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Abstract:  At signalized intersections, the decision-

making process of each individual driver is a very complex 

process that involves many factors. In this article, a Fuzzy 

Cellular Automata (FCA) model, which incorporates 

traditional Cellular Automata (CA) and Fuzzy Logic (FC), is 

developed to simulate the decision-making process and 

estimate the effect of driving behavior on traffic performance. 

Different from existing models and applications, the 

proposed FCA model utilizes Fuzzy Interface Systems (FIS) 

and membership functions to simulate the cognition system 

of individual drivers. Four FIS are defined for each decision-

making process: car-following, lane-changing, amber-

running and right-turn filtering. A field observation study is 

conducted to calibrate membership functions of input factors, 

model parameters, and to validate the proposed FCA model. 

Simulation experiments of a two-lane system show that the 

proposed FCA model is able to replicate decision-making 

processes and estimate the effect on overall traffic 

performance.  
 

 
1 INTRODUCTION 

 
Cities around the world are looking for new answers to 

deal with perennial road traffic problems, such as traffic 
congestion and safety. In recent years, much attention is 
being paid to road intersections controlled by signal, as 
signalized intersections form one of the most common 
bottlenecks in the urban traffic system. This is because 
intersections are places where different traffic movements 
come into conflict.  

Microscopic simulation approaches are often applied to 
model the complex vehicle movements at signalized 
intersections by simulating the individual road user’s 
decision-making process in car-following and lane-changing 
operations. A number of simulators have been developed at 
microscopic level, such as SIDRA, VISSIM and CORSIM 
(Al-Ghandour et al., 2011; FHWA, 2014; PTV Vision, 2014). 
Several software packages, such as VISSIM, are able to 

model the individual road user’s perception and decision-
making process (PTV Vision, 2014). However, the 
applications of most current models and software are 
essentially for capacity assessment. To estimate conflicts 
based on microscopic simulation, a software package called 
SSAM was developed by Federal Highway Administration 
(FHWA, 2011). In essence, SSAM relies on simulation 
packages (such as VISSIM) which require calibrations 
inherent to the simulation packages. SSAM is shown to 
provide acceptable results for rear-end conflicts. However, it 
is found that SSAM tends to over-estimate the occurrences, 
and under-estimate the severity, of rear-end and lane-
changing conflicts. SSAM is also found to over-estimate the 
severity of crossing conflicts (Chai and Wong, 2015). 

Cellular Automata (CA) models, which are generally more 
computationally efficient than other microscopic simulation 
models, are often applied for modeling and simulating 
complex scenarios (Nakatani, 1993; Schreckenberg et al., 
1995; Lu et al., 2011; Mallikarjuna and Rao, 2009). In CA 
models, roads are gridded into a series of cells. Each cell has 
limited space, either being occupied by a road user or not 
occupied. The road user’s position and speed are represented 
in discrete values and are updated according to analyst-
defined transition rules (Szeto and Jiang, 2011). CA models 
have several advantages for modeling vehicle movements at 
signalized intersections compared to other microscopic 
simulation models. Based on flexible transition rules, it is 
becoming easier to use CA models to simulate microscopic 
traffic behavior accurately while leveraging on parallel CA 
computation (Kwon, 2000; Clarridge and Salomaa, 2010; 
Luo et al., 2013). Moreover, with flexible transition rules, 
CA models allow analysts to define decision-making rules 
for individual vehicles. With the high computational 
efficiency, CA models allow analysts to simulate vehicle 
movements under real-time traffic conditions (Horng, 2014). 

However, upon reviewing current CA models, several 
limitations have been identified. In conventional CA models, 
deterministic or stochastic, control strategies of vehicle 
movements are not realistic enough. In deterministic models, 
transition rules are inherently fixed. However, in reality, 
decisions vary between different drivers. In stochastic 
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models, probability parameters are involved to determine 
vehicle movements, such as amber running and acceleration 
or deceleration. As stochastic models entail more (random) 
variables, many more simulation runs are required compared 
to deterministic models. Moreover, conventional probability 
distributions alone cannot adequately represent decision-
making process of each driver.  

In recent years, artificial intelligent techniques are applied 
to improve traffic models (Adeli and Hung, 1995; Adeli and 
Karim, 2005; Karim and Adeli, 2002). Fuzzy logic (FL) 
theory can be applied to overcome the limitations of cellular 
automata models (Sama and Adeli, 2000ab; Placzek, 2012; 
Forero Mendoza et al., 2014). Compared to traditional logic 
with exact and fixed solution, fuzzy logic contains 
uncertainty and approximation which are well suited to 
represent human factors in driving (Boutalis et al., 2013; 
Chiou and Huang, 2013; Smith and Nguyen, 2007; Jahani et 
al., 2014). Incorporation of fuzzy control into micro-
simulation is able to reduce overall cognitive dissonance in 
the modeling process (Dell’Orco and Mellano, 2013; 
Kodogiannis et al., 2013; Siddique and Adeli, 2013; Zhang 
and Ge, 2013). Moreover, compared to other simulation 
models, linguistic terms are used to describe the environment 
and responses (Adeli and Karim, 2000; Adeli and Jiang, 
2003; Karim and Adeli, 2002; Yan and Ma, 2013ab). These 
linguistic terms to describe drivers’ cognitions, such as 
perception, intention and attitude. In this way, decision-
making procedure of the individual driver can be modelled 
in a very clear and straight-forward way (Rigatos, 2013; 
Rokni and Fayek, 2010). 

