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Abstract  

This article deals with complexity in fuzzy functions where input, output and mapping are also 
fuzzy. The study of complexity in fuzzy functions, especially when applied to fuzzy derivatives 
and fuzzy calculus, is likely to involve considerations of how the uncertainty in inputs and function 
mapping affects the behaviour of the derivative, integration, and other calculus operations. This 
can have significant implications for decision-making, modelling, and analysis in various fields. 

To establish fuzzy calculus with such complexity, we redefine Modified Hukuhara derivative. 
Under this derivative, fuzzy Taylor’s series and its convergence is proposed and proved. Lastly, 
we solve a fully fuzzy differential equation with initial condition without converting it into the 
crisp one. 

Keywords: Fuzzy Number, Fuzzy function, Modified Hukuhara Derivative, Fuzzy power series 
and its convergence, Fuzzy Taylor’s series. 

1 Introduction 

In Fuzzy calculus, we study the derivatives and integrals of a fuzzy function. Since the beginning 
of fuzzy theory, lots of work has been carried in the field of fuzzy calculus. Different types of 
fuzzy derivatives are proposed and used in solving real-life applications of engineering and 
science. Initially, D. Dubois and H. Prade [1], [2], [3] have explained fuzzy mappings and given 
the difference between different kinds of approaches of fuzzy mapping. They also discussed the 
fuzzy differentiation of fuzzy valued functions. Kaleva [4] has studied the properties of 
differentiability and integrability.  

In 1983, Puri and Ralescu [5], gave the idea about differential of fuzzy function (Hukuhara 
derivative) which extends the differential of a set-valued function. In the beginning, authors [4], 
[6] solved differential equations with fuzzy initial conditions and discussed the uniqueness and 
existence of the FDE under the Hukuhara derivative. The drawback in using the Hukuhara 
derivative is that the fuzzy solution becomes unbounded with time. In [7], [34], strongly 
generalized-Hukuhara derivative and generalized-Hukuhara differentiability concepts are 
proposed and proved, which overcomes the drawback of the Hukuhara derivative. But the 
limitation in using these derivatives is that the uniqueness of the solution is lost. Purnima and 
Payal in [8], recently introduced Modified Hukuhara derivative (mH-derivative), which gives a 
unique and bounded fuzzy solution for all time.  
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Under these above mentioned fuzzy derivatives, fuzzy dynamical systems are solved using 
different techniques like Numerical techniques [9], [10], [11], [12], [13], [14], [15], [16], [17], 
[18], [19] [20], Transformation techniques [21], [22], [23], [24], [25], Analytical techniques [26], 
[27], [28], [30], Neural Network technique [31], [29] and Semi-Analytical techniques [32]. 
Numerical technique converts the differential equations in system of linear equations, which may 
involve negative fuzzy numbers. System of linear fuzzy equations with negative fuzzy number is 
solved by Purnima [35]. 

In this present article, we give the visualization of the complexity involved in fuzzy derivatives 
wherein input is also fuzzy. Based on this result, we propose and prove fuzzy Taylor’s series along 
with its convergence under Modified Hukuhara derivative. We solve a fuzzy differential equation 
by fuzzy Taylor’s series. 

The following section contains preliminary, next to it is the section with various lemmas and main 
theorem along with their proofs followed with the illustrative example.   

 

2 Preliminary 

2.1 Fuzzy Number 

 ℱ = {𝑢: 𝑅 → [0 1] } is said to be a collection of a fuzzy number, if 𝑢 satisfies following 
properties. 

 𝑢 is normal.  

 𝑢 is a fuzzy convex. 

 𝑢 is upper semicontinuous. 

 supp (𝑢) = {𝑥 ∈ R/𝑢(𝑥) ≥ 0} is compact. 

2.2 Fuzzy Number in parametric form 

𝛼 − 𝑐𝑢𝑡 is an important tool to convert fuzzy number into the crisp one and it is defined for 

 0 < 𝛼 ≤ 1, as 𝑢 = { 𝑥 ∈ 𝑅/𝑢(𝑥)  ≥  𝛼}.  In general, it is defined in terms of parameter 𝛼. 

A fuzzy number in parametric form, obtained by performing 𝛼 − 𝑐𝑢𝑡, is an ordered pair of the 
form 𝐴 = 𝐴 , 𝐴 , satisfying the following conditions: 

 A  is bounded left continuous increasing function in [0 1]. 

 A  is bounded right continuous decreasing function in  [0 1]. 
 A  ≤  A .     

 

2.3 Triangular Fuzzy Number 

The triangular fuzzy number is denoted as triplet (𝑑, 𝑒, 𝑓), and its membership function 𝐴(𝑥), is 
given as  



𝐴(𝑥) =

 , 𝑑 < 𝑥 ≤ 𝑒

 , 𝑒 < 𝑥 ≤ 𝑓

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

and it’s 𝛼 − 𝑐𝑢𝑡, is given as, 𝐴 = 𝐴 , 𝐴 = [𝑑 + (𝑒 − 𝑑)𝛼, 𝑓 − (𝑓 − 𝑒)𝛼].  

2.4 Fuzzy arithmetic operations 

Let 𝐴 and 𝐵 be two fuzzy numbers and 𝜆 be any scalar. Scalar multiplication of fuzzy number is 
given as,  

 𝜆 𝐴 = 𝜆 𝐴 , 𝐴 = 𝜆𝐴 , 𝜆𝐴 . 

 Also, the arithmetic operations between 𝐴 and 𝐵 is defined using their parametric form, as 
follows. 

 𝐴 ⊕ 𝐵 = 𝐴, 𝐴 ⊕ 𝐵, 𝐵 = [𝐴 + 𝐵, 𝐴 + 𝐵] 

 𝐴  ⊗ 𝐵 = [𝐴, 𝐴] ⊗ [𝐵, 𝐵 ]  = [min 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵 , max 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵 ] 

 = 𝐴, 𝐴 ⊗ ,   

 

2.5 Hausdorff distance [22] 

The Hausdorff distance between the two fuzzy numbers is defined by, 

𝑑: ℱ × ℱ → 𝑅 ∪ {0} 

𝑑( 𝑢, 𝑣) = sup
∈[ , ]

max 𝑢 − 𝑣 , |𝑢 − 𝑣|  

𝑑 is metric in ℱ which satisfies the following properties, 

     𝑑( 𝑢 ⊕ 𝑤, 𝑣 ⊕ 𝑤) =  𝑑( 𝑢, 𝑣), ∀ 𝑢, 𝑣, 𝑤 ∈ ℱ. 

