FUZZY O-CLOSURE OPERATOR ON FUZZY TOPOLOGICAL SPACES

M.N. MUKHERJEE and S.P. SINHA

Department of Pure Mathematics University of Calcutta 35, Ballygunge Circular Road Calcutta - 700 019, INDIA

(Received March 1, 1988 and in revised form August 16, 1990)

ABSTRACT. The paper contains a study of fuzzy Θ -closure operator, Θ -closures of fuzzy sets in a fuzzy topological space are characterized and some of their properties along with their relation with fuzzy δ -closures are investigated. As applications of these concepts, certain functions as well as some spaces satisfying certain fuzzy separation axioms are characterized in terms of fuzzy Θ -closures and δ -closures.

KEY WORDS AND PHRASES. Fuzzy Θ -cluster point, fuzzy Θ -closure, fuzzy δ -closure, q-coincidence, q-neighbourhood.

1980 AMS SUBJECT CLASSIFICATION CODE. Primary 54A40; Secondary 54C99, 54D99.

1. INTRODUCTION.

It is well-known that the concepts of Θ -closure and δ -closure are useful tools in standard topology in the study of H-closed spaces, Katetov's and H-closed extensions, generalizations of Stone-Weierstrass' theorem etc. For basic results and some applications of Θ -closure and δ -closure operators we refer to Veličko [1], Dickman and Porter [2], Espelie and Joseph [3] and Sivaraj [4]. Due to varied applicabilities of these operators in formulating various important set-topological concepts, it is natural to try for their extensions to fuzzy topological spaces. With this motivation in mind the concept of Θ -closure operator in a fuzzy topological space (due to Chang [5]) was introduced by us in [6] in the light of the notions of quasi-coincidence and q-neighbourhoods of Pu and Liu [7,8]. In the present paper our aim is to continue the same study which ultimately shows that different fuzzy topological concepts can effectively be characterized in terms of fuzzy Θ -closure and δ -closure operators.

In Section 2 of this paper we develop the concept of fuzzy Θ -closure operators and characterize fuzzy Θ -closures of fuzzy sets in a fuzzy topological space in different ways. In literature there can be found several definitions of T_2 -spaces in fuzzy setting. We take the definition of fuzzy T_2 -space as given by Ganguly and Saha [9] and become able to successfully characterize it in our context. Fuzzy regularity has been introduced by many workers from different view points, including one by us in [6]. Since our fuzzy regularity along with the fuzzy T_1 -axiom (of [9]) does not yield the above fuzzy T_2 -axiom, we propose to call it "strong T_2 " in fuzzy setting. Fuzzy semiregularity and almost

regularity were also defined in [6]. We characterize fuzzy regularity and these weaker forms of fuzzy regularity in terms of fuzzy Θ -closure and δ -closure. All these characterizations are incorporated in Section 3 of the paper. Fuzzy weakly continuous functions were first introduced by Azad [10] and were further investigated in [11], whereas the concept of fuzzy Θ -continuous functions was initiated in [6]. Section 3 also includes the characterizations of these functions with the help of the notion of fuzzy Θ -closures.

We now recall some definitions and results of a fuzzy topological space (henceforth fts, for short) (X,T) to be used in this paper excepting very standard ones for which we refer to Zadeh [12], Chang [5] and Pu and Liu [7,8]. The interior and closure of a fuzzy set A in an fts (X,T) will be denoted by Int A and Cl A respectively. A fuzzy point [7] with a singleton support x (say) and value $\alpha(0 < \alpha \le 1)$ at x is denoted by x_{α} . For a fuzzy set A, the support and complement of A are denoted by A_{α} and A' (or 1-A) respectively. For a fuzzy point x_{α} and a fuzzy set A, we write $x_{\alpha} \in A$ iff $\alpha \le A(x)$, and x_{α} is said to be quasi-coincident (q-coincident, for short) with A, denoted by $x_{\alpha}qA$, iff $\alpha > A'(x)$. A is said to be a q-neighbourhood (q-nbd, for short) of x_{α} iff there exists a fuzzy open set B such that $x_{\alpha}qB \le A$. For two fuzzy sets A and B, $A \le B$ iff $A \not B'$, and a fuzzy point $x_{\alpha} \in ClA$ iff each q-nbd of x_{α} is q-coincident with A [7]. For the definitions of fuzzy regularly open, regularly closed, semi-open and semi-closed sets we refer to Azad [10]. Simply by X and Y we shall mean the fuzzy topological spaces (X,T) and (Y,T_1) respectively. The constant fuzzy sets 0_X and 1_X are defined by $O_X(y) = 0$ and $1_X(y) = 1$, for each $y \in X$.

