
Fuzzy c-Means Clustering with Regularization
by K-L Information

Hidetomo ICHIHASHI
Kiyotaka MIYAGISHI, Katsuhiro HONDA

Industrial Engineering, Graduate School of Engineering, Osaka Prefecture University
1-1 Gakuencho, Sakai, Osaka 599-8531 Japan, ichi@ie.osakafu-u.ac.jp

Proc. of 10th IEEE International Conference on Fuzzy Systems, pp.924-927(2001), partly revised May 2006.

Abstract

Gaussian mixture model or Gaussian mixture density
model(GMM) uses the likelihood function as a measure
of fit. We show that just the same algorithm as the
GMM can be derived from a modified objective func-
tion of Fuzzy c-Means (FCM) clustering with the reg-
ularizer by K-L information, only when the parameter
λ equals 2. Although the fixed-point iteration scheme
of FCM is similar to that of the GMM, the FCM has
more flexible structure since the algorithm is based on
the objective function method. In a slightly different
manner such as installing a deterministic annealing or
an addition of Gustafson and Kessel’s constraint, the
proposed algorithm is likely to provide more valid clus-
tering results.

I Introduction

Entropy method that uses an additional term of en-
tropy for fuzzification in the Fuzzy c-Means (FCM) [1]
was proposed by Miyamoto et al. [14]. A similar en-
tropy term was considered to prevent trivial solution
by Dave and Krishnapuram [2] within the scope of
Possibilistic c-Means (PCM) due to Krishnapuram and
Keller [12]. The thesis of this paper is that there exist a
close relationship between the FCM clustering and the
Gaussian mixture model (GMM) [5, 7, 17, 19]. Gath
and Geba’s algorithm [6] is an extension of Gustafson
and Kessel’ FCM [9] and is apart from density esti-
mation but is similar to GMM algorithm. GMM is to
approximate PDFs by a mixture of Gaussian PDFs,
i.e., the problem of extracting each Gaussian compo-
nent in a given data set. We propose a new FCM clus-
tering objective function with an additional term of
the Kullback-Leibler information. We show that the
same algorithm as the GMM Expectation Maximiz-
ing(EM) [4, 13] algorithm is derived from the FCM
with K-L information term (KLFCM) only when a pa-
rameter λ, which specifies fuzziness of clusters, equals
2, but for other values of λ, no GMM exists which
corresponds to the KLFCM. Thus unlike the GMM,
the values of λ can be decreased during the iteration
through the algorithm, i.e., a simple deterministic an-
nealing (DA) [11, 16, 18], in which λ is regarded as
temperature.

Numerical examples show that the annealing tends
to avoid trapping into the local extremum for some
data set. Further more we show that the proposed
KLFCM clustering plays a roll of PCM or noise clus-
tering (NC)[12, 10] by the addition of a constraint
of Gustafson and Kessel [9]. Simulation experiment
shows how well the accumulated points are extracted
by the modified KLFCM.

II GMM algorithm and KLFCM clustering

The Gaussian mixture density model (GMM) [5, 19] is
well recognized as a statistical technique for density es-
timation where the probability density function (PDF)
is approximated by a mixture of Gaussian distribu-
tion functions rather than a single parametric function.
The best fitting PDF for the data set will be defined
by a parameter set that maximizes the likelihood. The
likelihood function is a function of the model param-
eters and it gives a measure of how well the PDF de-
fined by the parameters fits the given data set. There
is thus a need to find an estimate of these maximum
likelihood parameters. The EM algorithm, composed
of E-step and M-step, is used to fit a fixed number of
Gaussians to a data set. If a parameter set maximizes
the likelihood, then these parameters are considered
to define the best fitting PDF for the data set. The
GMM algorithm represents the data set as a collection
of Gaussian distributions whereas the FCM clustering
regards it as a collection of clusters. Both of these al-
gorithm aim to find a mathematical function that rep-
resents the data distribution most properly. As in the
FCM clustering, the GMM algorithm also alternately
estimates the group membership of the data points us-
ing a previous estimate of the parameters of the model,
and then updates this estimate of the parameters us-
ing the estimate of the group membership of the data
points.