𝑑(𝑘 𝑢
𝛼

, 𝑘 𝑣
𝛼 ) = |𝑘|𝑑( 𝑢

𝛼
, 𝑣

𝛼 ) 

     𝑑( 𝑢 ⊕ 𝑣, 𝑤 ⊕ �̃�) ≤  𝑑( 𝑢, 𝑣) ⊕ 𝑑( 𝑤, �̃�), ∀ 𝑢, 𝑣, 𝑤, �̃� ∈ ℱ. 

then (ℱ, 𝑑) is complete metric space. 

 

2.6 Generalized Hukuhara Derivative [5] 

Generalized Hukuhara (gH) difference is defined as follows, considering 𝐾(𝑋)  as space of a 
nonempty convex and compact set of 𝑋, taking 𝐴, 𝐵 ∈ 𝐾(𝑋) then gH difference is, 

𝐴 ⊖ 𝐵 ⟺
𝐴 = 𝐵 + 𝐶

𝑂𝑟 𝐵 = 𝐴 + (−1)𝐶
 

Let 𝐴 = 𝑎, 𝑎 , 𝐵 = 𝑏, 𝑏 ,  𝐶 = 𝑐,  𝑐  , 
 



𝑎, 𝑎 ⊖ 𝑏, 𝑏 = 𝑐,  𝑐 =

⎩
⎪
⎨

⎪
⎧

𝑂𝑅

𝑖)𝑎 = 𝑏 + 𝑐 

𝑎 = 𝑏 + 𝑐
𝑖𝑖) 𝑏 = 𝑎 − 𝑐

𝑏 = 𝑎 − 𝑐

 

So that 𝑎, 𝑎 ⊖ 𝑏, 𝑏 = 𝑐,  𝑐  always defined by, 
 

𝑐,  𝑐 = min 𝑎 − 𝑏, 𝑎 − 𝑏 , max 𝑎 − 𝑏, 𝑎 − 𝑏  
′ ⊖ ′ refers gH- difference is defined as above. 

A function 𝑓: (𝑎, 𝑏) → 𝐸 is said to be generalized Hukuhara differentiable at 𝑡 ∈  (𝑎,  𝑏), if                     

𝑓̇(𝑡 ) = lim
→

 𝑓(𝑡 + ℎ) ⊖  𝑓(𝑡 )

ℎ
    

3 Fuzzy Calculus 

For proposing fuzzy Taylor’s series, various definitions and results on fuzzy function are required. 
These results like fuzzy valued function for fuzzy input, fuzzy continuity, fuzzy derivative, and 
fuzzy power series along with its convergence.  

 

3.1 Fuzzy function 

Consider a fuzzy valued scalar function with fuzzy argument 𝑓: ℱ → ℱ . Its parametric form can 
be defined as follows, 

               𝑓(𝑥) = [𝑓(𝑥), 𝑓(𝑥)], where, 𝑓(𝑥) = min 𝑓(𝑥) and 𝑓(𝑥) = max 𝑓(𝑥)  

 Further,  𝑓(𝑥) = 𝑓 𝑥, 𝑥 , 𝑓 𝑥, 𝑥  

where,     𝑓 𝑥, 𝑥 = min 𝑓 𝑥, 𝑥 , 𝑓(𝑥, 𝑥) ,   𝑓 𝑥, 𝑥 = max 𝑓 𝑥, 𝑥 , 𝑓(𝑥, 𝑥)  

 

(1) 

This definition can be extended to 𝑛 dimensional fuzzy valued function, by now considering 𝑓 
as,  𝑓: ℱ → ℱ  where, 𝑓 = 𝑓  (𝑥 , 𝑥 , … 𝑥 ), 𝑓  (𝑥 , 𝑥 , … 𝑥 ), … 𝑓  (𝑥 , 𝑥 , … 𝑥 )  . 

where parametric form, 

              𝑓 (𝑥 ) = 𝑓 (𝑥 , 𝑥 , … , 𝑥 ), 𝑓 (𝑥 , 𝑥 , … , 𝑥 )   ∀ 𝑖 = 1,2,3, … , 𝑛. 

Further, 

𝑓 𝑥 = 𝑓 𝑥 , 𝑥 , … 𝑥 , 𝑥 , 𝑥 , … 𝑥 , 𝑓 𝑥 , 𝑥 , … 𝑥 , 𝑥 , 𝑥 , … 𝑥 , ∀𝑖 = 1,2,3, . . , 𝑛 

where, 𝑓   and 𝑓  are similar to as defined in equation (1) can be written as, 

𝑓 = min 𝑓 𝑥 , 𝑥 , … 𝑥 , 𝑓 𝑥 , 𝑥 , … 𝑥 , ∀𝑖 = 1,2,3, . . , 𝑛 



𝑓 = max 𝑓 𝑥 , 𝑥 , … 𝑥 , 𝑓 𝑥 , 𝑥 , … 𝑥 , ∀𝑖 = 1,2,3, . . , 𝑛. 

 

3.2 Fuzzy continuity  

Let 𝑓: ℱ → ℱ be a fuzzy valued function and 𝑥, 𝑥 ∈ ℱ then  𝑓 is fuzzy continuous at a point 𝑥 ,  
if for any fixed number 𝛼 ∈ (0 1] and any 𝜖 > 0, ∃ 𝛿(𝜖, 𝛼) such that 𝑑(𝑓(𝑥), 𝑓(𝑥 )) < 𝜖 and 
𝑑(𝑥, 𝑥 ) <  𝛿(𝜖, 𝛼) .  

 

3.3 Modified Hukuhara derivative  

In [8], we defined modified Hukuhara derivative for 𝑓: 𝐼 → ℱ, where 𝐼 is time interval. Now we 
extend this definition for the function 𝑓: ℱ → ℱ. 