2. FUZZY \(\theta\)-CLOSURE AND ITS PROPERTIES.

DEFINITION 2.1. A fuzzy point x_{α} is said to be a fuzzy Θ -cluster point (δ -cluster point [13]) of a fuzzy set A iff closures of every open q-nbd (resp. iff every regularly open q-nbd) of x_{α} is q-coincident with A.

The union of all fuzzy Θ -cluster (δ -cluster) points of A is called the fuzzy Θ -closure of A and is denoted by $[A]_{\Theta}$ (resp. $[A]_{\delta}$). A fuzzy set A will be called fuzzy Θ -closed (δ -closed) iff $A = [A]_{\Theta}$ (resp. $A = [A]_{\delta}$). It is known [6] that for any fuzzy set A in an fts X, $Cl \ A \leq [A]_{\delta} \leq [A]_{\Theta}$, but the reverse implications are false (see [6] and [13]). However, it is true (see [6]) that for a fuzzy open set A in an fts X, $Cl \ A = [A]_{\delta} = [A]_{\Theta}$.

THEOREM 2.2. In an fts (X,T), the following hold:

- (a) Finite union and arbitrary intersection of Θ -closed sets in X is fuzzy Θ -closed.
- (b) For two fuzzy sets A and B in X, if $A \leq B$ then $[A]_{\Theta} \leq [B]_{\Theta}$.
- (c) The fuzzy sets 0_X and 1_X are fuzzy Θ -closed.

PROOF. The straightforward proofs are omitted.

REMARK 2.3. The complements of fuzzy Θ -closed sets in an fts (X,T) induce a fuzzy topology T_{Θ} (say) which is coarser than the fuzzy topology T of the space. Again, for a fuzzy set A in X, $[A]_{\Theta}$ is evidently fuzzy closed but not necessarily fuzzy Θ -closed as is seen from the next example. Thus, fuzzy Θ -closure operator is not a Kuratowski closure operator. However, it will be shown in the next section that for any fuzzy set A in an fts X, $[A]_{\Theta}$ is fuzzy Θ -closed if the space X is fuzzy regular (see Corollary 3.6), or iff the space X is fuzzy almost regular (see Theorem 3.10).

EXAMPLE 2.4. Let $X = \{a, b, c\}$ and $T = \{0_X, 1_X, A, B\}$,

where

$$A(a) = 0.5, A(b) = 0.6, A(c) = 0.2$$

and

$$B(a) = 0.4, B(b) = 0.5, B(c) = 0.1.$$

Let U be any fuzzy set given by, U(a) = U(b) = 0.3 and U(c) = 0. Then, $a_{.6} \in [U]_{\Theta}, a_{.8} \notin [U]_{\Theta}$, but $a_{.8} \in [a_{.6}]_{\Theta} \leq [[U]]_{\Theta}|_{\Theta}$. Thus, $[U]_{\Theta} \neq [[U]_{\Theta}|_{\Theta}$. Hence, $[U]_{\Theta}$ is not fuzzy Θ -closed.

In the following example, we observe a deviation from the corresponding established result [3] in general topology that $x \in [y]_{\Theta}$ iff $y \in [x]_{\Theta}$, if x, y are two points in a topological space.

EXAMPLE 2.5. Let X be an ordinary set with at least two distinct points a,b. Consider the fuzzy topology $T = \{0_X, 1_X A\}$, where $A(a) = \frac{1}{2}$, $A(b) = \frac{2}{5}$ and A(x) = 0, for $x \neq a, b(x \in X)$. Let us consider the fuzzy points $a_{\frac{1}{12}}$ and $b_{\frac{1}{4}}$. It can be checked that $a_{\frac{1}{12}} \in [b_{\frac{1}{5}}]_{\Theta}$, but $b_{\frac{1}{4}} \notin [a_{\frac{1}{12}}]_{\Theta}$,

THEOREM 2.6. For any fuzzy set A in an fts (X,T), $[A]_{\Theta} = \bigcap \{[U]_{\Theta} : U \in T \text{ and } A \leq U\}$.