In previous studies, fuzzy rules have been applied to 
describe driving behavior of vehicles (Wu et al., 2000). 
Drivers’ behavior in the dilemma zone at signalized 
intersections has also been modeled by fuzzy sets (Hurwitz 
et al., 2012).The concept of FCA has been developed and 
applied to several areas such as image processing and fire 
spread simulations. Those models are found to be more 
intelligent than traditional CA models in responding to 
environmental changes (Mraz et al., 2000; Patel et al., 2013). 
However, few studies have been found to apply FCA in 
simulating microscopic vehicle movements and interactions 
(Gong and Liu, 2010). Yeldan et al. (2012) incorporated 
fuzzy sets into continuous CA model to simulate different 
vehicle movements along freeways in which fuzzy 
membership functions are developed in car-following and 

lane-changing rules. However, as only macroscopic outputs 
are analyzed in that study, the impact of involving fuzzy sets 
into CA models is still not clear. Moreover, as most current 
traffic FCA models focus on speed control of vehicles, 
dynamic decision-making of road users such as disobeying 
signal control, gap acceptance, movement directions, lane 
usage and behavior when conflict occurs has not been well-
studied so far.  

This study develops a FCA model, which incorporates FL 
and CA to simulate vehicle movements at signalized 
intersections. The outline of this paper is as follows. In 
Section 2, Fuzzy Interface Systems (FIS) are defined to 
model vehicle movements. Section 3 describes calibration 
procedures for membership functions. Section 4 introduces 
FCA model development, including embedding FIS with CA 
model and developing the improved CA model. Model 
validation at macro and microscopic levels is also introduced 
in Section 5. In Section 6, model performance is tested by 
simulation experiments. The paper ends with discussions of 
advantages and limitations of the proposed FCA model and 
conclusions. 

 
2 FUZZY INTERFACE SYSTEMS (FIS) 

 
2.1 Forward movements 

Two FIS (F1 and F2) are developed to determine φa  (if 
accelerate) or φd (if decelerate) at the next time step based 
on inputs from the current time step (definitions of all 
symbols can be found in table A.1 in the appendix). For each 
vehicle, the acceleration φa  depends on the following 
variables: current velocity ( vn ) of the subject vehicle; 
relative velocity between leading and subject vehicle 
(vn+1 − vn); front gap (gn); distance to stop-line (DS) and 
signal timing (ts). Linguistic terms used in the fuzzy sets are 
summarized in Table 1 (Jiang and Adeli, 2003; Adeli and 
Jiang, 2006; Jiang and Adeli, 2008; Sun, 2012; Aghabayk 
and Forouzideh, 2013). The first set of fuzzy rules (F1) 
estimate the impact of leading vehicle by including the first 
three inputs (vn, vn+1 − vn, and gn), as shown in Figure 1. 
Inputs related to signal control (DS and ts) are separated as 
the second fuzzy set of rules. vn  is also included in F2 as 
drivers do consider their current velocity when making 
decisions controlled by traffic signal.  

The reason of developing two fuzzy set of rules is to 
provide different movement strategy for vehicles before and 

Table 1  
Fuzzy set terms in forwarding model. 

Current 

velocity (𝑣𝑛) 

Relative velocity (𝑣𝑛+1 − 𝑣𝑛) 

Front 

gap (𝑔𝑛) 

Distance to 

stop-line (DS) 

Signal timing 

(𝑡𝑠) 

Driver’s response 

(𝝋𝒂, 𝝋𝒅) 

High Opening fast Far Far Just became green Strong acceleration (SA) 
Normal Opening Medium Medium About to become amber Light acceleration (LA) 
Slow About zero Close Close Amber No action (NA) 
 Closing   Just became red Light deceleration (LD) 
 Closing fast   About to become green Strong deceleration (SD) 
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after the stop-line. Vehicles before the stop-line are 
controlled by both F1 and F2 while vehicles after the stop-line 
are controlled only by F1. Suppose O1 and O2 are the outputs 
of F1 and F2, respectively, which means given a certain set of 
inputs, the fuzzy rule in F1 will lead to decision O1 and the 
fuzzy rule in F2 will lead to O2. Then, the final driver 
response O (before stop-line) is computed as O =min(O1, O2). 