A function 𝑓: ℱ → ℱ is said to be modified Hukuhara differentiable for an element 𝑓̇(𝑥 ) ∈ ℱ , 
such that for small ℎ > 0, 𝑓(𝑥 + ℎ) ⊖ 𝑓(𝑥 ), 𝑓(𝑥 ) ⊖  𝑓(𝑥 − ℎ) should exist and  

lim
→

 𝑓(𝑥 + ℎ) ⊖ 𝑓(𝑥 )

ℎ
= lim

→

 𝑓(𝑥 ) ⊖ 𝑓(𝑥 − ℎ)

ℎ
= 𝑓̇(𝑥 ) 

 

(2) 

The equivalent parametric form for the first limit is given as, 

lim
→

 𝑓(𝑥 + ℎ) ⊖  𝑓(𝑥 )

ℎ
  

=lim
→

 min  𝑓(𝑥 + ℎ) − 𝑓(𝑥 ), 𝑓(𝑥 + ℎ) − 𝑓(𝑥 ) , max 𝑓(𝑥 + ℎ) − 𝑓(𝑥 ), 𝑓(𝑥 + ℎ) − 𝑓(𝑥 )  

=lim
→

 min  𝑓 𝑥 + ℎ, 𝑥 + ℎ − 𝑓 𝑥 , 𝑥 , 𝑓 𝑥 + ℎ, 𝑥 + ℎ − 𝑓 𝑥 , 𝑥 , max 𝑓 𝑥 + ℎ, 𝑥 +

ℎ − 𝑓 𝑥 , 𝑥 , 𝑓 𝑥 + ℎ, 𝑥 + ℎ − 𝑓 𝑥 , 𝑥  

Similarly, the second limit in equation (2) can be given as, 

lim
→

 𝑓(𝑥 ) ⊖  𝑓(𝑥 − h)

ℎ
  

= lim
→

min 𝑓(𝑥 ) − 𝑓(𝑥 − ℎ), 𝑓(𝑥 ) − 𝑓(𝑥 − ℎ) , max 𝑓(𝑥 ) − 𝑓(𝑥 − ℎ), 𝑓(𝑥 ) − 𝑓(𝑥 − ℎ)   

= lim
→

min 𝑓 𝑥 , 𝑥 − 𝑓 𝑥 − ℎ, 𝑥 − ℎ , 𝑓 𝑥 , 𝑥 − 𝑓 𝑥 − ℎ, 𝑥 − ℎ , max 𝑓 𝑥 , 𝑥 −

𝑓 𝑥 − ℎ, 𝑥 − ℎ , 𝑓 𝑥 , 𝑥 − 𝑓 𝑥 − ℎ, 𝑥 − ℎ   

In the following examples, we compute the derivative of a given function using the definition as 
in equation (2). 

3.3.1 Example:  Derivative of 𝒇(𝒙) = 𝒙𝟐 at 𝒙𝟎 , 𝒙𝟎 > 𝟎. 



From the definition of derivative as in equation (2), we get, 

𝑓̇(𝑥 ) = lim
→

 𝑓(𝑥 + ℎ) −  𝑓(𝑥 )

ℎ
  

= lim
→

𝑥 + ℎ, 𝑥 + ℎ − 𝑥 , 𝑥

ℎ
 

              = lim
→

𝑥 + ℎ, 𝑥 + ℎ 𝑥 + ℎ, 𝑥 + ℎ − 𝑥 , 𝑥 𝑥 , 𝑥

ℎ
 

               = lim
→

[𝑥 , 𝑥 ] − [𝑥 , 𝑥 ]

ℎ
 

 

(3) 

 

where,  

𝑥 = min 𝑥 + ℎ , 𝑥 + ℎ (𝑥 + ℎ), (𝑥 + ℎ)  

𝑥 = max 𝑥 + ℎ , 𝑥 + ℎ (𝑥 + ℎ), (𝑥 + ℎ)  

𝑥 = min 𝑥 , 𝑥 𝑥 , (𝑥 )  

𝑥 = max 𝑥 , 𝑥 𝑥 , (𝑥 )  

Since, 𝑥 > 0, 𝑥 = 𝑥 + ℎ , 𝑥 = (𝑥 + ℎ) , 𝑥 = 𝑥 , 𝑥 = (𝑥 ) . 
 

(4) 

Using equations (4) and (3). 

𝑓̇(𝑥 ) = lim
→

[min(𝑥 − 𝑥 , 𝑥 − 𝑥 ) , max(𝑥 − 𝑥 , 𝑥 − 𝑥 )]

ℎ
 

𝑓̇(𝑥 ) = lim
→

𝑥 + ℎ − 𝑥 , (𝑥 + ℎ) − (𝑥 )

ℎ
 

𝑓̇(𝑥 ) = lim
→

2𝑥 ℎ + ℎ , 2𝑥 ℎ + ℎ

ℎ
 

Similarly, 𝑓̇(𝑥 ) = lim
→

 ( )⊖ ( )
= 2𝑥 , 2𝑥  

∴ 𝑓̇(𝑥 ) = 2𝑥 , 2𝑥  

Thus, by the Decomposition theorem as in, Section 3.2, 𝑓̇(𝑥 ) = 2𝑥 . 

 

3.3.2 Example:    Derivative of 𝒇(𝒙) = 𝒂𝒙𝒏, 𝒂 > 𝟎 at 𝒙𝟎 , 𝒙𝟎 > 𝟎. 

By using definition as in equation (2), we have 



𝑓̇(𝑥 ) = lim
→

 𝑓(𝑥 + ℎ) − 𝑓(𝑥 )

ℎ
  

               = lim
→

𝑎 𝑥 + ℎ, 𝑥 + ℎ − 𝑎 𝑥 , 𝑥

ℎ
 

where,  

𝑥 = min 𝑎 𝑥 + ℎ , 𝑎(𝑥 + ℎ) 𝑥 + ℎ , 𝑎(𝑥 + ℎ) 𝑥 + ℎ … , 𝑎(𝑥 + ℎ) ,  

𝑥 = max 𝑎 𝑥 + ℎ , 𝑎(𝑥 + ℎ) 𝑥 + ℎ , 𝑎(𝑥 + ℎ) 𝑥 + ℎ … , 𝑎(𝑥 + ℎ) ,  

      𝑥 = min 𝑎 𝑥 , 𝑎 𝑥 𝑥 , … , 𝑎(𝑥 ) , 

      𝑥 = max 𝑎 𝑥 , 𝑎 𝑥 𝑥 , … , 𝑎(𝑥 ) . 

 

Since, 𝑥 > 0, 𝑥 = 𝑎 𝑥 + ℎ , 𝑥 = 𝑎(𝑥 + ℎ) , 𝑥 = 𝑎 𝑥 , 𝑥 = 𝑎(𝑥 ) . 
 

(5) 

Putting equation (5) in equation (3). 