Let s dimensional vector xk represents the kth ob-
ject or sample from a given set of n unlabelled ob-
jects. Each feature vector consists of s real-valued mea-
surements describing the features of the object repre-
sented by x. The means of c Gaussian distributions
are denoted by vi. φ∗ is a set of parameters with
estimated values. φ is a set of updated parameters.
In the Gaussian mixture model, the PDF g(x), is ap-



proximated by a mixture of PDF denoted by g(x|φ) =∑c
i=1 πipi(x|φi), The covariance matrix Ai, mean vi of

Gaussian PDF pl(x|φi) and ratio πi are estimated by
the maximum likelihood approach. When xk is given,
the posteriori probability is

ulk =
π∗

l pl(xk|φ∗
l )∑c

j=1 π∗
j pj(xk|φ∗

j )
(1)

The proportion πl represents the contribution of the
lth Gaussian PDF. Then, the EM algorithm maximizes
log-likelihood,

Q(φ|φ∗) =
c∑

i=1

n∑
k=1

log[πipi(xk|φi)]uik (2)

The algorithm is the repetition through E-step and M-
step．In the GMM, the covariance matrix Ai is decision
variable. To be confident that the resulting parameters
are at a global maximum of the likelihood function it is
desired to run the GMM algorithm a number of times
using different initializations.

The FCM clustering partition the data set by in-
troducing the membership to fuzzy clusters. p di-
mensional vector vi denotes prototype parameter (i.e.,
cluster center), which is used instead of the mean of the
Gaussian distribution. The uik denotes the member-
ship of the kth data to the ith cluster. The clustering
criterion used to define good clusters for fuzzy c-means
partitions is the FCM objective function:

Jm =
c∑

i=1

n∑
k=1

(uik)mdik (3)

where m is the weighting exponent on each fuzzy mem-
bership. The larger m is, the fuzzier the partition be-
comes. The nonnegative membership uik sum to one
with respect to c clusters for each object.

dik = (xk − vi)T A−1
i (xk − vi) (4)

is a measure of the distance from x to the ith cluster
prototype. The Euclidean distance metric is often used
where Ai is a diagonal matrix. In the modified FCM
by Gustafson and Kessel [9], the matrices Ai are also
decision variables and the size of |Ai| is constrained to
a certain value.

The optimal uik and vi for all i and k are sought
using a fixed-point iteration scheme, which is similar
to the GMM algorithm. There is one technical trick in
the basic FCM. When xk and vi assume the same value
and the distance dik between them equals 0, then the
membership uik goes to infinite. In Miyamoto et al.
[14], an entropy term K and a positive parameter λ
are introduced and Jλ = J1 +λK is minimized instead

of Jm.

Jλ =
c∑

i=1

n∑
k=1

uikdik + λ

c∑
i=1

n∑
k=1

uik log uik (5)

This approach is referred to as entropy regularization.
The trick in the basic FCM is not needed. By replacing
the entropy term in Eq.(5) with K-L information and
including constraint term in a Lagrangian function, we
consider the minimization of the following objective
function.

Jλτ =

c∑
i=1

n∑
k=1

uikdik + λ

c∑
i=1

n∑
k=1

uik log
uik

πi

+

c∑
i=1

n∑
k=1

uik log |Ai| −
n∑

k=1

ηk(

c∑
i=1

uik − 1)

− τ(

c∑
i=1

πi − 1) (6)

dik is as in Eq.(4), ηk and τ are Lagrangian multipliers
whose corresponding terms represent the constraints
that both the sum of uik and the sum of πi with re-
spect to i equal one respectively. As the entropy term
in Eq.(5) forces memberships uik to take similar val-
ues, i.e., to obtain fuzzy clusters, the second term of
Eq.(6) becomes zero if uik, k = 1, ..., n take the same
value πi within the ith cluster for all i. Thus the term
represents the proximity between the two distributions
of uik and πi, or K-L information. If uik � πi for all
k and i, partition becomes very fuzzy but when λ is 0
the optimization problem with respect to uik reduces
to a linear one and the solution uik are obtained at
extremal point (i.e., 0 or 1). Fuzziness of the clusters
can be controlled by λ. We can derive some necessary
conditions for optimality of Eq.(6).

uik =
πi exp

(− 1
λdik

)|Ai|− 1
λ∑c

j=1 πj exp
(− 1

λdjk

)|Aj|− 1
λ

(7)

πi =
∑n

k=1 uik∑c
j=1

∑n
k=1 ujk

=
1
n

n∑
k=1

uik (8)

The above equation means that πi signifies the volume
or ratio of the data involved in the ith fuzzy cluster.