The target decisions are driver’s response: strong 
acceleration (SA); light acceleration (LA); maintain current 
speed with no action (NA); light deceleration (LD); and 
strong deceleration (SD) (Celikoglu, 2013). Fuzzy rules are 
created based on common sense to describe the willingness 
of acceleration or deceleration of each driver, as summarized 
in Tables 2 to 5. In F2, when the signal is about to turn amber 
or during amber phase, two drivers’ responses are defined for 
drivers who have decided either to cross or to stop before the 
stop-line. The decisions (stop or cross) are computed based 
on a set of fuzzy rules introduced in Section 2.2. 

 
2.2 Stopping propensity before stop-line 

The observations of 6 intersection were made during 
weekdays (MON, TUE, and WED) at 6:00-7:00 pm during 
peak hour. Locations of the survey sites are described in 
Table A.2. In total, 86,972 vehicles (50,325 cars, 21,342 
heavy vehicles and 15,305 motorcycles) were observed 
using automatic vehicle detection and tracking algorithms 
(Malinovskiy et al., 2009; Chai and Wong, 2013a). Position, 
velocity, neighboring traffic conditions, as well as signal 
phases of each tracked vehicle were recorded. Among the 6 
observed intersections, No. 1 to No. 4 are used for calibration 

and No. 5 and No. 6 are used for validation. Automatic 
vehicle tracking is applied to record vehicle trajectories and 
velocity profiles (Chai, 2015). 

Stopping propensity of different vehicle types is simulated 
in the proposed CA model. Drivers approaching a signalized 
intersection when signal is about to turn amber or in amber 
phase have to decide whether to cross or to stop before the 
stop-line. The variables include distance to stop-line (DS) in 
meters, moving velocity (vn) in km/h, and time to the onset 
of red phase ( tr ) in seconds. Stopping probabilities are 
modeled by a binary logistic regression (Hurwitz et al., 2012):  psn(stop) = (1 + e−βn)−1

                      (1) 
where psn is the stopping probability of the nth vehicle, βn is 
a linear combination of the three input factors, as: βn = a +b1 ∗ DSn + b2 ∗ vn + b3 ∗ tnr . As the three inputs are fuzzy 
memberships, the above equation is calibrated based on field 
observations at 4 intersections as the following equations. psn(car) = [1 + exp{−(−1.02 + 0.129DSn − 0.54vn −0.23tnr )}]−1                                                                        (2) psn (heavy vehicle) = [1 + exp{−(−2.61 + 0.17DSn −0.31vn − 0.27tnr )}]−1                                                        (3) psn (motorcycle) = [1 + exp{−(2.59 + 0.08DSn −0.72vn − 0.18tnr )}]−1                                                        (4) 

 
2.3 Lane-changing movements 

At signalized intersections, vehicles change lanes very 
often along the approach and departure lanes. Two types of 
lane-changing are observed: Type (I) is to change to 
(straight-through or turning) approaching lanes at the 
corresponding to desired departure direction; Type (II) is to 
move to a more convenient lane (with shorter queue or being 
less congested). In the proposed lane-changing fuzzy model 
(F3), input factors include current velocity (vn), front gap 
(current lane) (gn ), front gap (target lane) (gnt ), rear gap 
(target lane) (gnt,rear ), rear vehicle velocity (current lane) 
(vnt,rear ). To model Type (I) lane-changing, an additional 
input, distance to stop-line (DS), is involved (Sun and 
Kondyli, 2010). That is, with the same velocity and gaps, if 
the subject vehicle is closer to the stop-line, the probability 
of making Type (I) lane-changing will be higher. 

 
2.4 Gap acceptance of right-turn filtering 

 
In Singapore, which is a left-hand driving country, most 

signalized intersections are controlled with permissive right-
turn signal control. During straight-through green phase, the 
right-turn vehicle needs to wait for appropriate gaps in 
opposing straight-through traffic stream to make a right-turn 
(Wang and Abdel-Aty, 2007). There is a risk of collision if 
the right-turn vehicle moved without enough gaps or when 

 
Figure 1 Structure of F1 (Car-following) 
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the opposing straight-through vehicle(s) travelled too fast. 
Therefore, a set of fuzzy rules (F4) is developed for right-turn 
vehicles to decide whether to stop or to move according to 
velocity and position of subject and opposing vehicles. Input 
factors are current velocity (vn), velocity of the opposing 
vehicle (vno), and gap provided by opposing straight flow 
(gno). 

 

3 MEMBERSHIP FUNCTIONS 

 
In this study, membership functions of input factors are 

derived based on field observations. Firstly, it is assumed 
that membership functions are triangular and trapezoidal for 
better computational efficiency (Groeger, 2002; Yeldan et al., 

Table 2  
1st set of fuzzy rules (F1). 