𝑓̇(𝑥 ) = lim
→

𝑎 𝑥 + ℎ − 𝑎 𝑥 , 𝑎(𝑥 + ℎ) − 𝑎(𝑥 )

ℎ
 

Also,  

𝑓̇(𝑥 ) = lim
→

𝑎 𝑥 − ℎ − 𝑎 𝑥 , 𝑎(𝑥 − ℎ) − 𝑎(𝑥 )

ℎ
 

𝑓̇(𝑥 ) = 𝑛𝑎𝑥 , 𝑛𝑎𝑥  

Thus, by the Decomposition theorem as in, Section 3.2, 𝑓̇(𝑥 ) = 𝑛𝑎𝑥 . 

Using this definition of a fuzzy derivative, we give fuzzy power series along with its convergence 
results and substantiate it with examples.  

 

3.4 Fuzzy power series and its convergence 

We know that power series around point 𝑥 , in crisp form is given as,  

𝑎 (𝑥 − 𝑥 ) = 𝑎 + 𝑎 (𝑥 − 𝑥 ) + 𝑎 (𝑥 − 𝑥 ) + ⋯ 

A power series of fuzzy valued functions around the point 𝑥  can be given as 

𝑎 ⊗ (𝑥 ⊝ 𝑥 ) = 𝑎 ⨁ 𝑎 ⊗ (𝑥 ⊝ 𝑥 ) ⨁ 𝑎 ⊗ (𝑥 ⊝ 𝑥 ) ⨁ …  

 

 
(6) 



where,  𝑎  are any fuzzy coefficients and n is a positive integer. The parametric form for equation 
(6) can be given as, 

𝑎 ⊗ (𝑥 ⊝ 𝑥 )  

                  = 𝑎 , 𝑎 ⊕ 𝑎 , 𝑎 ⊗ 𝑥, 𝑥 − 𝑥 , 𝑥 ⊕ 𝑎 , 𝑎 ⊗ 𝑥, 𝑥 − 𝑥 , 𝑥  

… ⊕ 𝑎 , 𝑎 ⊗ 𝑥, 𝑥 − 𝑥 , 𝑥 ⊕ … 

= 𝑎 , 𝑎 ⊕ 𝑎 , 𝑎 ⊗ 𝑥 − 𝑥 , 𝑥 − 𝑥 ⊕ 𝑎 , 𝑎 ⊗ 𝑥 − 𝑥 , 𝑥 − 𝑥  

… ⊕ 𝑎 , 𝑎 ⊗ 𝑥 − 𝑥 , 𝑥 − 𝑥 ⊕ … 

 

 

= 𝑎 , 𝑎 ⊕ 𝑎 , 𝑎 ⊗ 𝑥 − 𝑥 , 𝑥 − 𝑥  

⊕ 𝑎 , 𝑎 ⊗ min 𝑥 − 𝑥 , (𝑥 − 𝑥 ) 𝑥 − 𝑥 , (𝑥 − 𝑥 ) , max 𝑥 −

𝑥 , (𝑥 − 𝑥 ) 𝑥 − 𝑥 , (𝑥 − 𝑥 ) … 

⊕ 𝑎 , 𝑎 ⊗ min 𝑥 − 𝑥 , (𝑥 − 𝑥 ) 𝑥 − 𝑥 , (𝑥 − 𝑥 ) 𝑥 −

𝑥 , … (𝑥 − 𝑥 ) , (𝑥 − 𝑥 ) , (𝑥 − 𝑥 ) 𝑥 − 𝑥 , (𝑥 − 𝑥 ) 𝑥 −

𝑥 , … , 𝑥 − 𝑥 , max 𝑥 − 𝑥 , (𝑥 − 𝑥 ) 𝑥 − 𝑥 , (𝑥 − 𝑥 ) 𝑥 −

𝑥 , … (𝑥 − 𝑥 ) , (𝑥 − 𝑥 ) , (𝑥 − 𝑥 ) 𝑥 − 𝑥 , (𝑥 − 𝑥 ) 𝑥 −

𝑥 , … , 𝑥 − 𝑥  ⊕.. 

Since, 𝑥 > 0, then the above series expansion is given as follows, 

𝑎 ⊗ (𝑥 ⊝ 𝑥 )  

= 𝑎 , 𝑎 ⊕ 𝑎 , 𝑎 ⊗ 𝑥 − 𝑥 , 𝑥 − 𝑥 ⊕ 𝑎 , 𝑎 ⊗ 𝑥 − 𝑥 , (𝑥 − 𝑥 ) … 

⊕ 𝑎 , 𝑎 ⊗ 𝑥 − 𝑥 , (𝑥 − 𝑥 ) ⊕ … 

 = 𝑎 , 𝑎  

⊕ min 𝑎  𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ), 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥

− 𝑥 ) , max 𝑎  𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ), 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 )  

 



⊕ min 𝑎  𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ) , 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥

− 𝑥 ) , max 𝑎  𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ) , 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 )  

…  

⊕ min 𝑎  𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ) , 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥

− 𝑥 ) , max 𝑎  𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ) , 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 )  

⊕ … 

 = 𝑎 , 𝑎 ⊕ 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ) ⊕ 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ) …  

⊕ 𝑎 𝑥 − 𝑥 , 𝑎 (𝑥 − 𝑥 ) ⊕ … 

In the next section, we give a result of a radius of convergence for fuzzy power series. 

 

3.4.1 Radius of convergence 

If 𝑎 ≠ 0, a radius of convergence 𝑅 given by lim
→

 of fuzzy power series can be defined as 

in parametric form, 𝑅 = [𝑅 , 𝑅], where, 

𝑅=min[ lim
→

, lim
→

, lim
→

, lim
→

] 

𝑅= max [ lim
→

, lim
→

, lim
→

, lim
→

] 

The fuzzy number 𝑅 can be obtained by the Decomposition Theorem as given in Section Error! 
Reference source not found.. 

The fuzzy power series ∑ 𝑎 ⊗ (𝑥 ⊝ 𝑥 )  with a radius of convergence 𝑅 and the set of the points 
from an interval at which fuzzy series is convergent, known as the interval of convergence such 
that 𝑑(𝑥, 𝑥 ) < 𝑅. 

The parametric form of 𝑑(𝑥, 𝑥 ) = 𝑑 𝑥, 𝑥 , 𝑑(𝑥, 𝑥 )  and 𝑅 = [𝑅 , 𝑅], 

Then, 𝑑(𝑥, 𝑥 ) < 𝑅 can be simplified in the following manner by writing in parametric form, 

So, the component-wise expression is as follows, 

 𝑑 𝑥, 𝑥  < 𝑅 

−𝑅 < 𝑥 − 𝑥 < 𝑅 

  (𝑥 − 𝑅)  < 𝑥 < (𝑥 + 𝑅 ) 

Similarly,  

𝑑(𝑥, 𝑥 )  < 𝑅 

−𝑅 < (𝑥 − 𝑥 ) < 𝑅 



(𝑥 − 𝑅)  < 𝑥 < (𝑥 + 𝑅) 

Thus, when we combine the above result of a radius of convergence in parametric form, we 
obtain the following result for convergence, 

max 𝑑 𝑥, 𝑥 < 𝑥 < 𝑥 < min 𝑑(𝑥, 𝑥 ) 

This is the interval (sense of 𝛼 − 𝑐𝑢𝑡) in which the fuzzy power series converges. 