PROOF. Obviously, L.H.S. \leq R.H.S. Now, if possible let $x_{\alpha} \in$ R.H.S. but $x_{\alpha} \notin [A]_{\Theta}$. Then there exists an open q-nbd V of x_{α} such that Cl $\not A$ and hence $A \leq 1 - C1V$. Then $x_{\alpha} \in [1 - C1V]_{\Theta}$ and consequently, Cl Vq(1 - C1V) which is impossible.

According to Pu and Liu [7] a function $S: D \to J$ is called a fuzzy net in X, where (D, \geq) is a directed set and J denote the collection of all fuzzy points in X. It is denoted by $\{S_n, n \in D\}$ or simply by (S, D). We now set the following:

DEFINITION 2.7. Let $\{S_n, n \in D\}$ be a fuzzy net and x_{α} a fuzzy point in X.

- (a) x_{α} is called a Θ -cluster point of the fuzzy net iff for every open q-nbd W of x_{α} and for any $n \in D$, there exists $m \ge n$ $(m \in D)$ such that $S_m qClW$.
- (b) The fuzzy net is said to be Θ -converge to x_{α} if for any open q-nbd U of x_{α} , exists $m \in D$ such that $S_n qC1U$, for all $n \geq m(n \in D)$. This is denoted by $S \xrightarrow{\Theta} x_{\alpha}$.

THEOREM 2.8. A fuzzy point x_{α} is a Θ -cluster point of a fuzzy net $\{s_n, n \in D\}$ in X iff there is a subnet of $\{S_n, n \in D\}$, which Θ -converges to x_{α} .

PROOF. Let x_{α} be a Θ -cluster point of the given fuzzy net. Let Qx_{α} denote the set of closures of all open q-nbds of x_{α} . Now for any member A of Qx_{α} , there exists an element S_n of the net such that S_nqA . Let E denote the set of all ordered pairs (n,A) with the above property, i.e., $n \in D$, $A \in Qx_{\alpha}$ and S_nqA . Then (E, \gg) is a directed set, where $(m,A) \gg (n,B)$, $((m,A),(n,B) \in E)$ iff $m \ge n$ in D and $A \le B$. Then $T:(E, \gg) \to (X,T)$ given by $T(m,A) = S_m$ can be checked by a subnet of $\{S_n, n \in D\}$. To show that $T \xrightarrow{\Theta} x_{\alpha}$, let V be any open q-nbd of x_{α} . Then there exists $n \in D$ such that $(n:C1V) \in E$ and then S_nqCIV . Now, for any $(m,A) \gg (n,C1V)$, $T(m,A) = S_mqA \le C1V$. Hence, $T \xrightarrow{\Theta} x_{\alpha}$. Converse is clear.

THEOREM 2.9. Let A be a fuzzy set in X. A fuzzy point $x_{\alpha} \in [A]_{\Theta}$ iff there exists a fuzzy net in A, Θ -converging to x_{α} .

PROOF. Let $x_{\alpha} \in [A]_{\Theta}$. For each open q-nbd U of x_{α} , C1UqA. That is, there exist $y^U \in A_o$ and real number β_U with $0 < \beta_U \le A(y^U)$ such that $y^U_{\beta} \in A$ and $y^U_{\beta} \neq C1U$. We choose and fix one such y^U_{β} for each U. Let D denote the set of all open q-nbds of x_{α} . Then (D, \ge) is directed under inclusion relation, i.e., for $B, C \in D, B \ge C$ iff $B \le C$. Then $\{y^U_{\beta} \in A: y^U_{\beta} \neq C1U \text{ and } U \in D\}$ is a fuzzy net in A such that it Θ -converges to x_{α} . Converse is straightforward even if x_{α} is a Θ -cluster point of the fuzzy net in A.