 Current velocity (𝑣𝑛) Relative velocity (𝑣𝑛+1 − 𝑣𝑛) Front gap (𝑔𝑛) Driver’s response (𝝋𝒂, 𝝋𝒅) 

1 Slow Opening fast Far SA 
2 Slow Opening fast Medium SA 
3 Slow Opening fast Close LA 
4 Slow Opening Far SA 
… … … … … 
42 High Closing Close SD 
43 High Closing fast Far LD 
44 High Closing fast Medium SD 
45 High Closing fast Close SD 

Table 3  

2nd set of fuzzy rules (F2). 

 Current velocity (𝑣𝑛) Distance to stop-line (DS) Signal timing (𝑡𝑠) Driver’s response (𝝋𝒂, 𝝋𝒅) 

1 Slow Far Just became green SA 
2 Slow Far About to become amber SA/NA 
3 Slow Far Amber SA/LD 
4 Slow Far Just became red LA 
… … … … … 
42 Fast Close About to become amber NA/SD 
43 Fast Close Amber NA/SD 
44 Fast Close Just became red SD 
45 Fast Close About to become green LD 

Table 4  

3rd set of fuzzy rules (F3). 

 
Current 

velocity (𝑣𝑛) 

Front gap 

(current lane) 

Front gap 

(target lane) 

Rear gap 

(target lane) 

Rear velocity 

(target lane) 

Driver’s 
response) 

1 High Far Far Far High No 
2 High Far Far Far Normal No 
3 High Far Far Far Slow No 
… … … …   … 
74 Fast Close Far Far Medium Yes 
75 Fast Close Far Far Slow Yes 
… … … …   … 
243 Slow Close Close Close Slow Yes 

Table 5  

4th set of fuzzy rules (F4). 

 Current velocity (𝑣𝑛) Opposing velocity Opposing gap Driver’s response 

1 High Far Far Yes 
2 High Far Medium Yes 
3 High Far Close No 
… … … … … 
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2012). According to field observation, the 85th percentile of 
maximum acceleration and deceleration rates are 4m/s2 and  ̶ 
3m/s2 with mean acceleration and deceleration rates being 
2m/s2 and  ̶ 2.5m/s2. As five linguistic terms are used to 
describe driver responses in F1 and F2 (car-following), as in 
Table 1, applied membership function is derived as Figure 
2a. μ is the membership degree with different values of 
output factors. Driver responses in F3 (lane-changing) and F4 
(right-turn filtering) are 0-1 decisions. 

Membership functions of input factors for each fuzzy set 
are derived according to observed vehicle movements, 
membership functions of driver responses, and defined fuzzy 
rules. It is assumed that driver responses can be achieved 
using input factors and defined fuzzy rules. In this study, 
fuzzy rules and sets are defined to describe driving behavior. 
Moreover, relationship between input factors and driver 

responses can be obtained from field observation. As average 
perception-response time (PRT) at signalized intersections is 
set as 1s in this study, driver response at each time shall be 
determined by traffic and signal conditions 1s earlier. Using 
back-stepping technique, membership functions of input 
factors are derived. Detailed calibration processes are 
described in following example. 

The methodology to calibrate membership functions of 
each input consists of three steps, as shown in Figure 2. First, 
vehicle decisions are classified into several groups based on 
the number of linguistic terms of the input factor. For 
example, in F1, front gap is described in three linguistic terms 
(Close, Medium, Far). Driver responses (velocity change) 
are also classified in three groups (Deceleration, No action, 
Acceleration). If the acceleration rate is larger than 2.5m/s2, 
the driver decides to accelerate while if deceleration rate is 
smaller than − 1.5m/s2, the driver decides to decelerate. 
Otherwise, it is assumed that no obvious action is made by 
the driver. Observed movement characteristics (front gap and 
acceleration/deceleration rates after 1s) are also classified in 
three groups. As average and maximum acceleration and 
deceleration rates are known from field observations, 
membership function of velocity change can be plotted as 
shown in Figure 2a. Assume the other factor (relative 
velocity) follows a normal distribution. When front gap is 
Close, velocity change will be deceleration. Therefore, 
according to membership functions and fuzzy rules, driver 
decision can be classified in three ranges, as shown in Figure 
2a. Figures 2b to 2d shows the relationship between relative 
gap and frequencies of making each decision. Membership 
function of this factor is then calibrated as Figure 2e. Other 
input factors are calibrated using a similar method. Another 
example is to calibrate membership functions of relative 
velocity, which is described in five linguistic terms. Driver 
response in acceleration and declaration is classified into five 
groups, as shown in Figure 2f. According to field observation, 
membership function is calibrated as Figure 2g.  

Fuzzy memberships of F3 and F4 are also calibrated based 
on similar approach. Driver responses (lane change and 
filtering) are also classified in two groups (Yes and No). 
Histograms of corresponding input factors of the two groups 
are therefore used to derive two membership functions for 
the most safe and hazardous situations. The median 
membership function is then derived as the submission of all 
membership functions for any input value is 1. 