We prove the lemma for the convergence of power series based on the definition given in Section 
3.4.1. 

 

3.4.2 Lemma 

If ,             𝐿 = = min[ lim
→

, lim
→

, lim
→

, lim
→

], 

              𝐿 = =  max [ lim
→

, lim
→

, lim
→

, lim
→

]  

and  𝐿 < 1 and 𝐿 < 1 then fuzzy power series in parametric form converges absolutely. 

Proof: Given that, 

  𝐿 = min[ lim
→

, lim
→

, lim
→

, lim
→

], 

Let  be the minimum value of  min[ lim
→

, lim
→

, lim
→

, lim
→

], 

and,        < 1. 

Thus, 
|𝑏 | < |𝑟𝑏 | 

|𝑏 | < 𝑟 𝑏  for all n> 𝑁 and 𝑖 = 1,2,3, … … 

Hence, 
     ∑ |𝑏 | < ∑ 𝑟 𝑏   

The right-hand side of the above equation is convergent absolutely. 

Similarly, series converges for 𝐿 < 1. 

Hence, fuzzy power series in parametric form converges absolutely. 

In the next section, we give an example for the expansion of a fuzzy power series along with its 
convergence. 

 

3.4.3 Example: 

The fuzzy power series for ∑ −1 ⊗ 𝑥  can be obtained as follows,  



where, −1 = (−2, −1, 1) 

−1 ⊗ 𝑥  

           = [𝛼 − 2,1 − 2𝛼] ⊗ 𝑥 , 𝑥  

          = min {(𝛼 − 2) ⊗ 𝑥 , (𝛼 − 2) ⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥 , (1 − 2𝛼)

⊗ 𝑥 , max {(𝛼 − 2) ⊗ 𝑥 ,(𝛼 − 2)  ⊗ 𝑥 , (1 − 2𝛼)  ⊗ 𝑥 , (1 − 2𝛼)

⊗ 𝑥 }] 
(7) 

Putting different values of n in equation (7), we can obtain the expression of the fuzzy power 
series. The first three terms in this expansion can be written as, 

 

−1 ⊗ 𝑥   

= [(𝛼 − 2), (1 − 2𝛼)] 

⊕ min {(𝛼 − 2) ⊗ 𝑥 , (𝛼 − 2) ⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥 },

max {(𝛼 − 2) ⊗ 𝑥 ,(𝛼 − 2) ⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥 , (1 − 2𝛼)  ⊗  𝑥 }  

⊕ min {(𝛼 − 2) ⊗ 𝑥 , (𝛼 − 2) ⊗ 𝑥 , (𝛼 − 2) ⊗ 𝑥  ⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥 , (1 − 2𝛼)

⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥  

⊗ 𝑥}, max {(𝛼 − 2) ⊗ 𝑥 , (𝛼 − 2) ⊗ 𝑥  ⊗ 𝑥 (𝛼 − 2) ⊗ 𝑥 , (1 − 2𝛼)

⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥 , (1 − 2𝛼) ⊗ 𝑥  ⊗ 𝑥 }   

⊕ …                        (8)                                                                                

The radius of convergence for ∑ −1 ⊗ 𝑥   is defined as, 

𝑅 = lim
→

 = lim
→

= 1. 

And, the region of convergence by Lemma 3.4.2 is |𝑥| < 1. 

The following section contains example of radius of convergence for fuzzy power series. 

 

3.4.4 Example: 

Find the radius of convergence of ∑ 2 ⊗ 𝑥 , where 2 = (1,2,3). 

𝑅 = lim
→

= lim
→

  

  Let,       2𝛼 = [1 + 𝛼, 3 − 𝛼] then 



𝑅 = min[ lim
→

𝑎

𝑎
, lim

→

𝑎

𝑎
, lim

→

𝑎

𝑎
, lim

→

𝑎

𝑎
] 

 =min 1,
( )

( )
,

( )

( )
, 1 =

( )

( )
 

𝑅 = max [ lim
→

𝑎

𝑎
, lim

→

𝑎

𝑎
, lim

→

𝑎

𝑎
, lim

→

𝑎

𝑎
] 

 = max 1,
( )

( )
,

( )

( )
, 1 =

( )

( )
 

Therefore, fuzzy radius of convergence is 1 , and in parametric form 
( )

( )
,

( )

( )
. When we put 

𝛼 = 1,  the radius of convergence is 1 which is same as its counter crisp problem. 

The given fuzzy series is convergent for |𝑥| < 1, where 1 = , 1,3 . 

 

3.4.5 Example:  
 

Consider the fuzzy power series  ∑
𝒏

𝟓𝒏 𝟏
⊗ (𝒙 ⊕ 𝟐)𝒏 where, 𝟐 = (𝟏, 𝟐, 𝟑) and 𝟓 = (𝟒, 𝟓, 𝟔). 

Here,  𝑎 =  . 

The radius of convergence is given by, 

𝑅 = lim
→

 = lim
→

 
( )

= 5 

Thus, series is convergent for those 𝑥 which satisfies this condition 𝑥 ⊕ 2 < 5  

That is,  −7 < 𝑥 < 3. 

The convergence of 𝑥⨁2 < 5 can be visualized in crisp form by using the parametric form.  

Let 𝑥 = 𝑥  𝑥  , 2 = [1 + 𝛼, 3 − 𝛼] and 5 = [4 + 𝛼, 6 − 𝛼], then the inequality becomes 

𝑥  𝑥 + [1 + 𝛼, 3 − 𝛼] < |4 + 𝛼, 6 − 𝛼| 

That is,      

𝑥 + 1 + 𝛼 < 4 + 𝛼 

which implies, 

−(4 + 𝛼)  < (𝑥 + 1 + 𝛼)  < 4 + 𝛼 

Thus,                                                  

−(5 + 2𝛼) < 𝑥  < 3 

Similarly,  |𝑥 + 3 − 𝛼| < 6 − 𝛼 

               ⇒ −(6 − 𝛼) < (𝑥 + 3 − 𝛼) < 6 − 𝛼 

               ⇒ (−9 + 2𝛼) < 𝑥  < 3 

By 3.4.1, we can combine the results in crisp form,  



[(−9 + 2𝛼), −(5 + 2𝛼)] < 𝑥, 𝑥  < [3,3] 

And by the Decomposition theorem given in section 3.2, we can write that the given series 
converges for the interval  −7 < 𝑥 < 3. 
The above-mentioned theories, fuzzy power series and its convergence are required for proving 
Fuzzy Taylor’s series.  