Ai =
∑n

k=1 uik(xk − vi)(xk − vi)T∑n
k=1 uik

(9)

vi =
∑n

k=1 uikxk∑n
k=1 uik

(10)

The algorithm is the repetition through Eqs.(7)-(10).



As shown above, when the parameter λ equals 2,
we have the same algorithm as one in the GMM. As
in the GMM algorithm, the solution of the KLFCM
clustering algorithm often traps into a local extremum
and Ai may become singular. Our attempt to improve
this deficiency by a simple DA is discussed in section
5.

III Comparison between GMM and KLFCM

As we stated in the previous section, when λ = 2, the
KLFCM algorithm is the same as one in the GMM.
We discuss here whether there exist any mixture model
other than Gaussian one, when λ is not equal to two.
Eq.(7) is a well-known Bayes rule to obtain a posteriori
probability from a priori probability. We now consider
the following function by which Eq. (7) representing a
posteriori probability, can be derived in E-step. Let

pi(x) =
|A−1

i |1/λ

K
exp

(
− 1

λ
dik

)
(11)

where K is a constant. We discuss here whether the
function (11) is a probability density function or not.
By properly specifying the value K, if the integral of
Eq. (11) attains one, the above function can be some
probability density function and Eq.(7) is obtained by
the Bayes theorem. For simplicity’s shake let us con-
fine the discussion only to two-dimensional case. The
integral of the function (11) over the entire domain is

|A−1
i |1/λ

K

∫ ∞

−∞

∫ ∞

−∞
exp

(
− 1

λ
(x − vi)T A−1

i (x − vi)
)

dx

=
λπ

K
|Ai| λ−2

2λ (12)

If K = λπ and λ = 2, then Eq.(11) is Gaussian, but
if λ �= 2, in order that the integral attains one, K =
λπ|Ai| λ−2

2λ must be satisfied. Since K depends |Ai| and
|Ai| might be different for each i, K cannot assume a
single constant value for all i. Eq.(11) is a sole formula,
which can derive Eq.(7) by using Bayes rule in E-step.
Thus when λ �= 2 there is no corresponding mixture
density and the proposed KLFCM clustering is unique
and novel one so long as we confine ourselves to a rigid
definition of the probability. It is easy to generalize
the discussion to high dimensional case.

In KLFCM clustering, parameter λ can be changed
freely during the iteration of the algorithm, we can
gradually reduce the value as the deterministic anneal-
ing procedure [16] to obtain better solution.

∑n
k=1 uik

indicates the number of data included in the ith clus-
ter. From Jλτ , Ai becomes a fuzzy variance-covariance
matrix as in Eq.(9). Let Ai has m linearly independent

eigenvectors, i.e., principal component vectors (p1, p2, · · · , pm).
Then log |Ai| = log

∏m
j=1 δ2

j =
∑m

j=1 log δ2
j where δ2

j is
an eigen value of Ai. Therefore log |Ai| is equivalent to
the sum of the log transformed variances of principal
components. The third term of Jλτ ,

∑n
k=1 uik log |Ai|,

represents the variation weighted by the number of
data. Mahalanobis distance of Eq.(4) is defined by
A−1

i .