 
4 FCA MODEL DEVELOPMENT 

 

4.1 CA model embedded with FIS 

In the proposed FCA model, fuzzy sets introduced in 
Section 2 are embedded with CA model by using the Fuzzy 
Logic Toolbox of Matlab (Mamdani fuzzy interface). By 
using the ‘Evafis’ function in Matlab, response of each driver 
at each time step will be computed according to dynamic 
traffic flow and signal timing. The output response will be  

Figure 2 Structure of F1 (Car-following) 
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used to provide vehicle velocity and position at the next time-
step, as shown in Figure 3. Centroid defuzzification method 
is used. 

 
4.2 Cell space 

A smaller cell size of 0.9 m by 0.9 m square is chosen to 
simulate mixed traffic flow in the proposed FCA model. 
Lane width is taken as 3.6 m therefore a lane is constituted 
by 4 rows of cells. According to physical sizes of different 
vehicle types, a car occupies 5×2 cells, a heavy vehicle 
occupies 13×3 cells, while a motorcycle takes 3×1 cells. A 
leading cell (highlighted as the black cells in Figure 4) is 
defined for each vehicle to represent its exact position. 
Definition of front and rear gaps for subject vehicle is shown 
in Figure 4. If subject vehicle is a motorcycle, two additional 
gaps (front gap alongside for both sides) are computed to 

allow motorcycles to move laterally within the same lane. 
The leading cell of each turning vehicle can only occupy 
cells of the turning path. 

In this study, a cross-intersection with typical geometric 
design is simulated. Each intersection approach contains four 
lanes, one exclusive left-turn storage lane, two exclusive 
straight-through lanes, and an exclusive right-turn storage 
lane. 

 
4.3 Key features in the proposed FCA model 

(i) Multiple cell states 
In this model, three movements are pre-assigned to each 

vehicle to represent straight-through, left-turn and right-turn 
vehicles. For the simulation, each cell (exclude the boundary 
cells representing road boundaries) could be in one of five 
possible types of states, including being occupied by 
straight-through /right-turn or left-turn vehicle, not occupied, 
or cannot be occupied due to minimum gap clearance. 
(ii) Minimum Gap Clearance 

Minimum gap clearance in the proposed model includes 
front and lateral gap. According to the observation study 
(introduced in Section 2) of over 450 stand-still vehicles at 4 
different intersection approaches, the minimum gap in front 
of cars and heavy vehicles is around 2.5m. Minimum gap 
between motorcycles is around 1m. Therefore, rear-end gap 
clearance is set as 3 cells (2.7m) for cars and heavy vehicles 
and 1 cell (0.9m) for motorcycles. Along-side gap clearance 
is not applied at approach and departure lanes and defined as 
1 cell (0.9m) at intersection-box. In certain conditions, target 
cell is defined as cannot be occupied due to minimum gap 
clearance.  
(iii) Start-up lost time and right-turn waiting area 

With a sample of 50 platoons of vehicles, average start-up 
lost times of the first three vehicles are 1.50s, 1.08s, 0.85s. 
In the improved CA model, start-up lost time is added by 
postponing the start of the first 2 vehicles each for 1 time step 
(of 1s). Right-turn waiting areas are widely used in 
Singapore and are also featured in the studied approach. 
Right-turn vehicles can move forward and wait in the waiting 
area during the full green phase. Vehicles moving to waiting 
area have to stay clear of opposite straight-through vehicles.  

 
4.4 Modified NaSch model for forwarding movements 

The forwarding rules in this study are modified based on 
a multi-lane NaSch model (Schreckenberg et al., 1995; 
Rickert et al., 1996). Suppose, 𝑥𝑛 and 𝑣𝑛 denote the position 
in forwarding x direction and velocity of the leading cell, 
respectively, of the nth vehicle. Then, 𝑑𝑛 = 𝑥𝑛+1 − 𝑥𝑛  is the 
space headway in between the nth vehicle and the (n+1)th 
vehicle in front of it at time t. Front gap is therefore defined 
as 𝑔𝑛 = 𝑑𝑛 − 𝑏 − 𝑔𝑡, where b is number of cells occupied 
by front vehicle in forwarding direction and 𝑔𝑡 is the applied 
gap tolerance. At each time step t→t+∆t, the arrangement of 
each vehicle is updated in parallel according to the following 
rules; in all instances, vn is rounded to integer value.  

 

Figure 3 Structure of the proposed FCA model 

 
Figure 4 Front and rear gaps of different subject 

vehicle types 
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Rule 1: Acceleration. 
If vn < vmax, the velocity of the nth vehicle is increased 

by φa (computed from F1 and F2 as introduced in Section 2), 
but vn remains unaltered if  vn = vmax (subject to Rule 3), 
i.e. vn → min(vn + φa × ∆t, vmax)                    (5) 

Rule 2: Deceleration (due to other vehicles).  
At green or amber phase: 
If gn/∆t ≤ vn , which means if subject vehicle continues 

moving, it will ‘over-run’ the front car at next time step. 