In the next section, Fuzzy Taylor’s series is proposed and proved. 

 

3.5 Fuzzy Taylor’s Theorem 

If a fuzzy valued function, 𝑓: ℱ → ℱ  is, n times modified Hukuhara (mh) differentiable, then 
fuzzy Taylor’s expansion is given as, 

 𝑓(𝑥) = 𝑓(𝑥 ) ⊕ 𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 ) ⊕
̈ ( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕

( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕

( )

!
⊗

(𝑥 ⊝ 𝑥 ) ⊕
( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕ … … … ⊕

( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕ … 

Proof: 

Let a fuzzy valued function  𝑓 is Modified Hukuhara differentiable then it can be approximated 
near a point 𝑥  by its tangent line that gives its linear approximation to  𝑓 at the point 𝑥 . 

The approximation is given by using the Modified Hukuhara derivative as in Section 3.5. 

𝑓̇(𝑥 ) = lim
→

 ( )⊝ ( )

( ⊝ )
  

Now, in the neighbourhood 𝑥 ,  discretization of first mh-derivative, gives us 

                𝑓(𝑥) ⊝ 𝑓(𝑥 ) = 𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 ) 

                            ∴ 𝑓(𝑥) = 𝑓(𝑥 ) ⊕ 𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 ) 

If first approximation, 𝑝 (𝑥) is polynomial of first degree and this polynomial has some properties, 
𝑝 (𝑥 ) = 𝑓(𝑥 ), 𝑝̇ (𝑥 ) = 𝑓′(𝑥 ), then 

𝑝 (𝑥) = 𝑓(𝑥 ) ⊕ 𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 ). 

Linear approximation of 𝑓 is well defined at 𝑥 , if 𝑓 has a constant slope. However, if 𝑓 has 
curvature near pt. 𝑥  then, it requires quadratic approximation. For quadratic approximation, we 
add one more term, 

 𝑝 (𝑥)  = 𝑓(𝑥 ) ⊕ 𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 ) ⊕ �̃� ⊗ (𝑥 ⊝ 𝑥 ) ⊗ (𝑥 ⊝ 𝑥 )  (9) 

To determine a new term �̃� , 𝑝 (𝑥) must be a good approximation to 𝑓, near the point 𝑥 . This 

requires, 𝑝 (𝑥 ) = 𝑓(𝑥 ), 𝑝̇ (𝑥 ) = 𝑓̇(𝑥 ) and 𝑝̈ (𝑥 ) = 𝑓̈(𝑥 ). 

Differentiating, equation (9), and we get, 

𝑝̇ (𝑥) = 𝑓̇(𝑥 )⨁2 �̃� ⊗ (𝑥 ⊝ 𝑥 ) 



Again differentiating, we get 

𝑝̈ (𝑥) = 2 �̃�  ⇒ �̃� =
̈ ( )

  

At  𝑥 = 𝑥 , 𝑝 ̈ (𝑥 ) = 𝑓̈(𝑥 ) 

So, equation (9) becomes, 

𝑝 (𝑥)  = 𝑓(𝑥 )⨁𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 )⨁
̈ ( )

⊗ (𝑥 ⊝ 𝑥 ) ⊗ (𝑥 ⊝ 𝑥 )  

Following a similar way, we get the third approximation as  

𝑝 (𝑥) = 𝑓(𝑥 )⨁𝑓̇(𝑥 )  ⊗ (𝑥 ⊝ 𝑥 )⨁
̈ ( )

⊗ (𝑥 ⊝ 𝑥 ) ⊗ (𝑥 ⊝ 𝑥 )⨁
( )

⊗ (𝑥 ⊝ 𝑥 ) ⊗

(𝑥 ⊝ 𝑥 ) ⊗ (𝑥 ⊝ 𝑥 )  

And the 𝑛  degree approximation to 𝑓, can be given as  

𝑝 (𝑥) = 𝑓(𝑥 ) ⊕ 𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 ) ⊕
̈ ( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕

( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕

( )

!
⊗

(𝑥 ⊝ 𝑥 ) ⊕
( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕ … .

( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕ ….  

Thus, the series approximation of 𝑓, can be written as, 

𝑓(𝑥) = 𝑓(𝑥 ) ⊕ 𝑓̇(𝑥 ) ⊗ (𝑥 ⊝ 𝑥 ) ⊕
̈ ( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕

( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕

( )

!
⊗

(𝑥 ⊝ 𝑥 ) ⊕
( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕ … … … .

( )

!
⊗ (𝑥 ⊝ 𝑥 ) ⊕ ….  

Also, this expansion is true for all x belonging to the radius of convergence. 

 

3.6 Illustrative examples for Fuzzy Taylor series expansions of fuzzy functions         

3.6.1 Example: 
Fuzzy Taylor series for 𝒇(𝒙) = 𝒆𝒙 about 𝒙 = 𝟎 , where 𝟎 = (−𝟏, 𝟎, 𝟏).  
Now for all 𝜶, 𝒙𝜶 = 𝟎𝜶 = (𝜶 − 𝟏, 𝟏 − 𝜶).  