 CHARACTERIZATIONS OF CERTAIN SEPARATION AXIOMS AND FUNCTIONS IN TERMS OF FUZZY Θ-CLOSURE AND δ-CLOSURE.

DEFINITION 3.1. [9] An fts X is called fuzzy strongly T_2 iff for any two distinct fuzzy points x_{α} and y_{β} in X: whenever $x \neq y, x_{\alpha}$ and y_{β} have fuzzy open nbds U and V respectively such that $U \not V$; and when $x = y, \alpha < \beta$ (say), there exist fuzzy open sets U and V such that $x_{\alpha} \in U, y_{\beta}qV$ and $U \not V$.

LEMMA 3.2. For any two fuzzy open sets A and B in an fts (X,T), $A \not A B \Rightarrow C1A \not A B$ and $A \not A C1B$.

THEOREM 3.3. An fts (X,T) is fuzzy strongly T_2 iff every fuzzy point of X is fuzzy Θ -closed, and for $x,y \in X$ with $x \neq (C1U)_o$.

PROOF. Let X be fuzzy strongly T_2 , and let x_{α} be a fuzzy point in X. In order to show that $[x_{\alpha}]_{\Theta} = x_{\alpha}$, it suffices to establish that for any fuzzy point y_{β} , $y_{\beta} \notin [x_{\alpha}]_{\Theta}$ when either $x \neq y$, or x = y and $\beta > \alpha$. In the first case, there exist fuzzy open nbds U and V of y_1 and x_{α} respectively such that $U_{\emptyset}V$ and then $C1U_{\emptyset}V$ (by Lemma 3.2). Then U is an open q-nbd of y_{β} with $C1U_{\emptyset}x_{\alpha}$ so that $Y_{\beta} \notin [x_{\alpha}]_{\Theta}$. In the second case, there exist a fuzzy open nbd U of x_{α} and an open q-nbd V of y_{β} such that $U_{\emptyset}V$. Then $C1V_{\emptyset}U$ so that $C1V_{\emptyset}x_{\alpha}$ and hence $y_{\beta} \notin [x_{\alpha}]_{\Theta}$. Finally, for two distinct points x, y of X, there exist fuzzy open nbds U of x_1 and V of y_1 such that $U_{\emptyset}V$ and hence $C1U_{\emptyset}V$, i.e.,

 $y_1 \in V \le 1 - C1U$. Then $(1 - C1U)(y) = 1 \Rightarrow (C1U)(y) = 0 \Rightarrow y \notin (C1U)_o$. Conversely, let x_α and y_β be two distinct fuzzy points in X.

CASE I. Let $x \neq y$. First suppose that at least one of α and β is less than 1, say $\alpha < 1$. Then there exists $\lambda > 0$ such that $\alpha + \lambda < 1$. Now $x_{\lambda} \notin [y_{\beta}]_{\Theta}$ and hence there exists a fuzzy open nbd U of y_{β} such that $x_{\lambda} \notin [U]_{\Theta}$ (by Theorem 2.6). Then $U \not\in UV$, for an open q-nbd V of x_{λ} . Since $V(x) > 1 - \lambda > \alpha$, V and U are fuzzy open nbds of x_{α} and y_{β} respectively such that $U \not\in V$.

Next, suppose $\alpha - \beta - 1$. By hypothesis, there exists a fuzzy open nbd U of x_1 such that (C1U)(y) = 0. Then (1 - C1U) is a fuzzy open nbd of y_1 such that $U \notin (1 - C1U)$.

CASE II. Let x = y. Suppose $\alpha < \beta$. Then $y_{\beta} \notin [s_{\alpha}]_{\Theta}$ and so $y_{\beta} \notin [U]_{\Theta}$, for some fuzzy open nbd U of x_{α} . Then for an open q-nbd V of y_{β} , $C1V \notin U$ and hence $V \notin U$.

DEFINITION 3.4. [6] An fts X is said to be:

- (a) fuzzy regular (semi-regular) iff for each fuzzy point x_{α} in X and each open q-nbd U of x_{α} , there exists an open q-nbd V of x_{α} such that $C1V \leq U$ (resp. Int $C1V \leq U$);
- (B) fuzzy almost regular iff for each fuzzy point x_{α} in X and each regularly open q-nbd U of x_{α} , there exists a regularly open q-nbd V of x_{α} such that $C1V \leq U$.