Therefore, the velocity will be reduced by φd  to gn∆t − φd ×∆t; 
At red phase: Assume DS is the distance between vehicle 

and stop-line. 
If min (gn, DS) /∆t ≤ vn, which means if subject vehicle 

continues moving, it will ‘over-run’ the front car or stop-line 
at next time step, the velocity of the nth vehicle is reduced to  

 vn → min  (vn, gn∆t , DS∆t ) − φd × ∆t                     (6) 

Rule 3: Randomization. 
If vn > 0 , the velocity of the nth vehicle is decreased 

randomly by vr = 1  with probability 𝑝𝑟  but vn  does not 
change if vn = 0, whereby 𝑝𝑟 is selected as 0.2 according to 
field observation (Chai, 2015). vn → max((vn − vr),0) with probability 𝑝𝑟           (7) 

Rule 4: Vehicle movement.  
Each vehicle is moved forward according to its new 

velocity determined in Steps 1-3, i.e., xn → xn + vn × ∆t                              (8) 
 

5 MODEL VALIDATION 

 
As introduced in Section 2.2 the proposed FCA model is 

validated by comparison with observed traffic data at two 
signalized intersections (Sites No. 5 and No. 6) on both 
macroscopic and microscopic levels. 

 
5.1 Average travel time 

To investigate the model validity, a simulation using 
observed vehicle characteristics including traffic density and 
arrival distribution is performed for the two sites (Sites No. 
5 and No. 6). After 20 signal cycles, average travel time from 
observation and simulation are shown in Table 6 (Chai, 
2015). A total number of 390 vehicles are observed and 
simulated. Travel time is clocked from 150m to stop-line 
until 150m after entering departure lane, using vehicle front 

bumper as reference point. The results show very good 
agreement. Therefore, CA model is confirmed to be able to 
replicate the realistic signalized intersection traffic at the 
macroscopic level. 

 
5.2 Trajectories 

Simulated vehicle trajectories are compared against field 
data from Site No. 6 (Jurong Town Hall Road and Jurong 
East Ave 1). In order to generate the same initial headway 
distribution, observed arrival distribution and initial vehicle 
density are used to generate vehicles in the simulation. After 
the onset of signal cycle, a total of 307 vehicles (163 cars, 65 
heavy vehicles and 79 motorcycles) captured from field 
observations along four approach lanes are generated in the 
simulation with arrival time and velocity at the instant the 
vehicle enters the cell space. Figure 5 shows examples of 

Table 6 
Comparison of traffic delay (s) from CA simulation and field data 

 Site No. 5 Site No. 6 

 Cars Heavy vehicles Motorcycles Cars Heavy vehicles Motorcycles 

Field data 97.48 101.87 74.39 109.85 122.37 92.53 
CA simulation 94.3 103.98 76.63 115.61 118.63 95.38 
Error 3.4% －2.0% －2.9% －5.0% 3.2% －3.0% 

 

 
Figure 5 Trajectories and intersection layout (Site No. 5) 
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comparison between trajectories (longitudinal distance) from 
CA model and field data in Lane 2. 

An error assessment for each pair of vehicle positions at 
each time step is also done for a sample of 114 vehicles. The 
root Mean Square Error (RMSE) and Mean Percentage Error 
(MPE) are relatively small and the deviations (around 5%) 
between the simulation and field data are acceptable which 

present evidence that the CA model can well describe traffic 
dynamics at the microscopic level. 

 
5.3 Comparison between FCA and CA models 

To further validate the proposed FCA model, distributions 
of several movement characteristics are compared for 
simulation from FCA, stochastic CA (SCA) model and field 
observation, as shown in Figure 6 (Chai, 2015). Velocity and 
acceleration rates shown in these two figures are based on a 
3-term moving average (Chai, 2015). FCA model and 
observation profiles are in close agreement.  

 

6 SIMULATION EXPERIMENT 

 
Microscopic simulation experiments of car-following and 

lane-changing are conducted to test the proposed vehicle 
control logic in this study. Two straight-through lanes at the 
intersection approach, as shown in Figure 7, are selected for 
this experiment. With the geometric layout of the case 
intersection as shown in Figure 7, Lanes 2 and 3 are selected 
for the experiment. The system length is 360m (400 cells) 
including 150m before stop-line and 210m after the stop-line. 
In this two-lane system, each straight-through vehicle can 
choose whether to change to the other lane before or after 
stop-line. To evaluate microscopic car-following and lane-
changing movement, a subject vehicle is assigned which 
arrives at the start point of intersection approach (150m 
before stop-line) at 12s into the onset green phase. Therefore, 
if the subject vehicle is moving forward with an average 
speed higher than 30km/h, it is able to cross the stop-line 
before the onset of amber. 