𝑓̇(𝑥) = 𝑒 , 𝑓̇ 0 = 𝑒 = 𝑒( , ) = [𝑚𝑖𝑛(𝑒 , 𝑒 ), 𝑚𝑎𝑥(𝑒 , 𝑒 )] = [𝑒 , 𝑒 ] 

𝑓̈(𝑥) = 𝑒 , 𝑓̈ 0 = 𝑒 = [𝑒 , 𝑒 ] 

: 

: 

𝑓 (𝑥) = 𝑒 , 𝑓 0 = 𝑒 = [𝑒 , 𝑒 ] 

By using these values in fuzzy Taylor’s series as in 3.7, we have, 



𝑒 = 𝑒 ⊕ 𝑒 ⊗ 𝑥 ⊝ 0 ⊕
𝑒

2
⊗ 𝑥 ⊝ 0 ⊕

𝑒

3!
⊗ 𝑥 ⊝ 0 ⊕

𝑒

4!
⊗ 𝑥 ⊝ 0 ⊕

𝑒

5

⊗ 𝑥 ⊝ 0 ⊕ … .
𝑒

𝑛!
⊗ 𝑥 ⊝ 0 ⊕ … 

 𝑒 = 𝑒 ⊗ [1 ⊕ 𝑥 ⊝ 0 ⊕
( ⊝ )

!
⊕

( ⊝ )

!
⊕

( ⊝ )

!
⊕

( ⊝ )

!
⊕ … … ⊕

( ⊝ )

!
⊕ …  

After taking alpha – cut, 

  𝑒 = [𝑒 , 𝑒 ][1 ⊕ 𝑥 ⊝ 0 ⊕
( ⊝ )

!
⊕

( ⊝ )

!
⊕

( ⊝ )

!
⊕ … … ⊕

( ⊝ )

!
⊕ … ]  

The radius of convergence for 𝑒 , as defined in 3.4.1, 

𝑅 = lim
→

  

𝑅 = lim
→

( ⊝ )

!
( ⊝ )

!

  

𝑅 = lim
→

( )

( ⊝ )
  

So as 𝑛 tends to infinity, radius of convergence becomes infinite. Thus 𝑒  is convergent 
everywhere. 

At core, 𝛼 = 1, 

𝑒 = 1 + 𝑥 +
!

+
!

+
!

+ ⋯  

That is same as Taylor’s expansion for real valued function. 

 

3.6.2 Example: 
 Fuzzy Taylor series for 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 about 𝑥 = 0.  

𝑓̇(𝑥) = 𝑐𝑜𝑠(𝑥), 𝑓̇ 0 = 𝑐𝑜𝑠0 

𝑓̈(𝑥) = −𝑠𝑖𝑛𝑥, 𝑓̈ 0 = −𝑠𝑖𝑛0 

𝑓(𝑥) = −𝑐𝑜𝑠𝑥, 𝑓 0 = −𝑐𝑜𝑠0 

𝑓 (𝑥) = 𝑠𝑖𝑛𝑥, 𝑓 (𝑥) = 𝑠𝑖𝑛0 

   : 

   : 

By using these values in fuzzy Taylor’s series as in 3.7, we have, 

𝑠𝑖𝑛𝑥 = 𝑓(0) ⊕ 𝑓̇(0) ⊗ 𝑥 ⊝ 0 ⊕
̈ ( )

!
⊗ 𝑥 ⊝ 0 ⊕

( )

!
⊗ 𝑥 ⊝ 0 ⊕

( )

!
⊗

𝑥 ⊝ 0 ⊕
( )

!
⊗ 𝑥 ⊝ 0 ⊕ … … … … … … .

( )

!
⊗ 𝑥 ⊝ 0 ⊕ …  



𝑠𝑖𝑛𝑥 = 𝑠𝑖𝑛0 ⊕  𝑐𝑜𝑠0 ⊗ 𝑥 ⊝ 0 ⊝
( )

⊗ 𝑥 ⊝ 0 ⊝
( )

!
⊗ 𝑥 ⊝ 0 +

( )

!
⊗

𝑥 ⊝ 0 ⊕
( )

!
⊗ 𝑥 ⊝ 0 ⊕ … 

The radius of convergence for 𝑠𝑖𝑛𝑥, as defined in 3.4.1, 

𝑅 = lim
→

  

𝑅 = lim
→

( ⊝ )

!
 ( )

( ⊝ )

!
 (

( )
)

  

𝑅 = lim
→

( )

( ⊝ )

 ( )

 (
( )

)
  

So as 𝑛 tends to infinity, this term 
 ( )

 (
( )

)
 remains finite and radius of convergence 

becomes infinite. Thus 𝑠𝑖𝑛𝑥 is convergent everywhere. 

At core, 𝛼 = 1, 

𝑠𝑖𝑛 = 𝑥 −
!

+
!

−
!

…  

 

3.6.3 Example: 
 Fuzzy Taylor series for 𝒇(𝒙) = 𝒄𝒐𝒔𝒙 about 𝒙 = 𝟎.  

𝑓̇(𝑥) = −𝑠𝑖𝑛𝑥, 𝑓̇ 0 = −𝑠𝑖𝑛0 

𝑓̈(𝑥) = −𝑐𝑜𝑠𝑥, 𝑓̈ 0 = −𝑐𝑜𝑠0 

𝑓(𝑥) = 𝑠𝑖𝑛𝑥, 𝑓 0 = 𝑠𝑖𝑛0 

𝑓 (𝑥) = 𝑐𝑜𝑠𝑥, 𝑓 (𝑥) = 𝑐𝑜𝑠0 
                                        : 
                                        : 

By using these values in fuzzy Taylor’s series as in 3.7, we have, 

𝑐𝑜𝑠𝑥 = 𝑐𝑜𝑠0 ⊝ 𝑠𝑖𝑛0 ⊗ 𝑥 ⊝ 0 ⊝
!

⊗ 𝑥 ⊝ 0 ⨁
!

⊗ 𝑥 ⊝ 0 ⨁
!

⊗

𝑥 ⊝ 0 ⊝
 

!
⊗ 𝑥 ⊝ 0 ⨁ …  

The radius of convergence for 𝑠𝑖𝑛𝑥, as defined in 3.4.1, 

𝑅 = lim
→

  

𝑅 = lim
→

( ⊝ )

!
 ( )

( ⊝ )

!
 (

( )
)

  

𝑅 = lim
→

( )

( ⊝ )

 ( )

 (
( )

)
  



So as 𝑛 tends to infinity, this term 
 ( )

 (
( )

)
 remains finite and the radius of convergence 

becomes infinite. Thus, 𝑐𝑜𝑠𝑥 is convergent everywhere. 

At core, 𝛼 = 1, 

𝑐𝑜𝑠𝑥 = 1 −
!

+
!

−
!

…  

In the following we solve the example of fully fuzzy differential equation using the fuzzy 
Taylor’s series method. 

