; i 
and n refer to the number of risk factors.

Table 6 Probabilistic results of the scenario analysis of railway passenger 
safety risk (T)

Scenario Descriptions P(T=1)

A:A1=no, A2=no, A3=no, A4=no No basic risk 1.82%

B:A1=yes, A2=no, A3=no, A4=no Only personnel risk 8.88%

C:A1=no, A2=yes, A3=no, A4=no Only management risk 9.42%

D:A1=no, A2=no, A3=yes, A4=no Only equipment risk 6.15%

E:A1=no, A2=no, A3=no, A4=yes Only environmental risk 2.24%

Fig. 6 The calculation results of the KPIs for root nodes (X1-X12)

As can be seen from the Fig. 6, the ranking results of these 
three KPIs enjoy high consistency. Moreover, X1 (i.e. person-
nel composition), X6 (i.e. safety production process) and X8 (i.e. 
emergency rescue system) are the most important factors affecting 
the occurrence of the top event (i.e. railway passenger transport 
safety) due to the ranking results calculating the KPIs. Therefore, 
corresponding measures should be taken to ensure that the three 
key factors are in a reasonable state at the risk control stage.

(11)

(13)

(12)
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5 Conclusions
This study developed an effective FBN-based safety risk 

analysis method for railway passenger transport. The infer-
ence results were validated against the four basic risk factors 
which derived from the statistical data of major railway pas-
senger accidents over the years. It is showed that the posterior 
probability of the basic risk factors calculated by BN inference 
were within a certain error range compared with the actual rail-
way passenger transport accident rates. It is suggested that the 
proposed fuzzy-Bayesian-network-based safety risk analysis 
method have a certain accuracy and practicality in railway pas-
senger transport safety risk analysis. Accordingly, on the basis 
of the scenario simulation and sensitivity analysis, railway pas-
senger transport governors can take preventive and protective 
measures in advance to effectively control the safety risks of 
railway passenger transportation.

Although the fuzzy probability assessment method reduces 
the uncertainty of expert information to some extent, a more 
rational structure of BN can be explored and established with 
abundant reliable safety data in the future research. Moreover, 
the other approach for expert elicitation is worth studying in the 
future researches. Finally, the situations applied in this study to 
assessment the safety risk of railway passenger transport still 
need more detail parameters to define more comprehensive 
condition in the future.

Acknowledgement
The project presented in this article is supported by the 

National Natural Science Foundation of China (71571011) and 
the Fundamental Research Funds for the Central Universities 
(2017YJS097).

References
An, M., Chen, Y., Baker, C. J. (2011). A fuzzy reasoning and fuzzy-analytical 

hierarchy process based approach to the process of railway risk informa-
tion: a railway risk management system. Information Sciences. 181(18), 
pp. 3946-3966.

 https://doi.org/10.1016/j.ins.2011.04.051
Anacleto, O., Queen, C., Albers, C. J. (2013). Multivariate forecasting of road 

traffic flows in the presence of heteroscedasticity and measurement er-
rors. Journal of the Royal Statistical Society. 62(2), pp. 251-270.

 https://doi.org/10.1111/j.1467-9876.2012.01059.x
Braae, M., Rutherford, D. A. (1978). Fuzzy relations in a control setting. Ky-

bernetes. 7(3), pp. 185-188.
 https://doi.org/10.1108/eb005482
Castillo, E., Menéndez, J. M., Sánchez-Cambronero, S. (2008). Predicting 

traffic flow using bayesian networks. Transportation Research Part B 
Methodological. 42(5), pp. 482-509.

 https://doi.org/10.1016/j.trb.2007.10.003
Chen, T. T., Leu, S. S. (2014). Fall risk assessment of cantilever bridge projects 

using bayesian network. Safety Science. 70(70), pp. 161-171.
 https://doi.org/10.1016/j.ssci.2014.05.011

Detyniecki, M., Yager, R. R. (2000). Ranking fuzzy numbers using α-weighted 
valuations. International Journal of Uncertainty, Fuzziness and Knowl-
edge-Based Systems. 8(05), pp. 573-591.

 https://doi.org/10.1142/S021848850000040X
Eleyedatubo, A. G., Wall, A., Wang, J. (2008) Marine and offshore safety as-

sessment by incorporative risk modelling in a fuzzy Bayesian network of 
an induced mass assignment paradigm. Risk Analysis. 28(1), pp. 95–112. 

 https://doi.org/10.1111/j.1539-6924.2008.01004.x
Fink, O., Zio, E., Weidmann, U. (2014). Predicting component reliability and 

level of degradation with complex-valued neural networks. Reliability 
Engineering & System Safety. 121(1), pp. 198-206. 

 https://doi.org/10.1016/j.ress.2013.08.004
Halliwell, J., Shen, Q. (2009). Linguistic probabilities: theory and application. 