Car-following and lane-changing are affected by traffic 
condition as well as signal control. Therefore, four factors 
are involved in the experiment: (1) Traffic volume in the 
subject lane, vols, (2) traffic volume along neighboring lane, voln, (3) signal phase, and (4) being before or after the stop-
line. A total of 32 simulation scenarios are conducted, with 
different traffic volumes for each straight-through lane 
varying from 100 pcu/h (passenger car unit per hour; 
saturation degree=0.24) to 400pcu/h (saturation degree 
=0.96). In Scenarios 1-16, only the subject vehicle is allowed 
to make lane-changing while all other vehicles are forbidden 
to change lane. In Scenarios 17-32, all simulated vehicles are 
free to make lane-changing.  

 
Figure 6 Comparison between FCA model, SCA 

model and field observation 

 

Figure 7 Studied two-lane system 
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To determine input number of vehicles for each vehicle 
type, vehicle composition is applied as Car: Heavy vehicle: 
Motorcycle=3:1:1 according to field observation. Passenger 
Car Equivalent (PCE) values calibrated in Singapore are 
used for converting turning (Kok and How 1992) and 
straight-through vehicles (Pang and Meng 1990). Signal 
cycle is 100s, green time assigned for each movement 
direction is 30s for straight through green phase (with 
permissive right-turn) and 15s for exclusive right-turn green 
phase. The simulation runs for 30 signal cycles, 
approximately 1 hour. Simulation outputs are calculated 
according to average results of 5 runs as suggested by Zheng 
et al. (2012). 

To access the numerical simulation outputs, 5 evaluation 
measurements are selected as: (1) travel time, tt, (2) time and 
position of the 1st actual lane-changing, tc, pc, (3) average 
willingness of lane-changing before change lane, w̅c  (4) 
frequency of lane-changing at each lane  fc̅1 , fc̅2  and (5) 
frequency of lane-changing per vehicle during green and 
amber-red signal phase fc̅g, fc̅ar. Among them, measurements 
1-3 are for the subject vehicle, while 4-5 are average 
performance for overall traffic flow.  

Simulation results are summarized in Figures 8 and 9. 
When lane-changing is permitted for subject vehicle only, 
lane-changing behavior of the subject vehicle is observed in 
9 scenarios, as the 9 symbols plotted in Figures 8b and 9c. (vols, voln) of the 9 scenarios are shown in different x-value 
and symbol type. However, when lane-changing is permitted 
in all scenarios, lane-changing of subject vehicle is only 
observed in 4 out of 16 scenarios, when (vols, voln) = 
(300,100); (300, 200); (400, 100); (400,200) pcu/h. Times 
and positions of lane-changings among the four scenarios 
show that bigger difference in traffic volumes between 
subject and neighboring lanes will result in earlier lane-
changing. Moreover, when all vehicles are able to change 
lane, traffic volumes are balanced between the two lanes. 

Overall, the simulation results of Figures 8 and 9 indicate 
that the proposed FCA model is able to simulate vehicle 
responses under various traffic conditions and microscopic 
car-following and lane-changing behavior of vehicles. In 
addition, several conclusions can be observed according to 
the simulation results. 

1) From Figures 8 and 9, whether free lane-changing is 
allowed or not, travel time of subject vehicle (in lane 1) is 
affected by traffic volume in both subject lane and 
neighboring lane. However, it is found that when all 
simulated vehicles are allowed to change lane, the impact of 
traffic volume on the neighboring lane is higher. 

According to Figure 9, if lane-changing is allowed, more 
lane-changings are observed from lanes with higher traffic 
volume to the lane with lower traffic volume. The two-lane 
system is found to be able to self-organize itself to achieve a 
more balanced condition through lane-changing, when all 
vehicles are free to change lane. 

 
Figure 8 Numerical results under various traffic 

conditions (Scenarios 1-16: lane-changing permitted for 
subject vehicle only) 
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2) In Figure 9, lane-changing frequencies before the stop-
line during green signal phase are found to be much fewer 
than during amber and red signal phases, especially in 
scenarios with higher traffic volume. This phenomenon has 
two causes: First, most vehicles which change lane before 
stop-line is to enter a shorter queue. Therefore, most lane-
changing occurrences are during amber and red phase. 
Second, vehicles usually travel with higher velocity during 
green phase which deters lane-changing.  

 

7 CONCLUSIONS 

 
It is without doubt that the approach of combining Fuzzy 

Logic and Cellular Automata is able to involve decision-
making and cognitions of individual driver in microscopic 
simulation. In this study, an improved FCA model is 
developed by applying FIS and membership functions to 

generate drivers’ responses that are embedded into the CA 
model. Four different fuzzy sets are designed to simulate 
driver’s response to signal timing changes, surrounding 
vehicles in front and rear along the same lane, neighboring 
lane and from opposing approach during filtering. The fuzzy 
sets are embedded in CA model to simulate mixed traffic 
flow at signalized intersections.  