4 Numerical Illustrative 

�̇� = 𝑥 ⊗ 𝑥 ⊕ 𝑦 ⊗ 𝑦;  𝑦 1 = 2.3 (10) 

with 1 = (0.7,1,1.2) , 2.3 = (2.1,2.3,2.5), 0.1 = (0.07, 0.1, 0.12) 

We solve the above equation for the value 𝑦 1  ⊕ 0.1 , taking ℎ = 0.1 = (0.07, 0.1, 0.12) by 
proposed fuzzy Taylor’s series upto degree 2 as in, Section 3.7. We know, 

𝑦 1 ⊕  0.1 = 𝑦(1) ⊕ 0.1 ⊗ �̇�(1) ⊕
( . )

!
⊗ �̈�(1) ⊕ …  (11) 

Now,  

𝑦 1 = 2.3, 

�̇�(1) = 𝑥2
0 ⊕ 𝑦2

0
= 1

2
⊕ 2.3

2
, 

�̈�(1) = 2 ×  1  ⊕ 2.3  ⊗ (1
2

⊕ 2.3
2

) , 

Putting above values in equation (11), 

𝑦 1  ⊕ 0.1 = 2.3 ⊕ 0.1 ⊗ (1 ⊕ 2.3 ) ⊕ 0.1 ⊗ (1 ⊕ 2.3 ⊗ (1 ⊕ 2.3 )) ⊕ … (12) 

Putting the triangular number representation of the fuzzy number involved in (12), we get 

𝑦(1.01) 

= (2.1, 2.3, 2.5) ⊕ (0.07, 0.1, 0.12) ⊗ (4.9, 6.29, 7.69) ⊕ (0.0049, 0.01, 0.0144)

⊗ (10.99, 15.467, 20.425) 

= (2.1, 2.3, 2.5) ⊕ (0.343, 0.629, 0.9228) ⊕ (0.0538, 0.15467, 0.29412) 

= (2.49, 3.08, 3.71) 

To visualize the solution in depth, we take the parametric form of the terms in equation (12),  

𝑦 1 ⊕ 0.1  

= 2.3 ⊕ 0.1 ⊗ 1 ⊕ 2.3 ⊕ 0.1 ⊗ 1 ⊕ 2.3 ⊗ 1 ⊕ 2.3   

 
(13) 

The parametric form are as follows, 

𝑦 = [𝑦, 𝑦], 

2.3 = [2.1 + 0.2𝛼, 2.5 − 0.2𝛼], 



1 = [0.7 + 0.3𝛼, 1.2 − 0.2𝛼], 

0.1 = [0.07 + 0.03𝛼, 0.12 − 0.02𝛼]. 

Putting the parametric values in (13) we get, 

  [𝑦 1
𝛼

⊕ 0.1
𝛼

, 𝑦 1
𝛼

⊕ 0.1
𝛼

] 

                                   = [2.1 + 0.2𝛼, 2.5 − 0.2𝛼] 

                           +[3.9 × 10 𝛼 + 0.0469𝛼 + 0.2352𝛼 + 0.343, −1.6 × 10 𝛼 + 0.0392𝛼

− 0.3314𝛼 + 0.9228] 

                                  +[(0.07 + 0.03𝛼) ,  (0.12 − 0.02𝛼) ] [0.026𝛼 + 0.525𝛼 + 3.926𝛼 +

                                         10.99, −0.016𝛼 + 0.496𝛼 − 2.478𝛼 + 20.425]… 

∴ 𝑦([0.7 + 0.3𝛼, 1.2 − 0.2𝛼] + [0.07 + 0.03𝛼, 0.12 − 0.02𝛼]), 𝑦([0.7 + 0.3𝛼, 1.2 − 0.2𝛼]

+ [0.07 + 0.03𝛼, 0.12 − 0.02𝛼])  

                                      = [2.1 + 0.2𝛼, 2.5 − 0.2𝛼] 

                           +[3.9 × 10 𝛼 + 0.0469𝛼 + 0.2352𝛼 + 0.343, −1.6 × 10 𝛼 + 0.0392𝛼

− 0.3314𝛼 + 0.9228] 

                                  +[(0.07 + 0.03𝛼) ,  (0.12 − 0.02𝛼) ] [0.026𝛼 + 0.525𝛼 + 3.926𝛼 +

                                         10.99, −0.016𝛼 + 0.496𝛼 − 2.478𝛼 + 20.425]. 

∴ 𝑦[0.77 + 0.33𝛼, 1.32 − 0.22𝛼] , 𝑦[0.77 + 0.33𝛼, 1.32 − 0.22𝛼] 

= [2.1 + 0.2𝛼, 2.5 − 0.2𝛼] 

                           +[3.9 × 10 𝛼 + 0.0469𝛼 + 0.2352𝛼 + 0.343, −1.6 × 10 𝛼 + 0.0392𝛼

− 0.3314𝛼 + 0.9228] 

                                  +[(0.07 + 0.03𝛼) ,  (0.12 − 0.02𝛼) ] [0.026𝛼 + 0.525𝛼 + 3.926𝛼 +

                                         10.99, −0.016𝛼 + 0.496𝛼 − 2.478𝛼 + 20.425]. 

Now, we can write left side of the above equation as  𝑦, 𝑦  defined in Section 3.3. 

Where, 𝑦 = 𝑦 [0.77 + 0.33𝛼, 1.32 − 0.22𝛼] and 𝑦 = 𝑦 [0.77 + 0.33𝛼, 1.32 − 0.22𝛼]. 

So, the equation becomes, 

 𝑦, 𝑦 = [2.1 + 0.2𝛼, 2.5 − 0.2𝛼] 

                           +[3.9 × 10 𝛼 + 0.0469𝛼 + 0.2352𝛼 + 0.343, −1.6 × 10 𝛼 + 0.0392𝛼

− 0.3314𝛼 + 0.9228] 

                                  +[(0.07 + 0.03𝛼) ,  (0.12 − 0.02𝛼) ] [0.026𝛼 + 0.525𝛼 + 3.926𝛼 +

                                         10.99, −0.016𝛼 + 0.496𝛼 − 2.478𝛼 + 20.425]. 

 At, 𝛼 = 0 ,   𝑦, 𝑦 = [2.49, 3.71] and at 𝛼 = 1, 𝑦(1.1) = 3.08. 



Thus,  𝑦 1.1 = (2.49 , 3.08, 3.71) = 3.08.  

Also, it can be shown that the crisp solution matches with 𝑦, considering the constants involved 
as crisp reals. 

 

5 Conclusion 

In this article, we have proposed fuzzy Taylor’s series under Modified Hukuhara derivative. We 
have proposed and proved the technique to obtain the solution in a fully fuzzy environment along 
with its convergence. The advantage of this fuzzy Taylor series expansion is that we can directly 
solve fuzzy differential equations in a fuzzy environment without converting them into their crisp 
counterpart. For future scope, one can develop other techniques completely in a fuzzy 
environment. 
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