THEOREM 3.5. An fts X is:

- (a) fuzzy regular iff for any fuzzy set A in X, $C1A = [A]_{\Theta}$;
- (b) fuzzy semi-regular iff $[A]_{\delta} = C1A$, for any fuzzy set A in X.

PROOF. Let X be fuzzy regular. For any fuzzy set A in X it is always true that $C1A \leq [A]_{\Theta}$. Now, let x_{α} be a fuzzy point in X such that $x_{\alpha} \in [A]_{\Theta}$ and let U be any open q-nbd of x_{α} . Then by fuzzy regularity of X, there exists an open q-nbd V of x_{α} such that $C1V \leq U$. Now, $x_{\alpha} \in [A]_{\Theta} \Rightarrow C1VqA \Rightarrow UqA \Rightarrow x_{\alpha} \in C1A$. Thus $[A]_{\Theta} = C1A$.

Conversely, let x_{α} be a fuzzy point in X and U an open q-nbd of x_{α} . Then $x_{\alpha} \notin (1-U) = C1(1-U) = [1-U]_{\Theta}$. Thus there exists an open q-nbd V of x_{α} such that $C1V \notin (1-U)$ and then $C1V \le U$. Hence X is fuzzy regular. (b) Similar to (a) and is omitted.

COROLLARY 3.6. In a fuzzy regular space (X,T), a fuzzy closed set is fuzzy Θ -closed, and hence for any fuzzy set A in X, $[A]_{\Theta}$ is fuzzy Θ -closed.

LEMMA 3.7. For any fuzzy semi-open set A in X, $[A]_{\delta} = C1A$.

PROOF. It suffices to show that $[A]_{\delta} \leq C1A$. Let $x_{\alpha} \notin C1A$. Then there exists an open q-nbd V of x_{α} such that $V \notin A$. Then IntC1 $V \leq I$ Int C1(1-A) = 1 - C1 IntA $\leq 1 - A$ (since A is fuzzy semi-open). Thus Int C1 $V \notin A$ and consequently, $x_{\alpha} \notin [A]_{\delta}$.

THEOREM 3.8. An fts X is fuzzy almost regular iff $[A]_{\Theta} = C1A$, for every fuzzy semi-open set A in X.

PROOF. Let X be fuzzy almost regular and A any fuzzy semi-open set in X. It is enough to show that $[A]_{\Theta} \leq C1A$. Suppose $x_{\alpha} \notin C1A$. By Lemma 3.7, there exists an open q-nbd V of x_{α} such that Int $C1V \notin A$. Since X is fuzzy almost regular, there is a fuzzy regularly open set U such that $x_{\alpha}U \leq C1U \leq \text{Int } C1V \leq 1-A$. Then $C1U \notin A$ and hence $x_{\alpha} \notin [A]_{\Theta}$. Conversely, let U be any fuzzy regularly open q-nbd of a fuzzy point x_{α} . Then $x_{\alpha} \notin 1-U=C1(1-U)=[1-U]_{\Theta}$, since a fuzzy regularly closed set is fuzzy semi-open. Hence, there is an open q-nbd V of x_{α} such that $C1V \notin (1-U)$. Since $V \leq \text{Int } C1V$, Int C1V is a regularly open q-nbd of x_{α} such that C1 Int $C1V = C1V \leq U$ and X is fuzzy almost regular.

THEOREM 3.9. In an fts X, the following statements are equivalent:

- (a) For any fuzzy open set A in X, $[[A]_{\Theta}]_{\Theta} = [A]_{\Theta}$.
- (b) For any fuzzy set A in X, $[[A]_{\Theta}]_{\Theta} = [A]_{\Theta}$.
- (c) For any fuzzy set A in X, $[A]_{\Theta} = [A]_{\delta}$.
- (d) X is fuzzy almost regular.