Soft Computing. 13(2), pp. 169-183. 
 https://doi.org/10.1007/s00500-008-0304-1
Helge, L., Verner, J. F. (2007). Bayesian networks in reliability. Reliability En-

gineering & System Safety. 92(1), pp. 92-108. 
 https://doi.org/10.1016/j.ress.2005.11.037
Holický, M., Marková, J., Sýkora, M. (2013). Forensic assessment of a bridge 

downfall using bayesian networks. Engineering Failure Analysis. 30(2), 
pp. 1-9.

 https://doi.org/10.1016/j.engfailanal.2012.12.014
Horcik, R. (2008). Solution of a system of linear equations with fuzzy num-

bers. Fuzzy Sets & Systems. 159(14), pp. 1788-1810. 
 https://doi.org/10.1016/j.fss.2008.01.018
Johnston, G. (2000). Reliability for technology, engineering, and management, 

by paul kales. Technimetrics. 42(2), pp. 207-207. 
 https://doi.org/10.2307/1271456
Khakzad, N., Khan, F., Amyotte, P. (2011). Safety analysis in process facilities: 

comparison of fault tree and bayesian network approaches. Reliability 
Engineering & System Safety. 96(8), pp. 925-932. 

 https://doi.org/10.1016/j.ress.2011.03.012
Khakzad, N., Khan, F., Paltrinieri, N. (2014). On the application of near acci-

dent data to risk analysis of major accidents. Reliability Engineering & 
System Safety. 126(5), pp. 116-125. 

 https://doi.org/10.1016/j.ress.2014.01.015
Lee, S. J., Man, C. K., Seong, P. H. (2008). An analytical approach to quantita-

tive effect estimation of operation advisory system based on human cog-
nitive process using the bayesian belief network. Reliability Engineering 
& System Safety. 93(4), pp. 567-577. 

 https://doi.org/10.1016/j.ress.2007.02.004
Leu, S. S., Chang, C. M. (2013). Bayesian-network-based safety risk assess-

ment for steel construction projects. Accident Analysis & Prevention. 
54(2), pp. 122-133. 

 https://doi.org/10.1016/j.aap.2013.02.019
Liu, P., Yang, L., Gao, Z., Li, S., Gao, Y. (2015). Fault tree analysis combined 

with quantitative analysis for high-speed railway accidents. Safety Sci-
ence. 79, pp. 344-357. 

 https://doi.org/10.1016/j.ssci.2015.06.017
Mamdani, E. H. (2010). Application of fuzzy algorithms for control of simple 

dynamic plant. Proceedings of the Institution of Electrical Engineers. 
121(121), pp. 1585-1588. 

 https://doi.org/10.1049/piee.1974.0328
Mentes, A., Helvacioglu, I. H. (2011) An application of fuzzy fault tree analysis 

for spread mooring systems. Ocean Engineering. 38(2-3), pp. 285-294.
 https://doi.org/10.1016/j.oceaneng.2010.11.003
Muttram, R. I. (2002). Railway safety’s safety risk model. Proceedings of the 

Institution of Mechanical Engineers Part F Journal of Rail & Rapid 
Transit. 216(2), pp. 71-79. 

 https://doi.org/10.1243/09544090260082317

https://doi.org/10.1016/j.ins.2011.04.051
https://doi.org/10.1111/j.1467-9876.2012.01059.x
https://doi.org/10.1108/eb005482
https://doi.org/10.1016/j.trb.2007.10.003
https://doi.org/10.1016/j.ssci.2014.05.011
https://doi.org/10.1142/S021848850000040X
https://doi.org/10.1111/j.1539-6924.2008.01004.x
https://doi.org/10.1016/j.ress.2013.08.004
https://doi.org/10.1007/s00500-008-0304-1
https://doi.org/10.1016/j.ress.2005.11.037
https://doi.org/10.1016/j.engfailanal.2012.12.014
https://doi.org/10.1016/j.fss.2008.01.018
https://doi.org/10.2307/1271456
https://doi.org/10.1016/j.ress.2011.03.012
https://doi.org/10.1016/j.ress.2014.01.015
https://doi.org/10.1016/j.ress.2007.02.004
https://doi.org/10.1016/j.aap.2013.02.019
https://doi.org/10.1016/j.ssci.2015.06.017
https://doi.org/10.1049/piee.1974.0328
https://doi.org/10.1016/j.oceaneng.2010.11.003
https://doi.org/10.1243/09544090260082317


141Fuzzy-Bayesian-network-based Safety Risk Analysis 2018 46 3

Ozbay, K., Noyan, N. (2006). Estimation of incident clearance times using 
bayesian networks approach. Accident Analysis and Prevention. 38(3), 
pp. 542-55. 

 https://doi.org/10.1016/j.aap.2005.11.012
Paul, P. S., Maiti, J. (2007). The role of behavioral factors on safety manage-

ment in underground mines. Safety Science. 45(4), pp. 449-471. 
 https://doi.org/10.1016/j.ssci.2006.07.006
Savage, S. L. (2005). Risk and uncertainty in dam safety. Thomas Telfrod PTR, 

London.
 https://doi.org/10.1680/rauids.32705.0007
Trucco, P., Cagno, E., Ruggeri, F., Grande, O. (2008). A bayesian belief net-

work modelling of organisational factors in risk analysis: a case study in 
maritime transportation. Reliability Engineering & System Safety. 93(6), 
pp. 845-856.

 https://doi.org/10.1016/j.ress.2007.03.035
Wickens, C. D., Hollands, J. G. (2000). Engineering psychology and human 

performance. 3rd edition. Prentice Hall PTR, New Jersey. URL: http://
www.citeulike.org/group/398/article/225322

https://doi.org/10.1016/j.aap.2005.11.012
https://doi.org/10.1016/j.ssci.2006.07.006
https://doi.org/10.1680/rauids.32705.0007
https://doi.org/10.1016/j.ress.2007.03.035
http://www.citeulike.org/group/398/article/225322
http://www.citeulike.org/group/398/article/225322

	1 Introduction
	2 Data Survey
	3 Methods and process
	3.1 BN model construction
	3.2 Fuzzy probability assessment

	4 Results and Discussion
	4.1 Model Validation
	4.2 Safety Risk Analysis
	4.2.1 Scenario Analysis
	4.2.2 Sensitivity analysis 


	5 Conclusions
	Acknowledgement
	References