The membership functions and more variables in the 
proposed FCA model may reduce the overall computational 
efficiency compared to the CA models without fuzzy logic. 
However, with improvements involving decision-making 
process, the FCA model is able to model decision-making of 
each driver and estimate dynamic driver’s responses. 
Simulation results of case study demonstrated that this 
approach is able to assess lane-changing and right-turn 
filtering behavior. Moreover, compared to most existing 
software, CA models have high computational efficiency. 
The proposed FCA model can also be embedded in CA 
models for application in safety assessment (Chai and Wong, 
2015).The loss in accuracy by discretization is not tackled in 
this research, hence the issue of (improvement/loss) of 
accuracy is not covered in this paper, but it is certainly a 
worthy research aspect in its own right.  

The emphasis in the present paper is that fuzzy logic 
contains linguistic terms which can be applied to model 
cognitions of drivers in their decision-making process. 
Involving fuzzy logic allows us to model driving behavior 
from human cognitions and attendant decision making. From 
the case study, impacts of intersection design and traffic 
factors on the microscopic driver behavior are estimated 
realistically. Apart from the intersection layout tested in this 
study, the FCA model can also be applied to estimate driver 
behavior in various intersection layouts, signal sequences 
and traffic conditions, and this shall be of great value in 
intersection design.  

The proposed FCA model has great potential to be applied 
in several aspects. It shall help researchers and authorities to 
estimate driver’s responses under various traffic conditions. 
As the design of signalized intersection entails combination 
of control strategies under dynamic traffic demand, such 
micro-simulation model provides a user-friendly tool to 
estimate microscopic vehicle behavior, and hence the 
impacts of the particular design. Moreover, more 
improvements can be made to refine and extend the 
applications of the proposed FCA model in future work. First, 
the effect of interaction between vehicles and pedestrians can 
be modelled by creating a heterogeneous FCA model 
involving both vehicles and pedestrians. Moreover, driving 
behavior is affected by individual characteristics, such as age, 
gender, which can be taken into account. Furthermore, some 
drivers are more risk-averse/affine compared to others. Their 
attitudes affect their decisions, such as stop/go decision and 
reaction of neighboring vehicles. By calibrating membership 
functions and weight factors, the FCA model can thus further 
improve simulation of heterogeneous drivers’ behavior.  

 
Figure 9 Numerical results under various traffic conditions  

(Scenarios 17-32: free lane-changing) 
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Table A.1 Notation table 

 

Notation Description βn Linear combination of the three input factors to compute stopping probability dn Space headway of the nth vehicle 
DS Distance to stop-line F1 1st Fuzzy set for forwarding movement affected by front vehicle F2 2nd  Fuzzy set for forwarding movement affected by signal timing F3 Lane-changing fuzzy set F4 Right-turn filtering fuzzy set fc̅1, fc̅2 Frequency of lane-changing per vehicle at each lane fc̅g, fc̅ar Frequency of lane-changing per vehicle during green and amber-red phase go̅̅ ̅ Average available gap in the opposing vehicle stream before filtering ga (i) The ith front gap alongside gl (i) Front gap in the ith neighboring lane gnl , gnr  Lateral gap on relative left and right side of the nth vehicle gn Front gap of the nth vehicle gnt  Front gap in target lane of the nth vehicle gnt,rear Rear gap in target lane of the nth vehicle gt Gap tolerance O Driver response before stop-line (O = min(O1, O2)) O1 Output of F1 O2 Output of F2 pc Position of the 1st actual lane-changing pr Probability of random deceleration ps Probability of vehicle to stop at onset of amber 
t  Number of time step (∆t = 1s) tc Time of the 1st actual lane-changing tr Time to the onset of red phase t̅rt Average travel time of right-turn vehicles ts Signal timing tt Travel time 
μ Membership degree with different values of input and output factors vols Traffic volume in the subject lane voln Traffic volume along neighboring lane vmax Maximum velocity of vehicle vn Velocity of the nth vehicle vnt,rear Rear velocity in current lane of the nth vehicle vr Random deceleration rate (1cell/s2) w̅c Average willingness of lane-changing  xn Forwarding position of the nth vehicle φa, φd Acceleration/ deceleration rates 

 
Table A.2 Locations of observation study 

 

Intersection Location 

No. 1 Woodlands Ave 2 and Woodlands Ave 5 
No. 2 Woodlands Ave 2, Woodlands Ave 5, and Woodlands Ave 9 
No. 3 Jalan Bahar and Jurong West Ave 5 
No. 4 Choa Chu Kang Ave 1 and Choa Chu Kang Way 
No. 5 Sengkang East Road and Seng kang East Way 
No. 6 Jurong Town Hall Road and Jurong East Ave 1 

 