PROOF. (a) \Rightarrow (d): We first show that for any fuzzy regularly closed set F in X, $F = [F]_{\Theta}$. In fact, F being fuzzy regularly closed, F = C1U, for some fuzzy open set U. Now, $[F]_{\Theta} = [C1U]_{\Theta}[[U]_{\Theta}]_{\Theta}$ (since U is fuzzy open) $= [U]_{\Theta} = C1U = F$. Next, let x_{α} be a fuzzy point in X and A any fuzzy

regularly open set in X with $x_{\alpha} \neq A$. Then $x_{\alpha} \notin (1-A) = [1-A]_{\Theta}$, since (1-A) is fuzzy regularly closed. Hence, there exist a fuzzy open set V such that $x_{\alpha}qV$, but $C1V \notin (1-A)$. Let W = Int C 1 V. Then $x_{\alpha}qW$, and $C1W = C1V \notin (1-A)$. Thus, W is a regularly open q-nbd of x_{α} such that $C1W \leq A$. Hence, X is fuzzy almost regular.

(d) \Rightarrow (c): For any fuzzy set A, it is clear that $[A]_{\delta} \leq [A]_{\Theta}$. Now, let $x_{\alpha} \in [A]_{\Theta}$ and U an open q-nbd of x_{α} . Then $x_{\alpha}q$ Int C1U. By (d), there exists a regularly open q-nbd V of x_{α} such that C1V \leq Int C1U. Now, $x_{\alpha} \in [A]_{\Theta} \Rightarrow C1VqA \Rightarrow$ Int C1U $qA \Rightarrow x_{\alpha} \in [A]_{\delta}$.

- (c) \Rightarrow (b): $[[A]_{\Theta}]_{\Theta} = [[A]_{\delta}]_{\Theta} = [[A]_{\delta}]_{\delta} = [A]_{\delta} = [A]_{\Theta}$.
- (b) \Rightarrow (a): Obvious.

DEFINITION 3.10. A function $f: X \to Y$ from an fts (X, T) to another fts (Y, T_1) is called

- (i) fuzzy weakly continuous [10] iff for each fuzzy open set A in $Y, f^{-1}(A) \leq \text{Int } f^{-1}(C1A)$.
- (ii) fuzzy Θ -continuous [6] iff for each fuzzy point x_{α} in X and each open q-nbd V of x_{α} , $f(C1U) \leq C1V$, for some open q-nbd U of x_{α} .

LEMMA 3.11. Let $f: X \to Y$ be a function. Then for a fuzzy set B in Y, $f(1-f^{-1}(B)) \le 1-B$, where equality holds if f is onto.

PROOF. Let $y \in Y$. If $f^{-1}(y) = \emptyset$, then $[f(1 - f^{-1}(B))](y) = 0 \le (1 - B)(y)$. If $f^{-1}(y) \ne \emptyset$, then $[f(1 - f^{-1}(B))](y) = \sup_{x \in f^{-1}(y)} [1 - f^{-1}(B)](x) = \sup_{x \in f^{-1}(y)} \{1 - B(f(x))\}$

$$= \sup_{x \in f^{-1}(y)} \{1 - B(y)\} = 1 - B(y) = (1 - B)(y).$$

If f is onto, then for each $y \in Y$, $f^{-1}(y) \neq \emptyset$, and hence we have $f(1 - f^{-1}(B)) = 1 - B$.

THEOREM 3.12. A function $f: X \to Y$ is:

- (a) fuzzy weakly continuous iff $f(C1U) \leq [f(U)]_{\Theta}$, for each fuzzy set U in X.
- (b) fuzzy Θ -continuous iff $f([A]_{\Theta}) \leq [f(A)]_{\Theta}$, for any fuzzy set A in X.

PROOF. (a) Let f be a fuzzy weakly continuous and U any fuzzy set in X. Suppose $x_{\alpha} \in C1U$. It is enough to show that $f(x_{\alpha}) \in [f(U)]_{\Theta}$. Let A be any open q-nbd of $f(x_{\alpha})$. Then $f^{-1}(A)qx_{\alpha}$. By fuzzy weak continuity of $f, f^{-1}(A) \leq I$ Int $f^{-1}(C1A)$ and hence Int $f^{-1}(C1A)$ is an open q-nbd of x_{α} . Since $x_{\alpha} \in C1U$, we have Int $f^{-1}(C1A)qU$. Then $f^{-1}(C1A)qU$ and hence C1Aqf(U). Thus $f(x_{\alpha}) \in [f(U)]_{\Theta}$.