IV Noise Clustering with G-K constraint

In this section we propose to adopt a constraint by
Gustafson and Kessel[1, 9] to restrict the variation of
data in the c + 1th cluster or the size of |Ac+1|. We
add it as the fourth term of the objective function of
KLFCM and call it GKFCM. The condition such that
sum of the memberships of each datum to the clus-
ter is 1, corresponds to a normalization of the mem-
berships per datum. Due to the constraint, the basic
FCM is often referred to as probabilistic clustering.
We can drop this normalization condition so that the
more distant data from each cluster such as the out-
lier can receive lower degree of membership and thus
avoid the influence of noise data. The FCM clustering
without the normalization is called PCM. NC was pro-
posed by Ohashi[15] and independently by Dave[2] so
that the noise data will be involved in the noise clus-
ter. GKFCM clustering can produce similar results as
the PCM or NC due to the additional constraint of the
type by Gastafson and Kessel. Next section provides
a simulation result, which is similar to one by PCM
or NC. Gustafson and Kessel[9] introduced matrix Ai

which defines Mahalanobis distance and to shape the
cluster to better fit a given data distribution. |Ac + 1|
is to be ρ and the new objective function becomes

Jλτ =

c+1∑
i=1

n∑
k=1

uikdik + λ

c+1∑
i=1

n∑
k=1

uik log
uik

πi

+

c+1∑
i=1

n∑
k=1

uik log |Ai|

+ γ(log |Ac+1| − ρ)

−
n∑

k=1

ηk(

c+1∑
i=1

uik − 1) − τ(

c+1∑
i=1

πi − 1) (13)

γ is a Lagrangian function and ρ is a positive constant.

V Simulation Experiment

We have developed KLFCM Simulator, which is avail-
able on the web site
http://www.cs.osakafu-u.ac.jp/hi/ichi/ichi_j.htm

KLFCM clustering tends to form clusters including
sparsely scattered wide area data when λ is relatively



large. The GMM is equivalent to KLFCM with λ = 2
and when λ is greater than 2, it is efficient to extract
locally dense clusters. Now we regard λ as tempera-
ture. The annealing schedule is in mimicry of Geman
and Geman[8]. We set λ∗=8, and λ(t) = λ∗/ ln(2 + t)
where t denotes iteration number. λ was fixed after
it reached to 2, i.e., when the iteration number was
53 and λ(53) = 1.99, λ was fixed to 2. We have con-
ducted a series of tests and have chosen the best results
in which the objective function assumed the smallest
value among 100 trials. In table 1 ”G-K” means to ap-
ply Gustafson-Kessel’s constraints (log |Ai| = ρi) for
all c clusters. Table 1 shows that KLFCM with the
deterministic annealing [16] tends to converge to the
best solution in most cases and thus surpasses other ap-
proaches. In the table, GMM without annealing is the
worst. We have also conducted hard clustering and λ
was decreased gradually to zero to obtain clusters with
memberships of zero or one. The KLFCM clustering
clearly surpassed the GMM without annealing in the
comparison. GKFCM clustering, which includes an

Table I Simulation Results
Method Freq. J

GMM (λ = 2) 11 3.89×1010

KLFCM (Annealing) 75 3.89×1010

G-K (Annealing) 7 3.85×1010

additional constraint given by Gustafson and Kessel,
provides clustering results similar to those by PCM.
We have tested the case in which noise data are widely
recognized and clear point accumulations present as
shown in Fig. 1. Fig. 1 shows the results by GMM
(c = 4). Fig. 2 shows that by GKFCM (c + 1 = 5).
The contour curves of noise cluster are not depicted in
Fig. 2 to clarify the result. Fig. 2 indicates that the
GKFCM can extract clear point accumulations from
noise data. This kind of characteristics is endemic to
PCM[12, 10] or NC, which abolish the effect of widely
spread noise data. By the computation of a covari-
ance matrix for each cluster the FCM is enhanced with
more flexible structure than GMM since the algorithm
is based on the objective function method.

VI Conclusion

Since KLFCM is an objective function method rather
than a maximum likelihood approach, it is easy to in-
troduce additional objectives or constraints e.g. a G-K
constraint to abolish the effect of noise. In KLFCM,
the parameter λ controls the fuzziness of clusters whereas
in GMM, λ must be 2. The initial values of the deci-
sion variables do not strongly affect clustering results
since a simple DA can be applicable by regarding pa-
rameter λ as temperature.
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