Conversely, for any fuzzy open set U in Y, $f(1 - \text{Int } f^{-1}(C1U))$

$$= f(C1(1-f^{-1}(C1U))) \le [f(1-f^{-1}(C1U)]_{\Theta} \le [1-C1U]_{\Theta}$$

(by Lemma 3.11)

$$= C1(1 - C1U) = 1 - \text{ Int } C1U \le 1 - U \Rightarrow f(1 - \text{ Int } f^{-1}(C1U)) / U \Rightarrow 1 - \text{ Int } f^{-1}(C1U) / f^{-1}(U)$$
$$\Rightarrow f^{-1}(U) \le \text{ Int } f^{-1}(C1U)$$

Hence f is fuzzy weakly continuous.

(b) Let the condition hold. For any fuzzy point x_{α} in X and any open q-nbd A of $f(x_{\alpha})$ in Y, we have by Lemma 3.11, $f(1-f^{-1}(C1A)) \le 1-C1A$. Thus, $C1A / f(1-f^{-1}(C1A))$ so that $f(x_{\alpha}) \notin [f(1-f^{-1}(C1A))]_{\Theta}$. By hypothesis, $f(x_{\alpha}) \notin f([1-f^{-1}(C1A)]_{\Theta})$ and hence $x_{\alpha} \notin [1-f^{-1}(C1A)]_{\Theta}$. Then there is an open q-nbd V of x_{α} such that $C1V / (1-f^{-1}(C1A))$ and hence $f(C1V) \le ff^{-1}(C1A) \le C1A$. Thus f is fuzzy Θ -continuous.

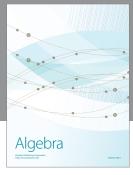
The converse part was proved in [6].

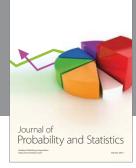
REFERENCES

- VELIČKO, N.V. H-closed topological spaces, <u>Trans. Amer. Math. Soc.</u> 78(1968), 103-118.
- DICKMAN, R.F. JR., and PORTER, J.R. Θ-closed subsets of Hausdorff spaces, <u>Pacific J. Math.</u> 58(1975), 407-415.
- ESPELIE, M.S., and JOSEPH, J.E. Some properties of Θ-closure, <u>Canad. J. Math.</u> 33(1981), 142-149.

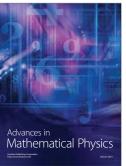
- SIVARAJ, D. Semi-open set characterizations of almost regular spaces, <u>Glasnik Math.</u> 21 (1986), 437-440.
- CHANG, C.L. Fuzzy topological spaces, <u>J. Math. Anal. Appl.</u> 24(1968), 182-190.
- 6. MUKHERJEE, M.N., and SINHA, S.P. On some near-fuzzy continuous functions between fuzzy topological spaces, <u>Fuzzy Sets and Systems</u> 34(1990), 245-254.
- PU, P.M. and LIU, Y.M. Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(1980), 571-599.
- 8. PU, P.M. and LIU, Y.M. Fuzzy topology II. produce and quotient spaces, <u>J. Math. Anal. Appl.</u> 77(1980), 20-37.
- GANGULY, S. and SAHA, S. On separation axioms and T, fuzzy continuity, <u>Fuzzy Sets and Systems</u> 16(1985), 265-275.
- AZAD, K.K. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981), 14-32.
- 11. MUKHERJEE, M.N. and SINHA, S.P. On some weaker forms of fuzzy continuous and fuzzy almost open functions on fuzzy topological spaces, <u>Fuzzy Sets and Systems</u> 32(1989), 103-114.
- 12. ZADEH, L.A. Fuzzy sets, Inform. Control 8(1965), 338-353.
- GANGULY, S. and SAHA, S. A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stevin 62(1988), 127-141.







Submit your manuscripts at http://www.hindawi.com



Journal of Discrete Mathematics

